A posteriori error estimates for the Richards equation
HTML articles powered by AMS MathViewer
- by K. Mitra and M. Vohralík;
- Math. Comp. 93 (2024), 1053-1096
- DOI: https://doi.org/10.1090/mcom/3932
- Published electronically: February 14, 2024
- HTML | PDF | Request permission
Abstract:
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection–reaction–diffusion equation that exhibits both parabolic–hyperbolic and parabolic–elliptic kind of degeneracies. In this study, we provide reliable, fully computable, and locally space–time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated $H^1(H^{-1})$, $L^2(L^2)$, and the $L^2(H^1)$ errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space–time efficiency error bounds are then obtained in a standard $H^1(H^{-1})\cap L^2(H^1)$ norm. The reliability and efficiency norms employed coincide when there is no nonlinearity. Moreover, error contributors such as space discretization, time discretization, quadrature, linearization, and data oscillation are identified and separated. The estimates are also valid in a setting where iterative linearization with inexact solvers is considered. Numerical tests are conducted for nondegenerate and degenerate cases having exact solutions, as well as for a realistic case and a benchmark case. It is shown that the estimators correctly identify the errors up to a factor of the order of unity.References
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308, DOI 10.1002/9781118032824
- Hans Wilhelm Alt and Stephan Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (1983), no. 3, 311–341. MR 706391, DOI 10.1007/BF01176474
- H. W. Alt, S. Luckhaus, and A. Visintin, On nonstationary flow through porous media, Ann. Mat. Pura Appl. (4) 136 (1984), 303–316. MR 765926, DOI 10.1007/BF01773387
- Todd Arbogast, Mary F. Wheeler, and Nai-Ying Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal. 33 (1996), no. 4, 1669–1687. MR 1403565, DOI 10.1137/S0036142994266728
- V. Baron, Y. Coudière, and P. Sochala, Adaptive multistep time discretization and linearization based on a posteriori error estimates for the Richards equation, Appl. Numer. Math. 112 (2017), 104–125. MR 3574244, DOI 10.1016/j.apnum.2016.10.005
- J. Bear, Dynamics of Flow in Porous Media, Dover, New York, 1972.
- Luca Bergamaschi and Mario Putti, Mixed finite elements and Newton-type linearizations for the solution of Richards’ equation, Internat. J. Numer. Methods Engrg. 45 (1999), no. 8, 1025–1046. MR 1697914, DOI 10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.3.CO;2-7
- Christine Bernardi, Linda El Alaoui, and Zoubida Mghazli, A posteriori analysis of a space and time discretization of a nonlinear model for the flow in partially saturated porous media, IMA J. Numer. Anal. 34 (2014), no. 3, 1002–1036. MR 3232443, DOI 10.1093/imanum/drt014
- Konstantin Brenner and Clément Cancès, Improving Newton’s method performance by parametrization: the case of the Richards equation, SIAM J. Numer. Anal. 55 (2017), no. 4, 1760–1785. MR 3672374, DOI 10.1137/16M1083414
- Clément Cancès, Iuliu Sorin Pop, and Martin Vohralík, An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp. 83 (2014), no. 285, 153–188. MR 3120585, DOI 10.1090/S0025-5718-2013-02723-8
- M. A. Celia, E. T. Bouloutas, and R. L. Zarba, General mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res. 26 (1990), no. 7, 1483–1496.
- Albert Cohen, Ronald DeVore, and Ricardo H. Nochetto, Convergence rates of AFEM with $H^{-1}$ data, Found. Comput. Math. 12 (2012), no. 5, 671–718. MR 2970853, DOI 10.1007/s10208-012-9120-1
- Daniele A. Di Pietro, Martin Vohralík, and Soleiman Yousef, Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem, Math. Comp. 84 (2015), no. 291, 153–186. MR 3266956, DOI 10.1090/S0025-5718-2014-02854-8
- Vít Dolejší, Alexandre Ern, and Martin Vohralík, A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems, SIAM J. Numer. Anal. 51 (2013), no. 2, 773–793. MR 3033032, DOI 10.1137/110859282
- Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7 (1970), 575–626. MR 277126, DOI 10.1137/0707048
- Alexandre Ern, Iain Smears, and Martin Vohralík, Discrete $p$-robust $H(\textrm {div})$-liftings and a posteriori estimates for elliptic problems with $H^{-1}$ source terms, Calcolo 54 (2017), no. 3, 1009–1025. MR 3694733, DOI 10.1007/s10092-017-0217-4
- Alexandre Ern, Iain Smears, and Martin Vohralík, Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, SIAM J. Numer. Anal. 55 (2017), no. 6, 2811–2834. MR 3723331, DOI 10.1137/16M1097626
- Alexandre Ern and Martin Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), no. 4, A1761–A1791. MR 3072765, DOI 10.1137/120896918
- Robert Eymard, Michaël Gutnic, and Danielle Hilhorst, The finite volume method for Richards equation, Comput. Geosci. 3 (1999), no. 3-4, 259–294 (2000). MR 1750075, DOI 10.1023/A:1011547513583
- R. Helmig, Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems, Springer-Verlag, 1997.
- Willi Jäger and Jozef Kačur, Solution of porous medium type systems by linear approximation schemes, Numer. Math. 60 (1991), no. 3, 407–427. MR 1137200, DOI 10.1007/BF01385729
- R. A. Klausen, F. A. Radu, and G. T. Eigestad, Convergence of MPFA on triangulations and for Richards’ equation, Internat. J. Numer. Methods Fluids 58 (2008), no. 12, 1327–1351. MR 2478593, DOI 10.1002/fld.1787
- P. Knabner, Finite element simulation of saturated-unsaturated flow through porous media, Large Scale Scientific Computing, Springer, 1987, pp. 83–93.
