Rational group algebras of generalized strongly monomial groups: Primitive idempotents and units
HTML articles powered by AMS MathViewer
- by Gurmeet K. Bakshi, Jyoti Garg and Gabriela Olteanu;
- Math. Comp. 93 (2024), 3027-3058
- DOI: https://doi.org/10.1090/mcom/3937
- Published electronically: February 1, 2024
- HTML | PDF | Request permission
Abstract:
We present a method to explicitly compute a complete set of orthogonal primitive idempotents in a simple component with Schur index 1 of a rational group algebra $\mathbb {Q}G$ for $G$ a finite generalized strongly monomial group. For the same groups with no exceptional simple components in $\mathbb {Q}G$, we describe a subgroup of finite index in the group of units $\mathcal {U}(\mathbb {Z}G)$ of the integral group ring $\mathbb {Z}G$ that is generated by three nilpotent groups for which we give explicit description of their generators. We exemplify the theoretical constructions with a detailed concrete example to illustrate the theory. We also show that the Frobenius groups of odd order with a cyclic complement are a class of generalized strongly monomial groups where the theory developed in this paper is applicable.References
- M. Ali Shabeeb and S. Srivastava, A study of extra special P-group, Int. J. Sci. Eng. Technol. Res. 02 (2013), 2223–2234.
- Gurmeet K. Bakshi and Jyoti Garg, A computational approach to Brauer Witt theorem using Shoda pair theory, J. Algebra 622 (2023), 1–29. MR 4547872, DOI 10.1016/j.jalgebra.2023.01.005
- Gurmeet K. Bakshi and Gurleen Kaur, A generalization of strongly monomial groups, J. Algebra 520 (2019), 419–439. MR 3883245, DOI 10.1016/j.jalgebra.2018.11.013
- Gurmeet K. Bakshi and Gurleen Kaur, Central units of integral group rings of monomial groups, Proc. Amer. Math. Soc. 150 (2022), no. 8, 3357–3368. MR 4439459, DOI 10.1090/proc/15975
- Gurmeet K. Bakshi and Gurleen Kaur, Connecting monomiality questions with the structure of rational group algebras, J. Pure Appl. Algebra 226 (2022), no. 5, Paper No. 106931, 15. MR 4328652, DOI 10.1016/j.jpaa.2021.106931
- Hyman Bass, The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups, Topology 4 (1965), 391–410. MR 193120, DOI 10.1016/0040-9383(66)90036-X
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 144979
- David S. Dummit and Richard M. Foote, Abstract algebra, 3rd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004. MR 2286236
- GAP - groups, algorithms, programming - a system for computational discrete algebra, GAP 4.12.2, 2022.
- I. N. Herstein, Noncommutative rings, Carus Mathematical Monographs, vol. 15, Mathematical Association of America, Washington, DC, 1994. Reprint of the 1968 original; With an afterword by Lance W. Small. MR 1449137, DOI 10.5948/UPO9781614440154
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 224703, DOI 10.1007/978-3-642-64981-3
- Bertram Huppert, Character theory of finite groups, De Gruyter Expositions in Mathematics, vol. 25, Walter de Gruyter & Co., Berlin, 1998. MR 1645304, DOI 10.1515/9783110809237
- E. Jespers, Structure of group rings and the group of units of integral group rings: an invitation, Indian J. Pure Appl. Math. 52 (2021), no. 3, 687–708. MR 4356272, DOI 10.1007/s13226-021-00179-5
- Eric Jespers and Guilherme Leal, Generators of large subgroups of the unit group of integral group rings, Manuscripta Math. 78 (1993), no. 3, 303–315. MR 1206159, DOI 10.1007/BF02599315
- Eric Jespers, Gabriela Olteanu, and Ángel del Río, Rational group algebras of finite groups: from idempotents to units of integral group rings, Algebr. Represent. Theory 15 (2012), no. 2, 359–377. MR 2892512, DOI 10.1007/s10468-010-9244-4
- Eric Jespers, Gabriela Olteanu, Ángel del Río, and Inneke Van Gelder, Group rings of finite strongly monomial groups: central units and primitive idempotents, J. Algebra 387 (2013), 99–116. MR 3056688, DOI 10.1016/j.jalgebra.2013.04.020
