Towards a classification of isolated $j$-invariants
HTML articles powered by AMS MathViewer
- by Abbey Bourdon, Sachi Hashimoto, Timo Keller, Zev Klagsbrun, David Lowry-Duda, Travis Morrison, Filip Najman and Himanshu Shukla; with an appendix by Maarten Derickx and Mark van Hoeij
- Math. Comp. 94 (2025), 447-473
- DOI: https://doi.org/10.1090/mcom/3956
- Published electronically: April 25, 2024
- PDF | Request permission
Abstract:
We develop an algorithm to test whether a non-complex multiplication elliptic curve $E/\mathbf {Q}$ gives rise to an isolated point of any degree on any modular curve of the form $X_1(N)$. This builds on prior work of Zywina which gives a method for computing the image of the adelic Galois representation associated to $E$. Running this algorithm on all elliptic curves presently in the $L$-functions and Modular Forms Database and the Stein–Watkins Database gives strong evidence for the conjecture that $E$ gives rise to an isolated point on $X_1(N)$ if and only if $j(E)=-140625/8, -9317$, $351/4$, or $-162677523113838677$.References
- J. B. Avila, Galois representations of elliptic curves and abelian entanglements, Doctoral Thesis, Leiden University, 2015. $\uparrow$
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Abbey Bourdon, Özlem Ejder, Yuan Liu, Frances Odumodu, and Bianca Viray, On the level of modular curves that give rise to isolated $j$-invariants, Adv. Math. 357 (2019), 106824, 33. MR 4016915, DOI 10.1016/j.aim.2019.106824
- Abbey Bourdon, David R. Gill, Jeremy Rouse, and Lori D. Watson, Odd degree isolated points on $X_1(N)$ with rational $j$-invariant, Res. Number Theory 10 (2024), no. 1, Paper No. 5, 32. MR 4678892, DOI 10.1007/s40993-023-00488-0
- J. S. Balakrishnan and B. Mazur, Ogg’s torsion conjecture: fifty years later, arXiv:2307.04752. $\uparrow$
- A. Bourdon and F. Najman, Sporadic points of odd degree on $X_1(N)$ coming from $\mathbb {Q}$-curves, Preprint, arXiv:2107.10909. $\uparrow$
- Yuri Bilu and Pierre Parent, Serre’s uniformity problem in the split Cartan case, Ann. of Math. (2) 173 (2011), no. 1, 569–584. MR 2753610, DOI 10.4007/annals.2011.173.1.13
- Pete L. Clark, Tyler Genao, Paul Pollack, and Frederick Saia, The least degree of a CM point on a modular curve, J. Lond. Math. Soc. (2) 105 (2022), no. 2, 825–883. MR 4400938, DOI 10.1112/jlms.12518
- Maarten Derickx, Anastassia Etropolski, Mark van Hoeij, Jackson S. Morrow, and David Zureick-Brown, Sporadic cubic torsion, Algebra Number Theory 15 (2021), no. 7, 1837–1864. MR 4333666, DOI 10.2140/ant.2021.15.1837
- Maarten Derickx, Sheldon Kamienny, William Stein, and Michael Stoll, Torsion points on elliptic curves over number fields of small degree, Algebra Number Theory 17 (2023), no. 2, 267–308. MR 4564759, DOI 10.2140/ant.2023.17.267
- Maarten Derickx, Barry Mazur, and Sheldon Kamienny, Rational families of 17-torsion points of elliptic curves over number fields, Number theory related to modular curves—Momose memorial volume, Contemp. Math., vol. 701, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 81–104. MR 3755909, DOI 10.1090/conm/701/14142
- P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin-New York, 1973, pp. 143–316 (French). MR 337993
- William Duke, Elliptic curves with no exceptional primes, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 8, 813–818 (English, with English and French summaries). MR 1485897, DOI 10.1016/S0764-4442(97)80118-8
- Maarten Derickx and Mark van Hoeij, Gonality of the modular curve $X_1(N)$, J. Algebra 417 (2014), 52–71. MR 3244637, DOI 10.1016/j.jalgebra.2014.06.026
- Özlem Ejder, Isolated points on $X_1(\ell ^n)$ with rational $j$-invariant, Res. Number Theory 8 (2022), no. 1, Paper No. 16, 7. MR 4392066, DOI 10.1007/s40993-022-00313-0
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI 10.1007/BF01388432
- Gerd Faltings, The general case of S. Lang’s conjecture, Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991) Perspect. Math., vol. 15, Academic Press, San Diego, CA, 1994, pp. 175–182. MR 1307396
- Gerhard Frey, Curves with infinitely many points of fixed degree, Israel J. Math. 85 (1994), no. 1-3, 79–83. MR 1264340, DOI 10.1007/BF02758637
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Aaron Greicius, Elliptic curves with surjective adelic Galois representations, Experiment. Math. 19 (2010), no. 4, 495–507. MR 2778661, DOI 10.1080/10586458.2010.10390639
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- The LMFDB Collaboration, The L-functions and modular forms database, https://www.lmfdb.org, 2023 [Online; accessed August 2023]. $\uparrow$
- Álvaro Lozano-Robledo, On the field of definition of $p$-torsion points on elliptic curves over the rationals, Math. Ann. 357 (2013), no. 1, 279–305. MR 3084348, DOI 10.1007/s00208-013-0906-5
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 103–150. MR 861974
- J. S. Milne, Jacobian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 167–212. MR 861976
- Filip Najman, Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$, Math. Res. Lett. 23 (2016), no. 1, 245–272. MR 3512885, DOI 10.4310/MRL.2016.v23.n1.a12
