Hensel lifting algorithms for quadratic forms
HTML articles powered by AMS MathViewer
- by Simon Brandhorst and Davide Cesare Veniani;
- Math. Comp. 93 (2024), 1963-1991
- DOI: https://doi.org/10.1090/mcom/3909
- Published electronically: October 23, 2023
- HTML | PDF | Request permission
Abstract:
We provide an algorithm to compute generators of the orthogonal group of the discriminant group associated to an integral quadratic lattice over the integers. We give a closed formula for its order.References
- Simon Brandhorst and Tommy Hofmann, Finite subgroups of automorphisms of K3 surfaces, Forum Math. Sigma 11 (2023), Paper No. e54, 57. MR 4608887, DOI 10.1017/fms.2023.50
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 407163
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. IV. The mass formula, Proc. Roy. Soc. London Ser. A 419 (1988), no. 1857, 259–286. MR 965484, DOI 10.1098/rspa.1988.0107
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- D. Festi and D. C. Veniani, Counting elliptic fibrations on K3 surfaces, J. Math. Soc. Japan (2022).
- The GAP Group, GAP – groups, algorithms, and programming, Version 4.12.2, 2022.
- Hiroyuki Ishibashi and A. G. Earnest, Two-element generation of orthogonal groups over finite fields, J. Algebra 165 (1994), no. 1, 164–171. MR 1272584, DOI 10.1006/jabr.1994.1103
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
- Martin Kneser, Witts Satz für quadratische Formen über lokalen Ringen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1972), 195–203 (German). MR 310751
- Martin Kneser, Quadratische Formen, Springer-Verlag, Berlin, 2002 (German). Revised and edited in collaboration with Rudolf Scharlau. MR 2788987, DOI 10.1007/978-3-642-56380-5
- R. Miranda and D. R. Morrison, Embeddings of integral quadratic forms, Unpublished, 2009, Preprint, https://web.math.ucsb.edu/~drm/manuscripts/eiqf.pdf (retrieved March 2023).
- V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
- O. T. O’Meara, Symplectic groups, Mathematical Surveys, No. 16, American Mathematical Society, Providence, RI, 1978. MR 502254, DOI 10.1090/surv/016
- OSCAR – Open Source Computer Algebra Research system, Version 0.12.0-DEV, 2023.
- Maryna S. Viazovska, The sphere packing problem in dimension 8, Ann. of Math. (2) 185 (2017), no. 3, 991–1015. MR 3664816, DOI 10.4007/annals.2017.185.3.7
- È. B. Vinberg, The groups of units of certain quadratic forms, Mat. Sb. (N.S.) 87(129) (1972), 18–36 (Russian). MR 295193
- G. L. Watson, The $2$-adic density of a quadratic form, Mathematika 23 (1976), no. 1, 94–106. MR 476636, DOI 10.1112/S0025579300006197
Bibliographic Information
- Simon Brandhorst
- Affiliation: Universität des Saarlandes, Campus E2.4, 66123 Saarbrücken, Germany
- MR Author ID: 1070371
- ORCID: 0000-0002-0249-9971
- Email: brandhorst@math.uni-sb.de
- Davide Cesare Veniani
- Affiliation: Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- MR Author ID: 1204145
- ORCID: 0000-0003-4511-7555
- Email: davide.veniani@mathematik.uni-stuttgart.de
- Received by editor(s): March 29, 2023
- Received by editor(s) in revised form: July 3, 2023, and August 30, 2023
- Published electronically: October 23, 2023
- Additional Notes: The first author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 286237555 – TRR 195.
- © Copyright 2023 American Mathematical Society
- Journal: Math. Comp. 93 (2024), 1963-1991
- MSC (2020): Primary 11E08, 11E12
- DOI: https://doi.org/10.1090/mcom/3909
- MathSciNet review: 4730253