An abstract approach to Marcinkiewicz-Zygmund inequalities for approximation and quadrature in modulation spaces
HTML articles powered by AMS MathViewer
- by Martin Ehler and Karlheinz Gröchenig;
- Math. Comp. 93 (2024), 2885-2919
- DOI: https://doi.org/10.1090/mcom/3930
- Published electronically: December 20, 2023
- HTML | PDF | Request permission
Abstract:
We study the approximation and quadrature error of points that satisfy Marcinkiewicz-Zygmund inequalities. First, we investigate the use of Marcinkiewicz-Zygmund inequalities in an abstract Hilbert space for an abstract approximation and quadrature rule. The setting is then specified to Sobolev spaces induced by Freud weights $e^{-2\sigma |x|^\alpha }$ with $\alpha >1$ and $\sigma >0$, and we derive specific bounds for the approximation and quadrature error. For the Gaussian weight $e^{-2\pi x^2}$, we verify that the Sobolev spaces essentially coincide with a specific class of modulation spaces that are well known in (time-frequency) analysis.References
- Congpei An and Hao-Ning Wu, Bypassing the quadrature exactness assumption of hyperinterpolation on the sphere, J. Complexity 80 (2024), Paper No. 101789, 23. MR 4632716, DOI 10.1016/j.jco.2023.101789
- Congpei An and Hao-Ning Wu, On the quadrature exactness in hyperinterpolation, BIT 62 (2022), no. 4, 1899–1919. MR 4512628, DOI 10.1007/s10543-022-00935-x
- Árpád Bényi and Kasso A. Okoudjou, Modulation spaces—with applications to pseudodifferential operators and nonlinear Schrödinger equations, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, New York, [2020] ©2020. MR 4286055, DOI 10.1007/978-1-0716-0332-1
- Paolo Boggiatto, Elena Cordero, and Karlheinz Gröchenig, Generalized anti-Wick operators with symbols in distributional Sobolev spaces, Integral Equations Operator Theory 48 (2004), no. 4, 427–442. MR 2047590, DOI 10.1007/s00020-003-1244-x
- Ole Christensen, An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003. MR 1946982, DOI 10.1007/978-0-8176-8224-8
- Elena Cordero, Stevan Pilipović, Luigi Rodino, and Nenad Teofanov, Localization operators and exponential weights for modulation spaces, Mediterr. J. Math. 2 (2005), no. 4, 381–394. MR 2191800, DOI 10.1007/s00009-005-0052-8
- Elena Cordero and Luigi Rodino, Time-frequency analysis of operators, De Gruyter Studies in Mathematics, vol. 75, De Gruyter, Berlin, [2020] ©2020. MR 4201879, DOI 10.1515/9783110532456
- S. B. Damelin, Marcinkiewicz-Zygmund inequalities and the numerical approximation of singular integrals for exponential weights: methods, results and open problems, some new, some old, J. Complexity 19 (2003), no. 3, 406–415. Numerical integration and its complexity (Oberwolfach, 2001). MR 1984122, DOI 10.1016/S0885-064X(03)00027-X
- Josef Dick, Christian Irrgeher, Gunther Leobacher, and Friedrich Pillichshammer, On the optimal order of integration in Hermite spaces with finite smoothness, SIAM J. Numer. Anal. 56 (2018), no. 2, 684–707. MR 3780119, DOI 10.1137/16M1087461
- Josef Dick and Friedrich Pillichshammer, Digital nets and sequences, Cambridge University Press, Cambridge, 2010. Discrepancy theory and quasi-Monte Carlo integration. MR 2683394, DOI 10.1017/CBO9780511761188
- F. W. J. Olver, A. B. Olde Daalhuis, D.W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain (eds.), NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.1.6 of 2022-06-30.
- D. Dung and Van K. Nguyen, Optimal numerical integration and approximation of functions on $\mathbb {R}^d$ equipped with Gaussian measure, arXiv:2207.01155, 2022.
- Dinh Dũng, Numerical weighted integration of functions having mixed smoothness, J. Complexity 78 (2023), Paper No. 101757, 20. MR 4590123, DOI 10.1016/j.jco.2023.101757
- Hans G. Feichtinger, Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process. 5 (2006), no. 2, 109–140. MR 2233968, DOI 10.1007/BF03549447
- H. G. Feichtinger, Modulation spaces on locally compact abelian groups, Proceedings of “International Conference on Wavelets and Applications, 2002, pages 99–140, Chennai, India, 2003. Updated version of a technical report, University of Vienna, 1983.
