Computing quadratic points on modular curves $X_0(N)$
HTML articles powered by AMS MathViewer
- by Nikola Adžaga, Timo Keller, Philippe Michaud-Jacobs, Filip Najman, Ekin Ozman and Borna Vukorepa;
- Math. Comp. 93 (2024), 1371-1397
- DOI: https://doi.org/10.1090/mcom/3902
- Published electronically: October 3, 2023
- HTML | PDF | Request permission
Abstract:
In this paper we improve on existing methods to compute quadratic points on modular curves and apply them to successfully find all the quadratic points on all modular curves $X_0(N)$ of genus up to $8$, and genus up to $10$ with $N$ prime, for which they were previously unknown. The values of $N$ we consider are contained in the set \begin{equation*} \mathcal {L}=\{58, 68, 74, 76, 80, 85, 97, 98, 100, 103, 107, 109, 113, 121, 127 \}. \end{equation*} We obtain that all the non-cuspidal quadratic points on $X_0(N)$ for $N\in \mathcal {L}$ are complex multiplication (CM) points, except for one pair of Galois conjugate points on $X_0(103)$ defined over $\mathbb {Q}(\sqrt {2885})$. We also compute the $j$-invariants of the elliptic curves parametrised by these points, and for the CM points determine their geometric endomorphism rings.References
- Nikola Adžaga, Vishal Arul, Lea Beneish, Mingjie Chen, Shiva Chidambaram, Timo Keller, and Boya Wen, Quadratic Chabauty for Atkin-Lehner quotients of modular curves of prime level and genus 4, 5, 6, Acta Arith. 208 (2023), no. 1, 15–49. MR 4616870, DOI 10.4064/aa220110-7-3
- Nikola Adžaga, Shiva Chidambaram, Timo Keller, and Oana Padurariu, Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings, Res. Number Theory 8 (2022), no. 4, Paper No. 87, 24. MR 4496691, DOI 10.1007/s40993-022-00388-9
- J. S. Balakrishnan, A. J. Best, F. Bianchi, B. Lawrence, J. S. Müller, N. Triantafillou, and J. Vonk, Two recent $p$-adic approaches towards the (effective) Mordell conjecture, Arithmetic L-functions and differential geometric methods, Progr. Math., vol. 338, Birkhäuser/Springer, Cham, [2021] ©2021, pp. 31–74. MR 4311238, DOI 10.1007/978-3-030-65203-6_{2}
- Jennifer S. Balakrishnan, Netan Dogra, J. Steffen Müller, Jan Tuitman, and Jan Vonk, Quadratic Chabauty for modular curves: algorithms and examples, Compos. Math. 159 (2023), no. 6, 1111–1152. MR 4589060, DOI 10.1112/s0010437x23007170
- Jennifer S. Balakrishnan and Jan Tuitman, Explicit Coleman integration for curves, Math. Comp. 89 (2020), no. 326, 2965–2984. MR 4136553, DOI 10.1090/mcom/3542
- I. Balçık, Growth of odd torsion over imaginary quadratic fields of class number 1, arXiv:2111.11399, 2021.
- B. S. Banwait, F. Najman, and O. Padurariu, Cyclic isogenies of elliptic curves over fixed quadratic fields, To appear in Math. Comp., arXiv:2206.08891, 2022.
- Francesc Bars, Josep González, and Xavier Xarles, Hyperelliptic parametrizations of $\Bbb {Q}$ curves, Ramanujan J. 56 (2021), no. 1, 103–120. MR 4311678, DOI 10.1007/s11139-020-00281-y
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Josha Box, Quadratic points on modular curves with infinite Mordell-Weil group, Math. Comp. 90 (2021), no. 327, 321–343. MR 4166463, DOI 10.1090/mcom/3547
- Nils Bruin and Michael Stoll, The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272–306. MR 2685127, DOI 10.1112/S1461157009000187
- Peter Bruin and Filip Najman, Hyperelliptic modular curves $X_0(n)$ and isogenies of elliptic curves over quadratic fields, LMS J. Comput. Math. 18 (2015), no. 1, 578–602. MR 3389884, DOI 10.1112/S1461157015000157
- Pete L. Clark, Tyler Genao, Paul Pollack, and Frederick Saia, The least degree of a CM point on a modular curve, J. Lond. Math. Soc. (2) 105 (2022), no. 2, 825–883. MR 4400938, DOI 10.1112/jlms.12518
- Maarten Derickx, Anastassia Etropolski, Mark van Hoeij, Jackson S. Morrow, and David Zureick-Brown, Sporadic cubic torsion, Algebra Number Theory 15 (2021), no. 7, 1837–1864. MR 4333666, DOI 10.2140/ant.2021.15.1837
- Maarten Derickx, Sheldon Kamienny, William Stein, and Michael Stoll, Torsion points on elliptic curves over number fields of small degree, Algebra Number Theory 17 (2023), no. 2, 267–308. MR 4564759, DOI 10.2140/ant.2023.17.267
- Noam D. Elkies, On elliptic $K$-curves, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 81–91. MR 2058644
- Nuno Freitas and Samir Siksek, Fermat’s last theorem over some small real quadratic fields, Algebra Number Theory 9 (2015), no. 4, 875–895. MR 3352822, DOI 10.2140/ant.2015.9.875
- S. Galbraith, Equations for modular curves, PhD thesis, University of Oxford, 1996.
