Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Computing quadratic points on modular curves $X_0(N)$
HTML articles powered by AMS MathViewer

by Nikola Adžaga, Timo Keller, Philippe Michaud-Jacobs, Filip Najman, Ekin Ozman and Borna Vukorepa;
Math. Comp. 93 (2024), 1371-1397
DOI: https://doi.org/10.1090/mcom/3902
Published electronically: October 3, 2023

Abstract:

In this paper we improve on existing methods to compute quadratic points on modular curves and apply them to successfully find all the quadratic points on all modular curves $X_0(N)$ of genus up to $8$, and genus up to $10$ with $N$ prime, for which they were previously unknown. The values of $N$ we consider are contained in the set \begin{equation*} \mathcal {L}=\{58, 68, 74, 76, 80, 85, 97, 98, 100, 103, 107, 109, 113, 121, 127 \}. \end{equation*} We obtain that all the non-cuspidal quadratic points on $X_0(N)$ for $N\in \mathcal {L}$ are complex multiplication (CM) points, except for one pair of Galois conjugate points on $X_0(103)$ defined over $\mathbb {Q}(\sqrt {2885})$. We also compute the $j$-invariants of the elliptic curves parametrised by these points, and for the CM points determine their geometric endomorphism rings.
References
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (2020): 11G05, 14G05, 11G18
  • Retrieve articles in all journals with MSC (2020): 11G05, 14G05, 11G18
Bibliographic Information
  • Nikola Adžaga
  • Affiliation: Department of Mathematics, Faculty of Civil Engineering, University of Zagreb, Fra Andrije Kačića-Miošića 26, 10 000 Zagreb, Croatia
  • ORCID: 0000-0002-7585-8306
  • Email: nadzaga@grad.hr
  • Timo Keller
  • Affiliation: Leibniz Universität Hannover, Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Welfengarten 1, 30167 Hannover, Germany
  • MR Author ID: 1155782
  • ORCID: 0000-0003-0916-8478
  • Email: keller@math.uni-hannover.de
  • Philippe Michaud-Jacobs
  • Affiliation: Mathematics Institute, University of Warwick, CV4 7AL, United Kingdom
  • MR Author ID: 1493780
  • Email: p.rodgers@warwick.ac.uk
  • Filip Najman
  • Affiliation: Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
  • MR Author ID: 886852
  • ORCID: 0000-0002-0994-0846
  • Email: fnajman@math.hr
  • Ekin Ozman
  • Affiliation: Bogazici University, Department of Mathematics, Bebek, Istanbul 34342, Turkey
  • MR Author ID: 955558
  • Email: ekin.ozman@boun.edu.tr
  • Borna Vukorepa
  • Affiliation: Department of Mathematics, Faculty of Science, University of Zagreb, Bijenicka cesta 30, 10000 Zagreb, Croatia
  • MR Author ID: 1553616
  • ORCID: 0000-0002-9560-9032
  • Email: borna.vukorepa@gmail.com
  • Received by editor(s): April 25, 2023
  • Received by editor(s) in revised form: August 5, 2023
  • Published electronically: October 3, 2023
  • Additional Notes: The second author was supported by the Deutsche Forschungsgemeinschaft (DFG), Projektnummer STO 299/18-1, AOBJ: 667349 while working on this article. The third author was supported by an EPSRC studentship EP/R513374/1 and had previously used the surname Michaud-Rodgers. The fourth and sixth authors were supported by QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004). The fifth author was partially supported by TUBITAK Project No 122F413.
  • © Copyright 2023 American Mathematical Society
  • Journal: Math. Comp. 93 (2024), 1371-1397
  • MSC (2020): Primary 11G05, 14G05, 11G18
  • DOI: https://doi.org/10.1090/mcom/3902
  • MathSciNet review: 4708039