- Hans G. Feichtinger and Thomas Strohmer (eds.), Gabor analysis and algorithms, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 1998. Theory and applications. MR 1601119, DOI 10.1007/978-1-4612-2016-9
- H. G. Feichtinger and T. Strohmer, editors, Advances in Gabor Analysis, Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston, MA, 2003.
- F. Filbir and H. N. Mhaskar, Marcinkiewicz-Zygmund measures on manifolds, J. Complexity 27 (2011), no. 6, 568–596. MR 2846706, DOI 10.1016/j.jco.2011.03.002
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- M. Gräf, Efficient Algorithms for the Computation of Optimal Quadrature Points on Riemannian Manifolds, Universitätsverlag Chemnitz, 2013.
- K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser Boston Inc., Boston, MA, 2001.
- Karlheinz Gröchenig, Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam. 22 (2006), no. 2, 703–724. MR 2294795, DOI 10.4171/RMI/471
- Karlheinz Gröchenig, Sampling, Marcinkiewicz-Zygmund inequalities, approximation, and quadrature rules, J. Approx. Theory 257 (2020), 105455, 20. MR 4124840, DOI 10.1016/j.jat.2020.105455
- Karlheinz Gröchenig and Joachim Toft, The range of localization operators and lifting theorems for modulation and Bargmann-Fock spaces, Trans. Amer. Math. Soc. 365 (2013), no. 8, 4475–4496. MR 3055702, DOI 10.1090/S0002-9947-2013-05836-9
- Karlheinz Gröchenig and Georg Zimmermann, Spaces of test functions via the STFT, J. Funct. Spaces Appl. 2 (2004), no. 1, 25–53. MR 2027858, DOI 10.1155/2004/498627
- Christopher Heil, Integral operators, pseudodifferential operators, and Gabor frames, Advances in Gabor analysis, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2003, pp. 153–169. MR 1955935
- Christian Irrgeher, Peter Kritzer, Gunther Leobacher, and Friedrich Pillichshammer, Integration in Hermite spaces of analytic functions, J. Complexity 31 (2015), no. 3, 380–404. MR 3325680, DOI 10.1016/j.jco.2014.08.004
- Christian Irrgeher, Peter Kritzer, Friedrich Pillichshammer, and Henryk Woźniakowski, Approximation in Hermite spaces of smooth functions, J. Approx. Theory 207 (2016), 98–126. MR 3494224, DOI 10.1016/j.jat.2016.02.008
- Christian Irrgeher and Gunther Leobacher, High-dimensional integration on $\Bbb R^d$, weighted Hermite spaces, and orthogonal transforms, J. Complexity 31 (2015), no. 2, 174–205. MR 3305992, DOI 10.1016/j.jco.2014.09.002
- A. J. E. M. Janssen, Hermite function description of Feichtinger’s space $S_0$, J. Fourier Anal. Appl. 11 (2005), no. 5, 577–588. MR 2182636, DOI 10.1007/s00041-005-4077-y
- Shaobo Jin and Björn Andersson, A note on the accuracy of adaptive Gauss-Hermite quadrature, Biometrika 107 (2020), no. 3, 737–744. MR 4138987, DOI 10.1093/biomet/asz080
- B. Kashin, E. Kosov, I. Limonova, and V. Temlyakov, Sampling discretization and related problems, J. Complexity 71 (2022), Paper No. 101653, 55. MR 4420519, DOI 10.1016/j.jco.2022.101653
- Yoshihito Kazashi, Yuya Suzuki, and Takashi Goda, Suboptimality of Gauss-Hermite quadrature and optimality of the trapezoidal rule for functions with finite smoothness, SIAM J. Numer. Anal. 61 (2023), no. 3, 1426–1448. MR 4598831, DOI 10.1137/22M1480276
- A. L. Levin and D. S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai’s conjecture for Freud weights, Constr. Approx. 8 (1992), no. 4, 463–535. MR 1194029, DOI 10.1007/BF01203463
- A. L. Levin and D. S. Lubinsky, Bounds for orthogonal polynomials for exponential weights, Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997), 1998, pp. 475–490. MR 1662716, DOI 10.1016/S0377-0427(98)00178-2
