Fourier optimization and Montgomery’s pair correlation conjecture
HTML articles powered by AMS MathViewer
- by Emanuel Carneiro, Micah B. Milinovich and Antonio Pedro Ramos;
- Math. Comp. 94 (2025), 409-424
- DOI: https://doi.org/10.1090/mcom/3990
- Published electronically: June 6, 2024
- HTML | PDF | Request permission
Abstract:
Assuming the Riemann hypothesis, we improve the current upper and lower bounds for the average value of Montgomery’s function $F(\alpha , T)$ over long intervals by means of a Fourier optimization framework. The function $F(\alpha , T)$ is often used to study the pair correlation of the non-trivial zeros of the Riemann zeta-function. Two ideas play a central role in our approach: (i) the introduction of new averaging mechanisms in our conceptual framework and (ii) the full use of the class of test functions introduced by Cohn and Elkies for the sphere packing bounds, going beyond the usual class of bandlimited functions. We conclude that such an average value, that is conjectured to be $1$, lies between $0.9303$ and $1.3208$. Our Fourier optimization framework also yields an improvement on the current bounds for the analogous problem concerning the non-trivial zeros in the family of Dirichlet $L$-functions.References
- S. A. C. Baluyot, D. A. Goldston, A. I. Suriajaya, and C. L. Turnage-Butterbaugh, An unconditional Montgomery theorem for pair correlation of zeros of the Riemann zeta function, Acta Arith. (to appear), DOI 10.4064/aa230612-20-3.
- Hung M. Bui, Daniel A. Goldston, Micah B. Milinovich, and Hugh L. Montgomery, Small gaps and small spacings between zeta zeros, Acta Arith. 210 (2023), 133–153. MR 4678121, DOI 10.4064/aa220731-15-2
- Emanuel Carneiro, Vorrapan Chandee, Andrés Chirre, and Micah B. Milinovich, On Montgomery’s pair correlation conjecture: a tale of three integrals, J. Reine Angew. Math. 786 (2022), 205–243. MR 4434744, DOI 10.1515/crelle-2021-0084
- Emanuel Carneiro, Vorrapan Chandee, Friedrich Littmann, and Micah B. Milinovich, Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function, J. Reine Angew. Math. 725 (2017), 143–182. MR 3630120, DOI 10.1515/crelle-2014-0078
- E. Carneiro, M. B. Milinovich, A. P. Ramos, and E. Quesada-Herrera, Fourier optimization, the least quadratic non-residue, and the least prime in an arithmetic progression, preprint, 2024, arXiv:2404.08380.
- Emanuel Carneiro, Micah B. Milinovich, and Kannan Soundararajan, Fourier optimization and prime gaps, Comment. Math. Helv. 94 (2019), no. 3, 533–568. MR 4014779, DOI 10.4171/CMH/467
- Vorrapan Chandee, Kim Klinger-Logan, and Xiannan Li, Pair correlation of zeros of $\Gamma _1(q)$ $L$-functions, Math. Z. 302 (2022), no. 1, 219–258. MR 4462674, DOI 10.1007/s00209-022-03034-3
- Vorrapan Chandee, Yoonbok Lee, Sheng-Chi Liu, and Maksym Radziwiłł, Simple zeros of primitive Dirichlet $L$-functions and the asymptotic large sieve, Q. J. Math. 65 (2014), no. 1, 63–87. MR 3179650, DOI 10.1093/qmath/hat008
- Andrés Chirre, Felipe Gonçalves, and David de Laat, Pair correlation estimates for the zeros of the zeta function via semidefinite programming, Adv. Math. 361 (2020), 106926, 22. MR 4037496, DOI 10.1016/j.aim.2019.106926
- Andrés Chirre and Emily Quesada-Herrera, Fourier optimization and quadratic forms, Q. J. Math. 73 (2022), no. 2, 539–577. MR 4439798, DOI 10.1093/qmath/haab041