- E. Jespers, M. M. Parmenter, and S. K. Sehgal, Central units of integral group rings of nilpotent groups, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1007–1012. MR 1328353, DOI 10.1090/S0002-9939-96-03398-9
- Eric Jespers and Ángel del Río, Group ring groups. Vol. 1. Orders and generic constructions of units, De Gruyter Graduate, De Gruyter, Berlin, 2016. MR 3618092
- I. Martin Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006. Corrected reprint of the 1976 original [Academic Press, New York; MR0460423]. MR 2270898, DOI 10.1090/chel/359
- Sudesh Kaur Khanduja, A textbook of algebraic number theory, La Matematica per il 3+2, vol. 135, Springer, Singapore, [2022] ©2022. Unitext. MR 4442264, DOI 10.1007/978-981-16-9150-8
- Aurora Olivieri, Ángel del Río, and Juan Jacobo Simón, On monomial characters and central idempotents of rational group algebras, Comm. Algebra 32 (2004), no. 4, 1531–1550. MR 2100373, DOI 10.1081/AGB-120028797
- Gabriela Olteanu and Inneke Van Gelder, Construction of minimal non-abelian left group codes, Des. Codes Cryptogr. 75 (2015), no. 3, 359–373. MR 3336955, DOI 10.1007/s10623-014-9922-z
- Gabriela Olteanu and Inneke Van Gelder, On idempotents and the number of simple components of semisimple group algebras, Algebr. Represent. Theory 19 (2016), no. 2, 315–333. MR 3489098, DOI 10.1007/s10468-015-9575-2
- Gabriela Olteanu and Inneke Van Gelder, On matrix units of semisimple group algebras, Comm. Algebra 51 (2023), no. 6, 2408–2416. MR 4563438, DOI 10.1080/00927872.2022.2162063
- César Polcino Milies and Sudarshan K. Sehgal, An introduction to group rings, Algebra and Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2002. MR 1896125, DOI 10.1007/978-94-010-0405-3
- Jürgen Ritter and Sudarshan K. Sehgal, Construction of units in integral group rings of finite nilpotent groups, Trans. Amer. Math. Soc. 324 (1991), no. 2, 603–621. MR 987166, DOI 10.1090/S0002-9947-1991-0987166-9
- S. K. Sehgal, Units in integral group rings, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 69, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. With an appendix by Al Weiss. MR 1242557
- Toshihiko Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Mathematics, Vol. 397, Springer-Verlag, Berlin-New York, 1974. MR 347957, DOI 10.1007/BFb0061703
- Inneke Van Gelder and Gabriela Olteanu, Finite group algebras of nilpotent groups: a complete set of orthogonal primitive idempotents, Finite Fields Appl. 17 (2011), no. 2, 157–165. MR 2774206, DOI 10.1016/j.ffa.2010.10.005
- G. K. Bakshi, O. Broche, A. Konovalov, A. Olivieri, S. Maheshwary, G. Olteanu, Á. del Río, and I. Van Gelder, Wedderga - Wedderburn decomposition of group algebras, Version 4.10.2, 2022, http://www.gap-system.org/Packages/wedderga.html.
Bibliographic Information
- Gurmeet K. Bakshi
- Affiliation: Department of Mathematics, Panjab University, Chandigarh 160014, India
- MR Author ID: 352122
- ORCID: 0000-0001-6650-4621
- Email: gkbakshi@pu.ac.in
- Jyoti Garg
- Affiliation: Department of Mathematics, Panjab University, Chandigarh 160014, India
- MR Author ID: 1546996
- Email: ~jyotigarg0811@gmail.com
- Gabriela Olteanu
- Affiliation: Department of Statistics-Forecasts-Mathematics, Babeş-Bolyai University, Str. T. Mihali 58-60, 400591 Cluj-Napoca, Romania
- MR Author ID: 724509
- Email: gabriela.olteanu@econ.ubbcluj.ro
- Received by editor(s): April 18, 2023
- Received by editor(s) in revised form: October 27, 2023, and December 4, 2023
- Published electronically: February 1, 2024
- Additional Notes: Research of the first author was supported by DST-FIST grant no. SR/FST/MS-II/2019/43. Research of the second author was supported by Council of Scientific and Industrial Research (CSIR), Govt. of India under the reference no. 09/135(0886)/2019-EMR-I.
The second author is the corresponding author. - © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 93 (2024), 3027-3058
- MSC (2020): Primary 16K20, 16S35, 16U60, 20C05, 17C27
- DOI: https://doi.org/10.1090/mcom/3937
- MathSciNet review: 4780354