A locally optimal preconditioned Newton-Schur method for symmetric elliptic eigenvalue problems
HTML articles powered by AMS MathViewer
- by Wenbin Chen, Nian Shao and Xuejun Xu
- Math. Comp. 92 (2023), 2655-2684
- DOI: https://doi.org/10.1090/mcom/3860
- Published electronically: July 5, 2023
- HTML | PDF | Request permission
Abstract:
A locally optimal preconditioned Newton-Schur method is proposed for solving symmetric elliptic eigenvalue problems. Firstly, the Steklov-Poincaré operator is used to project the eigenvalue problem on the domain $\Omega$ onto the nonlinear eigenvalue subproblem on $\Gamma$, which is the union of subdomain boundaries. Then, the direction of correction is obtained via applying a non-overlapping domain decomposition method on $\Gamma$. Four different strategies are proposed to build the hierarchical subspace $U_{k+1}$ over the boundaries, which are based on the combination of the coarse-subspace with the directions of correction. Finally, the approximation of eigenpair is updated by solving a local optimization problem on the subspace $U_{k+1}$. The convergence rate of the locally optimal preconditioned Newton-Schur method is proved to be $\gamma =1-c_{0}T_{h,H}^{-1}$, where $c_{0}$ is a constant independent of the fine mesh size $h$, the coarse mesh size $H$ and jumps of the coefficients; whereas $T_{h,H}$ is the constant depending on stability of the decomposition. Numerical results confirm our theoretical analysis.References
- I. Babuška and J. E. Osborn, Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods, with particular attention to the case of multiple eigenvalues, SIAM J. Numer. Anal. 24 (1987), no. 6, 1249–1276. MR 917451, DOI 10.1137/0724082
- I. Babuška and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp. 52 (1989), no. 186, 275–297. MR 962210, DOI 10.1090/S0025-5718-1989-0962210-8
- I. Babuška and J. E. Osborn, Handbook of Numerical Analysis, vol. 2, Elsevier Science B.V., North-Holland, 1991.
- Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst (eds.), Templates for the solution of algebraic eigenvalue problems, Software, Environments, and Tools, vol. 11, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. A practical guide. MR 1792141, DOI 10.1137/1.9780898719581
- Randolph E. Bank, Analysis of a multilevel inverse iteration procedure for eigenvalue problems, SIAM J. Numer. Anal. 19 (1982), no. 5, 886–898. MR 672565, DOI 10.1137/0719064
- Amir Beck and Marc Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. 2 (2009), no. 1, 183–202. MR 2486527, DOI 10.1137/080716542
- Constantine Bekas and Yousef Saad, Computation of smallest eigenvalues using spectral Schur complements, SIAM J. Sci. Comput. 27 (2005), no. 2, 458–481. MR 2202229, DOI 10.1137/040603528
- J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp. 47 (1986), no. 175, 103–134. MR 842125, DOI 10.1090/S0025-5718-1986-0842125-3
- James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz, The construction of preconditioners for elliptic problems by substructuring. IV, Math. Comp. 53 (1989), no. 187, 1–24. MR 970699, DOI 10.1090/S0025-5718-1989-0970699-3
- Susanne C. Brenner, The condition number of the Schur complement in domain decomposition, Numer. Math. 83 (1999), no. 2, 187–203. MR 1712684, DOI 10.1007/s002110050446
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Susanne C. Brenner and Li-Yeng Sung, Lower bounds for nonoverlapping domain decomposition preconditioners in two dimensions, Math. Comp. 69 (2000), no. 232, 1319–1339. MR 1710656, DOI 10.1090/S0025-5718-00-01236-9
- Maksymilian Dryja and Olof B. Widlund, Some domain decomposition algorithms for elliptic problems, Iterative methods for large linear systems (Austin, TX, 1988) Academic Press, Boston, MA, 1990, pp. 273–291. MR 1038100
- Jed A. Duersch, Meiyue Shao, Chao Yang, and Ming Gu, A robust and efficient implementation of LOBPCG, SIAM J. Sci. Comput. 40 (2018), no. 5, C655–C676. MR 3860901, DOI 10.1137/17M1129830
- E. G. D’yakonov and A. V. Knyazev, Group iterative method for finding low-order eigenvalues, Moscow University Computational Mathematics and Cybernetics 15 (1982), 32–40.
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 4th ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. MR 3024913, DOI 10.56021/9781421407944
- W. Hackbusch, On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method, SIAM J. Numer. Anal. 16 (1979), no. 2, 201–215. MR 526484, DOI 10.1137/0716015
- W. Hackbusch, Elliptic Eigenvalue Problems, Springer, Berlin, Heidelberg, 2017, pp. 329–354.
