Minimization of hypersurfaces
HTML articles powered by AMS MathViewer
- by Andreas-Stephan Elsenhans and Michael Stoll;
- Math. Comp. 93 (2024), 2513-2555
- DOI: https://doi.org/10.1090/mcom/3924
- Published electronically: January 16, 2024
- PDF | Request permission
Abstract:
Let $F \in \mathbb {Z}[x_0, \ldots , x_n]$ be homogeneous of degree $d$ and assume that $F$ is not a ‘nullform’, i.e., there is an invariant $I$ of forms of degree $d$ in $n+1$ variables such that $I(F) \neq 0$. Equivalently, $F$ is semistable in the sense of Geometric Invariant Theory. Minimizing $F$ at a prime $p$ means to produce $T \in Mat(n+1, \mathbb {Z}) \cap GL(n+1, \mathbb {Q})$ and $e \in \mathbb {Z}_{\ge 0}$ such that $F_1 = p^{-e} F([x_0, \ldots , x_n] \cdot T)$ has integral coefficients and $v_p(I(F_1))$ is minimal among all such $F_1$. Following Kollár [Electron. Res. Announc. Amer. Math. Soc. 3 (1997), pp. 17–27], the minimization process can be described in terms of applying weight vectors $w \in \mathbb {Z}_{\ge 0}^{n+1}$ to $F$. We show that for any dimension $n$ and degree $d$, there is a complete set of weight vectors consisting of $[0,w_1,w_2,\dots ,w_n]$ with $0 \le w_1 \le w_2 \le \dots \le w_n \le 2 n d^{n-1}$. When $n = 2$, we improve the bound to $d$. This answers a question raised by Kollár. These results are valid in a more general context, replacing $\mathbb {Z}$ and $p$ by a PID $R$ and a prime element of $R$.
Based on this result and a further study of the minimization process in the planar case $n = 2$, we devise an efficient minimization algorithm for ternary forms (equivalently, plane curves) of arbitrary degree $d$. We also describe a similar algorithm that allows to minimize (and reduce) cubic surfaces. These algorithms are available in the computer algebra system Magma.
References
- Hamid Abban, Maksym Fedorchuk, and Igor Krylov, Stability of fibrations over one-dimensional bases, Duke Math. J. 171 (2022), no. 12, 2461–2518. MR 4484210, DOI 10.1215/00127094-2022-0025
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- A. Clebsch, Ueber die Knotenpunkte der Hesseschen Fläche, insbesondere bei Oberflächen dritter Ordnung, J. Reine Angew. Math. 59 (1861), 193–228 (German). MR 1579178, DOI 10.1515/crll.1861.59.193
- John E. Cremona, Tom A. Fisher, and Michael Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves, Algebra Number Theory 4 (2010), no. 6, 763–820. MR 2728489, DOI 10.2140/ant.2010.4.763
- Maarten Derickx, Filip Najman, and Samir Siksek, Elliptic curves over totally real cubic fields are modular, Algebra Number Theory 14 (2020), no. 7, 1791–1800. MR 4150250, DOI 10.2140/ant.2020.14.1791
- Igor V. Dolgachev, Classical algebraic geometry, Cambridge University Press, Cambridge, 2012. A modern view. MR 2964027, DOI 10.1017/CBO9781139084437
- Andreas-Stephan Elsenhans, Good models for cubic surfaces, 2009.
- Andreas-Stephan Elsenhans and Jörg Jahnel, Cubic surfaces with a Galois invariant double-six, Cent. Eur. J. Math. 8 (2010), no. 4, 646–661. MR 2671217, DOI 10.2478/s11533-010-0036-1
- Andreas-Stephan Elsenhans and Jörg Jahnel, Moduli spaces and the inverse Galois problem for cubic surfaces, Trans. Amer. Math. Soc. 367 (2015), no. 11, 7837–7861. MR 3391901, DOI 10.1090/S0002-9947-2015-06277-1
- Tom Fisher, Testing equivalence of ternary cubics, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 333–345. MR 2282934, DOI 10.1007/11792086_{2}4
- Tom Fisher, Minimisation and reduction of 5-coverings of elliptic curves, Algebra Number Theory 7 (2013), no. 5, 1179–1205. MR 3101076, DOI 10.2140/ant.2013.7.1179
- David Hilbert, Theory of algebraic invariants, Cambridge University Press, Cambridge, 1993. Translated from the German and with a preface by Reinhard C. Laubenbacher; Edited and with an introduction by Bernd Sturmfels. MR 1266168
- David Hilbert, Ueber die vollen Invariantensysteme, Math. Ann. 42 (1893), no. 3, 313–373 (German). MR 1510781, DOI 10.1007/BF01444162
- Benjamin Hutz and Michael Stoll, Smallest representatives of $\rm {SL}(2,\Bbb {Z})$-orbits of binary forms and endomorphisms of $\Bbb {P}^1$, Acta Arith. 189 (2019), no. 3, 283–308. MR 3956143, DOI 10.4064/aa180618-9-12
- János Kollár, Polynomials with integral coefficients, equivalent to a given polynomial, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 17–27. MR 1445631, DOI 10.1090/S1079-6762-97-00019-X
- The Lean Community, The Lean theorem prover.
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- David Mumford, Stability of projective varieties, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], No. 24, L’Enseignement Mathématique, Geneva, 1977. Lectures given at the “Institut des Hautes Études Scientifiques”, Bures-sur-Yvette, March-April 1976. MR 450273
- David Mumford and John Fogarty, Geometric invariant theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982. MR 719371, DOI 10.1007/978-3-642-96676-7
- George Salmon, Lessons Introductory to the Modern Higher Algebra, 3rd ed., Hodges, Figgis, and Company, 1876.
- Joseph H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994., DOI 10.1007/978-1-4612-0851-8
- Michael Stoll, Reduction theory of point clusters in projective space, Groups Geom. Dyn. 5 (2011), no. 2, 553–565. MR 2782185, DOI 10.4171/GGD/139
- Michael Stoll, Formalization of parts of the theory of weights, 2023.
- Michael Stoll and John E. Cremona, On the reduction theory of binary forms, J. Reine Angew. Math. 565 (2003), 79–99. MR 2024647, DOI 10.1515/crll.2003.106
- J. Sylvester, Sketch of a memoir on elimination, transformation, and canonical forms, Cambridge and Dublin Mathematical Journal, 6 (1851), 186–200.
- J. Sylvester, The Collected Mathematical Papers of James Joseph Sylvester, Vol. I, Cambridge University Press, 1904, p. 195
Bibliographic Information
- Andreas-Stephan Elsenhans
- Affiliation: Institut für Mathematik, Universität Würzburg, Emil-Fischer-Straße 30, 97074 Würzburg, Germany
- MR Author ID: 777276
- Email: stephan.elsenhans@mathematik.uni-wuerzburg.de
- Michael Stoll
- Affiliation: Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
- MR Author ID: 325630
- ORCID: 0000-0001-5868-2962
- Email: Michael.Stoll@uni-bayreuth.de
- Received by editor(s): October 31, 2021
- Received by editor(s) in revised form: November 25, 2022, December 19, 2022, and September 15, 2023
- Published electronically: January 16, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 93 (2024), 2513-2555
- MSC (2020): Primary 11D25, 11D41; Secondary 11G30, 14G25, 14Q05, 14Q10, 14Q25, 11Y99
- DOI: https://doi.org/10.1090/mcom/3924
- MathSciNet review: 4759383