- Christian Kreuzer, Reliable and efficient a posteriori error estimates for finite element approximations of the parabolic $p$-Laplacian, Calcolo 50 (2013), no. 2, 79–110. MR 3049934, DOI 10.1007/s10092-012-0059-z
- Masahiro Kubo and Quqin Lu, Nonlinear degenerate parabolic equations with Neumann boundary condition, J. Math. Anal. Appl. 307 (2005), no. 1, 232–244. MR 2138986, DOI 10.1016/j.jmaa.2004.10.052
- R. J. Lenhard, J. C. Parker, and S. Mishra, On the correspondence between Brooks-Corey and van Genuchten models, J. Irrigation Drainage Eng. 115 (1989), no. 4, 744–751.
- H. Li, M. W. Farthing, C. N. Dawson, and C. T. Miller, Local discontinuous Galerkin approximations to Richards’ equation, Adv. Water Resour. 30 (2007), no. 3, 555–575.
- Florian List and Florin A. Radu, A study on iterative methods for solving Richards’ equation, Comput. Geosci. 20 (2016), no. 2, 341–353. MR 3489128, DOI 10.1007/s10596-016-9566-3
- K. Mitra and I. S. Pop, A modified L-scheme to solve nonlinear diffusion problems, Comput. Math. Appl. 77 (2019), no. 6, 1722–1738. MR 3926838, DOI 10.1016/j.camwa.2018.09.042
- K. Mitra and M. Vohralík, Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic problems in iteration-dependent norms. An orthogonal decomposition result based on iterative linearization, 2023, hal-04156711.
- R. H. Nochetto, A. Schmidt, and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems, Math. Comp. 69 (2000), no. 229, 1–24. MR 1648399, DOI 10.1090/S0025-5718-99-01097-2
- Ricardo H. Nochetto and Claudio Verdi, Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal. 25 (1988), no. 4, 784–814. MR 954786, DOI 10.1137/0725046
- M. Ohlberger, A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations, Numer. Math. 87 (2001), no. 4, 737–761. MR 1815733, DOI 10.1007/PL00005431
- Felix Otto, $L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations 131 (1996), no. 1, 20–38. MR 1415045, DOI 10.1006/jdeq.1996.0155
- Ahmed Ait Hammou Oulhaj, Clément Cancès, and Claire Chainais-Hillairet, Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 4, 1533–1567. MR 3875296, DOI 10.1051/m2an/2017012
- Marco Picasso, Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl. Mech. Engrg. 167 (1998), no. 3-4, 223–237. MR 1673951, DOI 10.1016/S0045-7825(98)00121-2
- Florin A. Radu and Wenqing Wang, Convergence analysis for a mixed finite element scheme for flow in strictly unsaturated porous media, Nonlinear Anal. Real World Appl. 15 (2014), 266–275. MR 3110571, DOI 10.1016/j.nonrwa.2011.05.003
- Sergey Repin, A posteriori estimates for partial differential equations, Radon Series on Computational and Applied Mathematics, vol. 4, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. MR 2458008, DOI 10.1515/9783110203042
- R. Verfürth, A posteriori error estimates for nonlinear problems. $L^r(0,T;L^\rho (\Omega ))$-error estimates for finite element discretizations of parabolic equations, Math. Comp. 67 (1998), no. 224, 1335–1360. MR 1604371, DOI 10.1090/S0025-5718-98-01011-4
- R. Verfürth, A posteriori error estimates for nonlinear problems: $L^r(0,T;W^{1,\rho }(\Omega ))$-error estimates for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations 14 (1998), no. 4, 487–518. MR 1627578, DOI 10.1002/(SICI)1098-2426(199807)14:4<487::AID-NUM4>3.0.CO;2-G
- R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation, Calcolo 40 (2003), no. 3, 195–212. MR 2025602, DOI 10.1007/s10092-003-0073-2
- R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2013.
- Y. Zha, J. Yang, J. Zeng, C. H. M. Tso, W. Zeng, and L. Shi, Review of numerical solution of Richardson–Richards equation for variably saturated flow in soils, Wiley Interdiscip. Rev. Water 6 (2019), no. 5, e1364.
Bibliographic Information
- K. Mitra
- Affiliation: Inria, Paris France; and Cermics, Ecole des Ponts, France
- Address at time of publication: Eindhoven University of Technology, De Rondom 70, 5612 AP Eindhoven, The Netherlands
- MR Author ID: 1251845
- ORCID: 0000-0002-8264-5982
- Email: k.mitra@tue.nl
- M. Vohralík
- Affiliation: Inria, Paris France; and Cermics, Ecole des Ponts, France
- Address at time of publication: 2 rue Simone Iff, 75589 Paris, France, & 77455 Marne-la-Vallée, France
- ORCID: 0000-0002-8838-7689
- Email: martin.vohralik@inria.fr
- Received by editor(s): August 18, 2021
- Received by editor(s) in revised form: December 2, 2022, and June 17, 2023
- Published electronically: February 14, 2024
- Additional Notes: This project had received funding by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 647134). The first author was supported by FWO (Fonds Wetenschappelijk Onderzoek) through the ‘Junior Postdoctoral Fellowship’ (project code 1209322N)
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 93 (2024), 1053-1096
- MSC (2020): Primary 65M15, 65N50
- DOI: https://doi.org/10.1090/mcom/3932
- MathSciNet review: 4709198