- Xiaozhe Hu and Xiaoliang Cheng, Acceleration of a two-grid method for eigenvalue problems, Math. Comp. 80 (2011), no. 275, 1287–1301. MR 2785459, DOI 10.1090/S0025-5718-2011-02458-0
- V. Kalantzis, Domain decomposition algorithms for the solution of sparse symmetric generalized eigenvalue problems, Ph.D. thesis, University of Minnesota, Minnesota, 2018.
- V. Kalantzis, A domain decomposition Rayleigh–Ritz algorithm for symmetric generalized eigenvalue problems, SIAM J. Sci. Comput. 42 (2020), no. 6, C410–C435.
- Vassilis Kalantzis, A spectral Newton-Schur algorithm for the solution of symmetric generalized eigenvalue problems, Electron. Trans. Numer. Anal. 52 (2020), 132–153. MR 4066335, DOI 10.1553/etna_{v}ol52s132
- Vassilis Kalantzis, Ruipeng Li, and Yousef Saad, Spectral Schur complement techniques for symmetric eigenvalue problems, Electron. Trans. Numer. Anal. 45 (2016), 305–329. MR 3546384
- Andrew V. Knyazev, Preconditioned eigensolvers—an oxymoron?, Electron. Trans. Numer. Anal. 7 (1998), 104–123. Large scale eigenvalue problems (Argonne, IL, 1997). MR 1667642
- Andrew V. Knyazev, Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comput. 23 (2001), no. 2, 517–541. Copper Mountain Conference (2000). MR 1861263, DOI 10.1137/S1064827500366124
- A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov, Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in hypre and PETSc, SIAM J. Sci. Comput. 29 (2007), no. 5, 2224–2239. MR 2350029, DOI 10.1137/060661624
- Andrew V. Knyazev and Klaus Neymeyr, A geometric theory for preconditioned inverse iteration. III. A short and sharp convergence estimate for generalized eigenvalue problems, Linear Algebra Appl. 358 (2003), 95–114. Special issue on accurate solution of eigenvalue problems (Hagen, 2000). MR 1942725, DOI 10.1016/S0024-3795(01)00461-X
- A. V. Knyazev and A. L. Skorokhodov, Preconditioned iterative methods in subspace for solving linear systems with indefinite coefficient matrices and eigenvalue problems, Soviet J. Numer. Anal. Math. Modelling 4 (1989), no. 4, 283–310. MR 1020265, DOI 10.1515/rnam.1989.4.4.283
- Andrew V. Knyazev and Alexander L. Skorokhodov, Preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problems, SIAM J. Numer. Anal. 31 (1994), no. 4, 1226–1239. MR 1286225, DOI 10.1137/0731064
- Qigang Liang and Xuejun Xu, A two-level preconditioned Helmholtz-Jacobi-Davidson method for the Maxwell eigenvalue problem, Math. Comp. 91 (2022), no. 334, 623–657. MR 4379971, DOI 10.1090/mcom/3702
- Qun Lin and Hehu Xie, A multi-level correction scheme for eigenvalue problems, Math. Comp. 84 (2015), no. 291, 71–88. MR 3266953, DOI 10.1090/S0025-5718-2014-02825-1
- S. Yu. Maliassov, On the Schwarz alternating method for eigenvalue problems, Russian J. Numer. Anal. Math. Modelling 13 (1998), no. 1, 45–56. MR 1611642, DOI 10.1515/rnam.1998.13.1.45
- Stephen F. McCormick, A mesh refinement method for $Ax=\lambda Bx$, Math. Comp. 36 (1981), no. 154, 485–498. MR 606508, DOI 10.1090/S0025-5718-1981-0606508-4
- Yu. E. Nesterov, A method for solving the convex programming problem with convergence rate $O(1/k^{2})$, Dokl. Akad. Nauk SSSR 269 (1983), no. 3, 543–547 (Russian). MR 701288
- Beresford N. Parlett, The symmetric eigenvalue problem, Classics in Applied Mathematics, vol. 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Corrected reprint of the 1980 original. MR 1490034, DOI 10.1137/1.9781611971163
- B. T. Poljak, Some methods of speeding up the convergence of iterative methods, Ž. Vyčisl. Mat i Mat. Fiz. 4 (1964), 791–803 (Russian). MR 169403
- A. Quarteroni and A. Valli, Theory and application of Steklov-Poincaré operators for boundary-value problems, Applied and industrial mathematics (Venice, 1989) Math. Appl., vol. 56, Kluwer Acad. Publ., Dordrecht, 1991, pp. 179–203. MR 1147198