- Jeremy Rouse, Andrew V. Sutherland, and David Zureick-Brown, $\ell$-adic images of Galois for elliptic curves over $\Bbb {Q}$ (and an appendix with John Voight), Forum Math. Sigma 10 (2022), Paper No. e62, 63. With an appendix with John Voight. MR 4468989, DOI 10.1017/fms.2022.38
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- Jean-Pierre Serre, Lectures on the Mordell-Weil theorem, 3rd ed., Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt; With a foreword by Brown and Serre. MR 1757192, DOI 10.1007/978-3-663-10632-6
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, NJ, 1971. Publications of the Mathematical Society of Japan, No. 11. MR 314766
- Andrew V. Sutherland, Computing images of Galois representations attached to elliptic curves, Forum Math. Sigma 4 (2016), Paper No. e4, 79. MR 3482279, DOI 10.1017/fms.2015.33
- William A. Stein and Mark Watkins, A database of elliptic curves—first report, Algorithmic number theory (Sydney, 2002) Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 267–275. MR 2041090, DOI 10.1007/3-540-45455-1_{2}2
- M. van Hoeij, Low degree places on the modular curve ${X}_1(n)$, Preprint, arXiv:1202.4355. $\uparrow$
- D. Zywina, Explicit open images for elliptic curves over $\mathbb {Q}$, Preprint, arXiv:2206.14959. $\uparrow$
- D. Zywina, Explicit open images for elliptic curves over $\mathbb {Q}$, Github repository, https://github.com/davidzywina/OpenImage. $\uparrow$
- D. Zywina, On the possible image of the mod $\ell$ representations associated to elliptic curves over $\mathbb {Q}$, arXiv:1508.07660. $\uparrow$
Bibliographic Information
- Abbey Bourdon
- Affiliation: Department of Mathematics, Wake Forest University, 127 Manchester Hall, PO Box 7388, Winston-Salem, North Carolina 27109
- MR Author ID: 1106479
- ORCID: 0000-0002-2938-914X
- Email: bourdoam@wfu.edu
- Sachi Hashimoto
- Affiliation: Department of Mathematics, Brown University, Box 1917, 151 Thayer Street, Providence, Rhode Island 02912
- MR Author ID: 1491436
- ORCID: 0000-0002-8936-5545
- Email: sachi_hashimoto@brown.edu
- Timo Keller
- Affiliation: Leibniz Universität Hannover, Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Welfengarten 1, 30167 Hannover, Germany
- Address at time of publication: Rijksuniveriteit Groningen, Bernoulli Institute, Bernoulliborg, Nijenborgh 9, 9747 AG Groningen, The Netherlands
- MR Author ID: 1155782
- ORCID: 0000-0003-0916-8478
- Email: t.keller@rug.nl
- Zev Klagsbrun
- Affiliation: Center for Communications Research, La Jolla, 4320 Westerra Court, San Diego, California 92121
- MR Author ID: 1016010
- Email: zdklags@ccr-lajolla.org
- David Lowry-Duda
- Affiliation: ICERM, 121 South Main Street, Box E, 11th Floor, Providence, Rhode Island 02903
- MR Author ID: 1189720
- ORCID: 0000-0002-8543-4558
- Email: david@lowryduda.com
- Travis Morrison
- Affiliation: Department of Mathematics, Virginia Tech, 226 Stanger Street, Blacksburg, Virginia 24061
- MR Author ID: 1269541
- ORCID: 0000-0002-1719-7757
- Email: tmo@vt.edu
- Filip Najman
- Affiliation: University of Zagreb, Bijenička Cesta 30, 10000 Zagreb, Croatia
- MR Author ID: 886852
- ORCID: 0000-0002-0994-0846
- Email: fnajman@math.hr
- Himanshu Shukla
- Affiliation: Mathematisches Institut, Uiversität Bayreuth, Universitätstrasse 30, 95444 Bayreuth, Germany
- MR Author ID: 1226094
- Email: Himanshu.Shukla@uni-bayreuth.de
- Maarten Derickx
- MR Author ID: 1040992
- ORCID: 0000-0001-7186-2087
- Mark van Hoeij
- MR Author ID: 361184
- Received by editor(s): November 16, 2023
- Received by editor(s) in revised form: January 30, 2024, and February 2, 2024
- Published electronically: April 25, 2024
- Additional Notes: The first author was supported by NSF grants DMS-2145270 and DMS-1928930. Part of the work was completed while this author was in residence at the Simons Laufer Mathematical Science Institute in Berkeley, CA, during the semester of Diophantine Geometry. The third author was partially supported by the 2021 MSCA Postdoctoral Fellowship 01064790 – ExplicitRatPoints. The fifth author was supported by the Simons Collaboration in Arithmetic Geometry, Number Theory, and Computation via the Simons Foundation grant 546235. The sixth author was partially supported by the Commonwealth Cyber Initiative. The seventh author was supported by the QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004) and by the Croatian Science Foundation under the project no. IP-2022-10-5008. The eighth author was supported by the DFG-grant STO 299/ 17-1. The tenth author was supported by NSF grant 2007959.
This work was partially developed by the Institute for Defense Analyses operating as a Federally Funded Research and Development Center using U.S. Government funds. The U.S. Government retains an unlimited, non-exclusive, irrevocable, and royalty-free license to use the Work - © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 447-473
- MSC (2020): Primary 11G18, 14Q05, 11G05, 14G35
- DOI: https://doi.org/10.1090/mcom/3956