- Henry Cohn and Noam Elkies, New upper bounds on sphere packings. I, Ann. of Math. (2) 157 (2003), no. 2, 689–714. MR 1973059, DOI 10.4007/annals.2003.157.689
- P. X. Gallagher, Pair correlation of zeros of the zeta function, J. Reine Angew. Math. 362 (1985), 72–86. MR 809967, DOI 10.1515/crll.1985.362.72
- D. A. Goldston, On the function $S(T)$ in the theory of the Riemann zeta-function, J. Number Theory 27 (1987), no. 2, 149–177. MR 909834, DOI 10.1016/0022-314X(87)90059-X
- D. A. Goldston, On the pair correlation conjecture for zeros of the Riemann zeta-function, J. Reine Angew. Math. 385 (1988), 24–40. MR 931214, DOI 10.1515/crll.1988.385.24
- D. A. Goldston and S. M. Gonek, A note on the number of primes in short intervals, Proc. Amer. Math. Soc. 108 (1990), no. 3, 613–620. MR 1002158, DOI 10.1090/S0002-9939-1990-1002158-6
- D. A. Goldston, S. M. Gonek, A. E. Özlük, and C. Snyder, On the pair correlation of zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 80 (2000), no. 1, 31–49. MR 1719184, DOI 10.1112/S0024611500012211
- Daniel A. Goldston and Hugh L. Montgomery, Pair correlation of zeros and primes in short intervals, Analytic number theory and Diophantine problems (Stillwater, OK, 1984) Progr. Math., vol. 70, Birkhäuser Boston, Boston, MA, 1987, pp. 183–203. MR 1018376
- Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak, Low lying zeros of families of $L$-functions, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 55–131 (2001). MR 1828743, DOI 10.1007/BF02698741
- H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Proc. Sympos. Pure Math., Vol. XXIV, Amer. Math. Soc., Providence, RI, 1973, pp. 181–193. MR 337821
- Hugh L. Montgomery, Distribution of the zeros of the Riemann zeta function, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congr., Montreal, QC, 1975, pp. 379–381. MR 419378
- Ali E. Özlük, On the $q$-analogue of the pair correlation conjecture, J. Number Theory 59 (1996), no. 2, 319–351. MR 1402612, DOI 10.1006/jnth.1996.0101
- Emily Quesada-Herrera, On the $q$-analogue of the pair correlation conjecture via Fourier optimization, Math. Comp. 91 (2022), no. 337, 2347–2365. MR 4451465, DOI 10.1090/mcom/3747
- Keiju Sono, A note on simple zeros of primitive Dirichlet $L$-functions, Bull. Aust. Math. Soc. 93 (2016), no. 1, 19–30. MR 3436011, DOI 10.1017/S0004972715000623
Bibliographic Information
- Emanuel Carneiro
- Affiliation: The Abdus Salam International Centre for Theoretical Physics, Strada Costiera, 11, I - 34151 Trieste, Italy
- MR Author ID: 847171
- ORCID: 0000-0001-6229-1139
- Email: carneiro@ictp.it
- Micah B. Milinovich
- Affiliation: Department of Mathematics, University of Mississippi, University, Mississippi 38677
- MR Author ID: 891558
- ORCID: 0000-0002-8391-9930
- Email: mbmilino@olemiss.edu
- Antonio Pedro Ramos
- Affiliation: Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
- ORCID: 0009-0001-4495-2084
- Email: Antonio.Ramos@sissa.it
- Received by editor(s): October 4, 2023
- Received by editor(s) in revised form: March 5, 2024
- Published electronically: June 6, 2024
- Additional Notes: The second author was supported by the NSF grants DMS-2101912 and DMS-2401461 and the Simons Foundation (award 712898).
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 409-424
- MSC (2020): Primary 11M06, 11M26, 41A30
- DOI: https://doi.org/10.1090/mcom/3990