## Minimization of hypersurfaces

HTML articles powered by AMS MathViewer

- by Andreas-Stephan Elsenhans and Michael Stoll;
- Math. Comp.
**93**(2024), 2513-2555 - DOI: https://doi.org/10.1090/mcom/3924
- Published electronically: January 16, 2024
- PDF | Request permission

## Abstract:

Let $F \in \mathbb {Z}[x_0, \ldots , x_n]$ be homogeneous of degree $d$ and assume that $F$ is not a ‘nullform’, i.e., there is an invariant $I$ of forms of degree $d$ in $n+1$ variables such that $I(F) \neq 0$. Equivalently, $F$ is semistable in the sense of Geometric Invariant Theory. Minimizing $F$ at a prime $p$ means to produce $T \in Mat(n+1, \mathbb {Z}) \cap GL(n+1, \mathbb {Q})$ and $e \in \mathbb {Z}_{\ge 0}$ such that $F_1 = p^{-e} F([x_0, \ldots , x_n] \cdot T)$ has integral coefficients and $v_p(I(F_1))$ is minimal among all such $F_1$. Following Kollár [Electron. Res. Announc. Amer. Math. Soc. 3 (1997), pp. 17–27], the minimization process can be described in terms of applying weight vectors $w \in \mathbb {Z}_{\ge 0}^{n+1}$ to $F$. We show that for any dimension $n$ and degree $d$, there is a complete set of weight vectors consisting of $[0,w_1,w_2,\dots ,w_n]$ with $0 \le w_1 \le w_2 \le \dots \le w_n \le 2 n d^{n-1}$. When $n = 2$, we improve the bound to $d$. This answers a question raised by Kollár. These results are valid in a more general context, replacing $\mathbb {Z}$ and $p$ by a PID $R$ and a prime element of $R$.

Based on this result and a further study of the minimization process in the planar case $n = 2$, we devise an efficient minimization algorithm for ternary forms (equivalently, plane curves) of arbitrary degree $d$. We also describe a similar algorithm that allows to minimize (and reduce) cubic surfaces. These algorithms are available in the computer algebra system Magma.

