Six-dimensional sphere packing and linear programming
HTML articles powered by AMS MathViewer
- by Matthew de Courcy-Ireland, Maria Dostert and Maryna Viazovska;
- Math. Comp. 93 (2024), 1993-2029
- DOI: https://doi.org/10.1090/mcom/3959
- Published electronically: March 20, 2024
- HTML | PDF | Request permission
Previous version: Original version posted March 20, 2024
Corrected version: This paper has been republished to rectify an omission in the bibliographic information.
Abstract:
We prove that the Cohn–Elkies linear programming bound for sphere packing is not sharp in dimension 6. The proof uses duality and optimization over a space of modular forms, generalizing a construction of Cohn–Triantafillou [Math. Comp. 91 (2021), pp. 491–508] to the case of odd weight and non-trivial character.References
- Nima Afkhami-Jeddi, Henry Cohn, Thomas Hartman, David de Laat, and Amirhossein Tajdini, High-dimensional sphere packing and the modular bootstrap, J. High Energy Phys. 12 (2020), Paper No. 066, 44. MR 4239386, DOI 10.1007/jhep12(2020)066
- C. Batut, K. Belabas, D. Benardi, H. Cohen, and M. Olivier, User’s Guide to PARI-GP, 1998, see also https://pari.math.u-bordeaux.fr/
- Bruce C. Berndt and Marvin I. Knopp, Hecke’s theory of modular forms and Dirichlet series, Monographs in Number Theory, vol. 5, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. MR 2387477
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Henry Cohn, New upper bounds on sphere packings. II, Geom. Topol. 6 (2002), 329–353. MR 1914571, DOI 10.2140/gt.2002.6.329
- Henry Cohn and Noam Elkies, New upper bounds on sphere packings. I, Ann. of Math. (2) 157 (2003), no. 2, 689–714. MR 1973059, DOI 10.4007/annals.2003.157.689
- Henry Cohn and Abhinav Kumar, Universally optimal distribution of points on spheres, J. Amer. Math. Soc. 20 (2007), no. 1, 99–148. MR 2257398, DOI 10.1090/S0894-0347-06-00546-7
- H. Cohn, D. de Laat, and A. Salmon, Three-point bounds for sphere packing. 2022, arXiv:2206.15373 [math.MG]
- Henry Cohn and Nicholas Triantafillou, Dual linear programming bounds for sphere packing via modular forms, Math. Comp. 91 (2021), no. 333, 491–508. MR 4350546, DOI 10.1090/mcom/3662
- Henry Cohn and Yufei Zhao, Sphere packing bounds via spherical codes, Duke Math. J. 163 (2014), no. 10, 1965–2002. MR 3229046, DOI 10.1215/00127094-2738857
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko, and Maryna Viazovska, The sphere packing problem in dimension 24, Ann. of Math. (2) 185 (2017), no. 3, 1017–1033. MR 3664817, DOI 10.4007/annals.2017.185.3.8
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258, DOI 10.1007/BF02684373
- Pierre Deligne, Formes modulaires et représentations $l$-adiques, Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. Exp. No. 355, 139–172 (French). MR 3077124
- Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids $1$, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530 (1975) (French). MR 379379, DOI 10.24033/asens.1277
- Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- Yasutaka Ihara, Hecke Polynomials as congruence $\zeta$ functions in elliptic modular case, Ann. of Math. (2) 85 (1967), 267–295. MR 207655, DOI 10.2307/1970442
- Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR 1474964, DOI 10.1090/gsm/017
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- G. A. Kabatjanskiĭ and V. I. Levenšteĭn, Bounds for packings on the sphere and in space, Problemy Peredači Informacii 14 (1978), no. 1, 3–25 (Russian). MR 514023
- Neal Koblitz, Introduction to elliptic curves and modular forms, 2nd ed., Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1993. MR 1216136, DOI 10.1007/978-1-4612-0909-6
- Michio Kuga and Goro Shimura, On the zeta function of a fibre variety whose fibres are abelian varieties, Ann. of Math. (2) 82 (1965), 478–539. MR 184942, DOI 10.2307/1970709
- D. de Laat and N. Leijenhorst, Solving clustered low-rank semidefinite programs arising from polynomial optimization, Preprint (2022), arXiv:2202.12077
- R. Li, Dual bounds for sphere packing linear programs via discrete reductions. 2022, arXiv:2206.09876 [math.MG]
- A. O. Makhorin, GNU Linear Programming Kit, https://www.gnu.org/software/glpk/, version 5.0 released December 16, 2020
- J.-L. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs de $N$, Canad. Math. Bull. 26 (1983), no. 4, 485–492 (French, with English summary). MR 716590, DOI 10.4153/CMB-1983-078-5
- William Stein, Modular forms, a computational approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. MR 2289048, DOI 10.1090/gsm/079
- W. A. Stein et al, Sage Mathematics Software, The Sage Development Team, 2022, http://www.sagemath.org.
- S. Torquato and F. H. Stillinger, New conjectural lower bounds on the optimal density of sphere packings, Experiment. Math. 15 (2006), no. 3, 307–331. MR 2264469, DOI 10.1080/10586458.2006.10128964
- Maryna S. Viazovska, The sphere packing problem in dimension 8, Ann. of Math. (2) 185 (2017), no. 3, 991–1015. MR 3664816, DOI 10.4007/annals.2017.185.3.7
Bibliographic Information
- Matthew de Courcy-Ireland
- Affiliation: Institute of Mathematics, EPFL SB MATH, MA A2 383 (Bâtiment MA), Station 8, CH-1015 Lausanne, Switzerland
- Address at time of publication: Department of Mathematics, Stockholm University
- MR Author ID: 1287321
- ORCID: 0000-0001-9884-1390
- Email: matthew.decourcy-ireland@math.su.se
- Maria Dostert
- Affiliation: Department of Mathematics, KTH Royal Institute of Technology, Stockholm 10044, Sweden
- MR Author ID: 1165370
- ORCID: 0000-0002-0393-8286
- Email: maria.dostert@gmail.com
- Maryna Viazovska
- Affiliation: Institute of Mathematics, EPFL SB MATH, MA A2 383 (Bâtiment MA), Station 8, CH-1015 Lausanne, Switzerland
- MR Author ID: 753466
- Email: viazovska@gmail.com
- Received by editor(s): December 20, 2022
- Received by editor(s) in revised form: July 28, 2023
- Published electronically: March 20, 2024
- Additional Notes: The research of the third author was supported by Swiss National Science Foundation project 184927. The second author was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. Some PARI/GP calculations related to this article are available as text files at the repository Zenodo: https://zenodo.org/records/11186127.
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 93 (2024), 1993-2029
- MSC (2020): Primary 52C17, 11F30, 11F25, 11Y99, 42A38, 49N15, 52C23; Secondary 11Y99, 49N15
- DOI: https://doi.org/10.1090/mcom/3959
- MathSciNet review: 4730254