- Yousef Saad, Numerical methods for large eigenvalue problems, Classics in Applied Mathematics, vol. 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Revised edition of the 1992 original [ 1177405]. MR 3396212, DOI 10.1137/1.9781611970739.ch1
- Nian Shao and Wenbin Chen, Convergence analysis of Newton-Schur method for symmetric elliptic eigenvalue problem, SIAM J. Numer. Anal. 61 (2023), no. 1, 315–342. MR 4550688, DOI 10.1137/21M1448847
- Barry F. Smith, A domain decomposition algorithm for elliptic problems in three dimensions, Numer. Math. 60 (1991), no. 2, 219–234. MR 1133580, DOI 10.1007/BF01385722
- Andrea Toselli and Olof Widlund, Domain decomposition methods—algorithms and theory, Springer Series in Computational Mathematics, vol. 34, Springer-Verlag, Berlin, 2005. MR 2104179, DOI 10.1007/b137868
- Wei Wang and Xuejun Xu, A two-level overlapping hybrid domain decomposition method for eigenvalue problems, SIAM J. Numer. Anal. 56 (2018), no. 1, 344–368. MR 3749389, DOI 10.1137/16M1088302
- Wei Wang and Xuejun Xu, On the convergence of a two-level preconditioned Jacobi-Davidson method for eigenvalue problems, Math. Comp. 88 (2019), no. 319, 2295–2324. MR 3957894, DOI 10.1090/mcom/3403
- Hehu Xie, Lei Zhang, and Houman Owhadi, Fast eigenpairs computation with operator adapted wavelets and hierarchical subspace correction, SIAM J. Numer. Anal. 57 (2019), no. 6, 2519–2550. MR 4027848, DOI 10.1137/18M1194079
- Jinchao Xu, Theory of multilevel methods, ProQuest LLC, Ann Arbor, MI, 1989. Thesis (Ph.D.)–Cornell University. MR 2637710
- Jinchao Xu and Aihui Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp. 70 (2001), no. 233, 17–25. MR 1677419, DOI 10.1090/S0025-5718-99-01180-1
- Jinchao Xu and Aihui Zhou, Local and parallel finite element algorithms for eigenvalue problems, Acta Math. Appl. Sin. Engl. Ser. 18 (2002), no. 2, 185–200. MR 2008551, DOI 10.1007/s102550200018
- Jinchao Xu and Jun Zou, Some nonoverlapping domain decomposition methods, SIAM Rev. 40 (1998), no. 4, 857–914. MR 1659681, DOI 10.1137/S0036144596306800
- Yidu Yang and Hai Bi, Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems, SIAM J. Numer. Anal. 49 (2011), no. 4, 1602–1624. MR 2831063, DOI 10.1137/100810241
- J. Zhou, X. Hu, L. Zhong, S. Shu, and L. Chen, Two-grid methods for Maxwell eigenvalue problems, SIAM J. Numer. Anal. 52 (2014), no. 4, 2027–2047. MR 3248033, DOI 10.1137/130919921
Bibliographic Information
- Wenbin Chen
- Affiliation: School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Shanghai 200433, People’s Republic of China
- MR Author ID: 653643
- ORCID: 0000-0001-8305-0764
- Email: wbchen@fudan.edu.cn
- Nian Shao
- Affiliation: School of Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China
- MR Author ID: 1410652
- Email: nshao20@fudan.edu.cn
- Xuejun Xu
- Affiliation: School of Mathematical Sciences, Tongji University, Shanghai 200442, People’s Republic of China; and LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- MR Author ID: 365400
- Email: xxj@lsec.cc.ac.cn
- Received by editor(s): May 10, 2022
- Received by editor(s) in revised form: May 10, 2022, and February 14, 2023
- Published electronically: July 5, 2023
- Additional Notes: The first author was supported by the National Natural Science Foundation of China (NSFC) 12241101 and the National Key R&D Program of China (2019YFA0709502). The third author was supported by the National Natural Science Foundation of China (grants 12071350), Shanghai Municipal Science and Technology Major Project 2021SHZDZX0100, and Science and Technology Commission of Shanghai Municipality.
The first author is the corresponding author. - © Copyright 2023 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 2655-2684
- MSC (2020): Primary 65N25, 65N30, 65N55
- DOI: https://doi.org/10.1090/mcom/3860
Dedicated: This paper is dedicated to the memory of Prof. Zhongci Shi