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- Joe Harris and Joe Silverman, Bielliptic curves and symmetric products, Proc. Amer. Math. Soc. 112 (1991), no. 2, 347–356. MR 1055774, DOI 10.1090/S0002-9939-1991-1055774-0
- S. Kamienny, Torsion points on elliptic curves and $q$-coefficients of modular forms, Invent. Math. 109 (1992), no. 2, 221–229. MR 1172689, DOI 10.1007/BF01232025
- M. A. Kenku, On the modular curves $X_{0}(125)$, $X_{1}(25)$ and $X_{1}(49)$, J. London Math. Soc. (2) 23 (1981), no. 3, 415–427. MR 616546, DOI 10.1112/jlms/s2-23.3.415
- M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125–149. MR 931956, DOI 10.1017/S0027763000002816
- M. Khawaja and F. Jarvis, Fermat’s last theorem over $\mathbb {Q}(\sqrt {2}, \sqrt {3})$, arXiv:2210.03744, 2022.
- V. A. Kolyvagin and D. Yu. Logachëv, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz 1 (1989), no. 5, 171–196 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 5, 1229–1253. MR 1036843
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287, DOI 10.1007/BF02684339
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437–449 (French). MR 1369424, DOI 10.1007/s002220050059
- Philippe Michaud-Jacobs, Fermat’s last theorem and modular curves over real quadratic fields, Acta Arith. 203 (2022), no. 4, 319–351. MR 4444259, DOI 10.4064/aa210812-2-4
- Philippe Michaud-Rodgers, Quadratic points on non-split Cartan modular curves, Int. J. Number Theory 18 (2022), no. 2, 245–267. MR 4390660, DOI 10.1142/S1793042122500178
- Rick Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, vol. 5, American Mathematical Society, Providence, RI, 1995. MR 1326604, DOI 10.1090/gsm/005
- Fumiyuki Momose, Rational points on the modular curves $X^+_0(N)$, J. Math. Soc. Japan 39 (1987), no. 2, 269–286. MR 879929, DOI 10.2969/jmsj/03920269
- Filip Najman and Borna Vukorepa, Quadratic points on bielliptic modular curves, Math. Comp. 92 (2023), no. 342, 1791–1816. MR 4570342, DOI 10.1090/mcom/3805
- Ekin Ozman and Samir Siksek, Quadratic points on modular curves, Math. Comp. 88 (2019), no. 319, 2461–2484. MR 3957901, DOI 10.1090/mcom/3407
- Igor R. Shafarevich, Basic algebraic geometry. 2, 3rd ed., Springer, Heidelberg, 2013. Schemes and complex manifolds; Translated from the 2007 third Russian edition by Miles Reid. MR 3100288
- Samir Siksek, Chabauty for symmetric powers of curves, Algebra Number Theory 3 (2009), no. 2, 209–236. MR 2491943, DOI 10.2140/ant.2009.3.209
- The Stacks project authors, The Stacks project, https://stacks.math.columbia.edu, 2023. (Accessed 26 January 2023).
- B. Vukorepa, Isogenies over quadratic fields of elliptic curves with rational $j$-invariant, arXiv:2203.10672, 2022.
Bibliographic Information
- Nikola Adžaga
- Affiliation: Department of Mathematics, Faculty of Civil Engineering, University of Zagreb, Fra Andrije Kačića-Miošića 26, 10 000 Zagreb, Croatia
- ORCID: 0000-0002-7585-8306
- Email: nadzaga@grad.hr
- Timo Keller
- Affiliation: Leibniz Universität Hannover, Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Welfengarten 1, 30167 Hannover, Germany
- MR Author ID: 1155782
- ORCID: 0000-0003-0916-8478
- Email: keller@math.uni-hannover.de
- Philippe Michaud-Jacobs
- Affiliation: Mathematics Institute, University of Warwick, CV4 7AL, United Kingdom
- MR Author ID: 1493780
- Email: p.rodgers@warwick.ac.uk
- Filip Najman
- Affiliation: Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
- MR Author ID: 886852
- ORCID: 0000-0002-0994-0846
- Email: fnajman@math.hr
- Ekin Ozman
- Affiliation: Bogazici University, Department of Mathematics, Bebek, Istanbul 34342, Turkey
- MR Author ID: 955558
- Email: ekin.ozman@boun.edu.tr
- Borna Vukorepa
- Affiliation: Department of Mathematics, Faculty of Science, University of Zagreb, Bijenicka cesta 30, 10000 Zagreb, Croatia
- MR Author ID: 1553616
- ORCID: 0000-0002-9560-9032
- Email: borna.vukorepa@gmail.com
- Received by editor(s): April 25, 2023
- Received by editor(s) in revised form: August 5, 2023
- Published electronically: October 3, 2023
- Additional Notes: The second author was supported by the Deutsche Forschungsgemeinschaft (DFG), Projektnummer STO 299/18-1, AOBJ: 667349 while working on this article. The third author was supported by an EPSRC studentship EP/R513374/1 and had previously used the surname Michaud-Rodgers. The fourth and sixth authors were supported by QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004). The fifth author was partially supported by TUBITAK Project No 122F413.
- © Copyright 2023 American Mathematical Society
- Journal: Math. Comp. 93 (2024), 1371-1397
- MSC (2020): Primary 11G05, 14G05, 11G18
- DOI: https://doi.org/10.1090/mcom/3902
- MathSciNet review: 4708039