- Qing Liu and Donald A. Pierce, A note on Gauss-Hermite quadrature, Biometrika 81 (1994), no. 3, 624–629. MR 1311107, DOI 10.1093/biomet/81.3.624
- Wanting Lu and Heping Wang, Approximation and quadrature by weighted least squares polynomials on the sphere, Pure Appl. Funct. Anal. 8 (2023), no. 2, 565–581. MR 4613650
- D. S. Lubinsky, Marcinkiewicz-Zygmund inequalities: methods and results, Recent progress in inequalities (Niš, 1996) Math. Appl., vol. 430, Kluwer Acad. Publ., Dordrecht, 1998, pp. 213–240. MR 1609947
- D. S. Lubinsky and D. M. Matjila, Full quadrature sums for $p$th powers of polynomials with Freud weights, J. Comput. Appl. Math. 60 (1995), no. 3, 285–296. MR 1357311, DOI 10.1016/0377-0427(94)00045-3
- Giuseppe Mastroianni and Gradimir V. Milovanović, Interpolation processes, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008. Basic theory and applications. MR 2457729, DOI 10.1007/978-3-540-68349-0
- G. Mastroianni and G. Monegato, Error estimates for Gauss-Laguerre and Gauss-Hermite quadrature formulas, Approximation and computation (West Lafayette, IN, 1993) Internat. Ser. Numer. Math., vol. 119, Birkhäuser Boston, Boston, MA, 1994, pp. 421–434. MR 1333634
- H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature, Math. Comp. 70 (2001), no. 235, 1113–1130. MR 1710640, DOI 10.1090/S0025-5718-00-01240-0
- Paul Nevai, Géza Freud, orthogonal polynomials and Christoffel functions. A case study, J. Approx. Theory 48 (1986), no. 1, 3–167. MR 862231, DOI 10.1016/0021-9045(86)90016-X
- M. A. Shubin, Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001. Translated from the 1978 Russian original by Stig I. Andersson. MR 1852334, DOI 10.1007/978-3-642-56579-3
- L. J. Slater, Confluent hypergeometric functions, Cambridge University Press, New York, 1960. MR 107026
- Ian H. Sloan, Polynomial interpolation and hyperinterpolation over general regions, J. Approx. Theory 83 (1995), no. 2, 238–254. MR 1357589, DOI 10.1006/jath.1995.1119
- William E. Smith, Ian H. Sloan, and Alex H. Opie, Product integration over infinite intervals. I. Rules based on the zeros of Hermite polynomials, Math. Comp. 40 (1983), no. 162, 519–535. MR 689468, DOI 10.1090/S0025-5718-1983-0689468-1
- Nico M. Temme, Remarks on Slater’s asymptotic expansions of Kummer functions for large values of the $a$-parameter, Adv. Dyn. Syst. Appl. 8 (2013), no. 2, 365–377. MR 3162154
- N. M. Temme, Remarks on Slater’s asymptotic expansions of Kummer functions for large values of the a-parameter, arXiv:1306.5328v2, 2022.
- Biancamaria Della Vecchia and Giuseppe Mastroianni, Gaussian rules on unbounded intervals, J. Complexity 19 (2003), no. 3, 247–258. Numerical integration and its complexity (Oberwolfach, 2001). MR 1984112, DOI 10.1016/S0885-064X(03)00008-6
Bibliographic Information
- Martin Ehler
- Affiliation: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
- MR Author ID: 823479
- Email: martin.ehler@univie.ac.at
- Karlheinz Gröchenig
- Affiliation: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
- ORCID: 0000-0003-1461-0654
- Email: karlheinz.groechenig@univie.ac.at
- Received by editor(s): August 24, 2022
- Received by editor(s) in revised form: July 22, 2023, October 27, 2023, and November 10, 2023
- Published electronically: December 20, 2023
- Additional Notes: The second author was supported in part by the project P31887-N32 of the Austrian Science Fund (FWF)
- © Copyright 2023 American Mathematical Society
- Journal: Math. Comp. 93 (2024), 2885-2919
- MSC (2020): Primary 65D30, 41A30, 46E30, 42C15, 46E35
- DOI: https://doi.org/10.1090/mcom/3930
- MathSciNet review: 4780349