## References

- Hamid Abban, Maksym Fedorchuk, and Igor Krylov,
*Stability of fibrations over one-dimensional bases*, Duke Math. J.**171**(2022), no. 12, 2461–2518. MR**4484210**, DOI 10.1215/00127094-2022-0025 - Wieb Bosma, John Cannon, and Catherine Playoust,
*The Magma algebra system. I. The user language*, J. Symbolic Comput.**24**(1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR**1484478**, DOI 10.1006/jsco.1996.0125 - A. Clebsch,
*Ueber die Knotenpunkte der Hesseschen Fläche, insbesondere bei Oberflächen dritter Ordnung*, J. Reine Angew. Math.**59**(1861), 193–228 (German). MR**1579178**, DOI 10.1515/crll.1861.59.193 - John E. Cremona, Tom A. Fisher, and Michael Stoll,
*Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves*, Algebra Number Theory**4**(2010), no. 6, 763–820. MR**2728489**, DOI 10.2140/ant.2010.4.763 - Maarten Derickx, Filip Najman, and Samir Siksek,
*Elliptic curves over totally real cubic fields are modular*, Algebra Number Theory**14**(2020), no. 7, 1791–1800. MR**4150250**, DOI 10.2140/ant.2020.14.1791 - Igor V. Dolgachev,
*Classical algebraic geometry*, Cambridge University Press, Cambridge, 2012. A modern view. MR**2964027**, DOI 10.1017/CBO9781139084437 - Andreas-Stephan Elsenhans,
*Good models for cubic surfaces*, 2009. - Andreas-Stephan Elsenhans and Jörg Jahnel,
*Cubic surfaces with a Galois invariant double-six*, Cent. Eur. J. Math.**8**(2010), no. 4, 646–661. MR**2671217**, DOI 10.2478/s11533-010-0036-1 - Andreas-Stephan Elsenhans and Jörg Jahnel,
*Moduli spaces and the inverse Galois problem for cubic surfaces*, Trans. Amer. Math. Soc.**367**(2015), no. 11, 7837–7861. MR**3391901**, DOI 10.1090/S0002-9947-2015-06277-1 - Tom Fisher,
*Testing equivalence of ternary cubics*, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 333–345. MR**2282934**, DOI 10.1007/11792086_{2}4 - Tom Fisher,
*Minimisation and reduction of 5-coverings of elliptic curves*, Algebra Number Theory**7**(2013), no. 5, 1179–1205. MR**3101076**, DOI 10.2140/ant.2013.7.1179 - David Hilbert,
*Theory of algebraic invariants*, Cambridge University Press, Cambridge, 1993. Translated from the German and with a preface by Reinhard C. Laubenbacher; Edited and with an introduction by Bernd Sturmfels. MR**1266168** - David Hilbert,
*Ueber die vollen Invariantensysteme*, Math. Ann.**42**(1893), no. 3, 313–373 (German). MR**1510781**, DOI 10.1007/BF01444162 - Benjamin Hutz and Michael Stoll,
*Smallest representatives of $\rm {SL}(2,\Bbb {Z})$-orbits of binary forms and endomorphisms of $\Bbb {P}^1$*, Acta Arith.**189**(2019), no. 3, 283–308. MR**3956143**, DOI 10.4064/aa180618-9-12 - János Kollár,
*Polynomials with integral coefficients, equivalent to a given polynomial*, Electron. Res. Announc. Amer. Math. Soc.**3**(1997), 17–27. MR**1445631**, DOI 10.1090/S1079-6762-97-00019-X - The Lean Community,
*The Lean theorem prover*. - Qing Liu,
*Algebraic geometry and arithmetic curves*, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR**1917232** - David Mumford,
*Stability of projective varieties*, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], No. 24, L’Enseignement Mathématique, Geneva, 1977. Lectures given at the “Institut des Hautes Études Scientifiques”, Bures-sur-Yvette, March-April 1976. MR**450273** - David Mumford and John Fogarty,
*Geometric invariant theory*, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982. MR**719371**, DOI 10.1007/978-3-642-96676-7 - George Salmon,
*Lessons Introductory to the Modern Higher Algebra,*, Hodges, Figgis, and Company, 1876.*3rd ed.* - Joseph H. Silverman,
*Advanced Topics in the Arithmetic of Elliptic Curves*, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994., DOI 10.1007/978-1-4612-0851-8 - Michael Stoll,
*Reduction theory of point clusters in projective space*, Groups Geom. Dyn.**5**(2011), no. 2, 553–565. MR**2782185**, DOI 10.4171/GGD/139 - Michael Stoll,
*Formalization of parts of the theory of weights*, 2023. - Michael Stoll and John E. Cremona,
*On the reduction theory of binary forms*, J. Reine Angew. Math.**565**(2003), 79–99. MR**2024647**, DOI 10.1515/crll.2003.106 - J. Sylvester,
*Sketch of a memoir on elimination, transformation, and canonical forms*, Cambridge and Dublin Mathematical Journal, 6 (1851), 186–200. - J. Sylvester,
*The Collected Mathematical Papers of James Joseph Sylvester*, Vol. I, Cambridge University Press, 1904, p. 195

## Bibliographic Information

**Andreas-Stephan Elsenhans**- Affiliation: Institut für Mathematik, Universität Würzburg, Emil-Fischer-Straße 30, 97074 Würzburg, Germany
- MR Author ID: 777276
- Email: stephan.elsenhans@mathematik.uni-wuerzburg.de
**Michael Stoll**- Affiliation: Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
- MR Author ID: 325630
- ORCID: 0000-0001-5868-2962
- Email: Michael.Stoll@uni-bayreuth.de
- Received by editor(s): October 31, 2021
- Received by editor(s) in revised form: November 25, 2022, December 19, 2022, and September 15, 2023
- Published electronically: January 16, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp.
**93**(2024), 2513-2555 - MSC (2020): Primary 11D25, 11D41; Secondary 11G30, 14G25, 14Q05, 14Q10, 14Q25, 11Y99
- DOI: https://doi.org/10.1090/mcom/3924
- MathSciNet review: 4759383