Generalized Pohst inequality and small regulators
HTML articles powered by AMS MathViewer
- by Francesco Battistoni and Giuseppe Molteni;
- Math. Comp. 94 (2025), 475-504
- DOI: https://doi.org/10.1090/mcom/3954
- Published electronically: March 20, 2024
- HTML | PDF | Request permission
Abstract:
Current methods for the classification of number fields with small regulator depend mainly on an upper bound for the discriminant, which can be improved by looking for the best possible upper bound of a specific polynomial function over a hypercube. In this paper, we provide new and effective upper bounds for the case of fields with one complex embedding and degree between five and nine: this is done by adapting the strategy we have adopted to study the totally real case, but for this new setting several new computational issues had to be overcome. As a consequence, we detect the four number fields of signature $(r_1,r_2)=(6,1)$ with smallest regulator; we also expand current lists of number fields with small regulator in signatures $(3,1)$, $(4,1)$ and $(5,1)$.References
- Sergio Astudillo, Francisco Diaz y Diaz, and Eduardo Friedman, Sharp lower bounds for regulators of small-degree number fields, J. Number Theory 167 (2016), 232–258. MR 3504045, DOI 10.1016/j.jnt.2016.03.002
- Francesco Battistoni, The minimum discriminant of number fields of degree 8 and signature $(2,3)$, J. Number Theory 198 (2019), 386–395. MR 3912944, DOI 10.1016/j.jnt.2018.09.007
- Francesco Battistoni, On small discriminants of number fields of degree 8 and 9, J. Théor. Nombres Bordeaux 32 (2020), no. 2, 489–501 (English, with English and French summaries). MR 4174280, DOI 10.5802/jtnb.1131
- Francesco Battistoni, A conjectural improvement for inequalities related to regulators of number fields, Boll. Unione Mat. Ital. 14 (2021), no. 4, 609–627. MR 4328046, DOI 10.1007/s40574-021-00298-1
- F. Battistoni and G. Molteni, Dataset of bounds and estimates, 2022, https://github.com/FrancescoBattistoni/Bounds-for-polynomials-with-1-complex-embedding.
- Francesco Battistoni and Giuseppe Molteni, Generalization of a Pohst’s inequality, J. Number Theory 228 (2021), 73–86. MR 4271810, DOI 10.1016/j.jnt.2021.04.014
- M. J. Bertin, Sur une conjecture de Pohst, Acta Arith. 74 (1996), no. 4, 347–349 (French). MR 1378228, DOI 10.4064/aa-74-4-347-349
- Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din, msolve: a library for solving polynomial systems, ISSAC ’21—Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation, ACM, New York, [2021] ©2021, pp. 51–58. MR 4398766, DOI 10.1145/3452143.3465545
- J. Cannon, W. Bosma, C. Fieker, and A. Steel, Handbook of Magma Functions, 2011.
- J. W. S. Cassels, An introduction to the geometry of numbers, Classics in Mathematics, Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition. MR 1434478
- Francisco Diaz y Diaz, Tables minorant la racine $n$-ième du discriminant d’un corps de degré $n$, Publications Mathématiques d’Orsay 80 [Mathematical Publications of Orsay 80], vol. 6, Université de Paris-Sud, Département de Mathématiques, Orsay, 1980 (French). MR 607864
- Eduardo Friedman, Analytic formulas for the regulator of a number field, Invent. Math. 98 (1989), no. 3, 599–622. MR 1022309, DOI 10.1007/BF01393839
- Eduardo Friedman and Gabriel Ramirez-Raposo, Filling the gap in the table of smallest regulators up to degree 7, J. Number Theory 198 (2019), 381–385. MR 3912943, DOI 10.1016/j.jnt.2018.08.015
- Kurt Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227–253 (German). MR 53135, DOI 10.1007/BF01174749
- John W. Jones and David P. Roberts, A database of number fields, LMS J. Comput. Math. 17 (2014), no. 1, 595–618. MR 3356048, DOI 10.1112/S1461157014000424
- J. Klüners and G. Malle, A database for number fields, http://galoisdb.math.upb.de/home.
- PARI Group, Univ. Bordeaux, package nftables.tgz, 2008. http://pari.math.u-bordeaux.fr/packages.html.
- PARI Group, Univ. Bordeaux, PARIgp version 2.12.0, 2020. http://pari.math.u-bordeaux.fr/.
- M. Pohst, The minimum discriminant of seventh degree totally real algebraic number fields, Number theory and algebra, Academic Press, New York-London, 1977, pp. 235–240. MR 466069
- Michael Pohst, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory 9 (1977), no. 4, 459–492 (German, with English summary). MR 460274, DOI 10.1016/0022-314X(77)90007-5
- Michael Pohst, On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields, J. Number Theory 14 (1982), no. 1, 99–117. MR 644904, DOI 10.1016/0022-314X(82)90061-0
- M. Pohst, J. Martinet, and F. Diaz y Diaz, The minimum discriminant of totally real octic fields, J. Number Theory 36 (1990), no. 2, 145–159. MR 1072461, DOI 10.1016/0022-314X(90)90069-4
- G. Ramirez-Raposo, A proof of Pohst’s inequality, Funct. Approx. Comment. Math. (2023), 1–13, DOI 10.7169/facm/2110.
- Robert Remak, Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers, Compositio Math. 10 (1952), 245–285 (German). MR 54641
- H. M. Stark, On the “gap” in a theorem of Heegner, J. Number Theory 1 (1969), 16–27. MR 241384, DOI 10.1016/0022-314X(69)90023-7
- The LMFDB Collaboration, The L-functions and modular forms database, 2013, http://www.lmfdb.org.
- Mark Watkins, Class numbers of imaginary quadratic fields, Math. Comp. 73 (2004), no. 246, 907–938. MR 2031415, DOI 10.1090/S0025-5718-03-01517-5
Bibliographic Information
- Francesco Battistoni
- Affiliation: Dipartimento di Matematica per le Scienze Economiche, Finanziarie ed Attuariali, Università Cattolica, via Necchi 9, 20123 Milano, Italy
- MR Author ID: 1308100
- ORCID: 0000-0003-2119-1881
- Email: francesco.battistoni@unicatt.it
- Giuseppe Molteni
- Affiliation: Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy
- MR Author ID: 357391
- ORCID: 0000-0003-3323-4383
- Email: giuseppe.molteni1@unimi.it
- Received by editor(s): December 5, 2022
- Received by editor(s) in revised form: September 18, 2023, and January 26, 2024
- Published electronically: March 20, 2024
- Additional Notes: The research of the first author was funded with a grant from the Italian National Research Projects (PRIN) 2017.
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 475-504
- MSC (2020): Primary 11Y40, 11R29, 11R27
- DOI: https://doi.org/10.1090/mcom/3954