On eigenvalue gaps of integer matrices
HTML articles powered by AMS MathViewer
- by Aaron Abrams, Zeph Landau, Jamie Pommersheim and Nikhil Srivastava;
- Math. Comp. 94 (2025), 853-862
- DOI: https://doi.org/10.1090/mcom/3905
- Published electronically: September 12, 2024
- HTML | PDF
Abstract:
Given an $n\times n$ matrix with integer entries in the range $[-h,h]$, how close can two of its distinct eigenvalues be?
The best previously known examples (Lu [Minimum eigenvalue separation, ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)–University of California, Berkeley; Wilkinson [The algebraic eigenvalue problem, Monographs on Numerical Analysis, The Clarendon Press, Oxford University Press, New York, 1988]) have a minimum gap of $h^{-O(n)}$. Here we give an explicit construction of matrices with entries in $[0,h]$ with two eigenvalues separated by at most $h^{-n^2/16+o(n^2)}$. Up to a constant in the exponent, this agrees with the known lower bound of $\Omega ((2\sqrt {n})^{-n^2}h^{-n^2})$ (Mahler [Michigan Math. J. 11 (1964), pp. 257–262]). Bounds on the minimum gap are relevant to the worst case analysis of algorithms for diagonalization and computing canonical forms of integer matrices (e.g. Dey et al. [Bit complexity of Jordan normal form and polynomial spectral factorization, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2023, pp. Art. No. 42]).
In addition to our explicit construction, we show there are many matrices with a slightly larger gap of roughly $h^{-n^2/32}$. We also construct 0-1 matrices which have two eigenvalues separated by at most $2^{-n^2/64+o(n^2)}$.
References
- Victor Beresnevich, Vasili Bernik, and Friedrich Götze, The distribution of close conjugate algebraic numbers, Compos. Math. 146 (2010), no. 5, 1165–1179. MR 2684299, DOI 10.1112/S0010437X10004860
- Victor Beresnevich, Vasili Bernik, and Friedrich Götze, Integral polynomials with small discriminants and resultants, Adv. Math. 298 (2016), 393–412. MR 3505745, DOI 10.1016/j.aim.2016.04.022
- Yann Bugeaud and Andrej Dujella, Root separation for irreducible integer polynomials, Bull. Lond. Math. Soc. 43 (2011), no. 6, 1239–1244. MR 2861545, DOI 10.1112/blms/bdr085
- Yann Bugeaud and Maurice Mignotte, On the distance between roots of integer polynomials, Proc. Edinb. Math. Soc. (2) 47 (2004), no. 3, 553–556. MR 2096618, DOI 10.1017/S0013091503000257
- E. Y. S. Chan and R. M. Corless, Minimal height companion matrices for Euclid polynomials, Math. Comput. Sci. 13 (2019), no. 1-2, 41–56. MR 3977640, DOI 10.1007/s11786-018-0364-2
- Eunice Y. S. Chan, Robert M. Corless, Laureano Gonzalez-Vega, J. Rafael Sendra, Juana Sendra, and Steven E. Thornton, Upper Hessenberg and Toeplitz Bohemians, Linear Algebra Appl. 601 (2020), 72–100. MR 4093806, DOI 10.1016/j.laa.2020.03.037
- George E. Collins and Ellis Horowitz, The minimum root separation of a polynomial, Math. Comp. 28 (1974), 589–597. MR 345940, DOI 10.1090/S0025-5718-1974-0345940-X
- Robert Corless, George Labahn, Dan Piponi, and Leili Rafiee Sevyeri, Bohemian matrix geometry, ISSAC ’22—Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, ACM, New York, [2022] ©2022, pp. 361–370. MR 4488847
- Papri Dey, Ravi Kannan, Nick Ryder, and Nikhil Srivastava, Bit complexity of Jordan normal form and polynomial spectral factorization, 14th Innovations in Theoretical Computer Science Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 251, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2023, pp. Art. No. 42, 18. MR 4587056, DOI 10.4230/lipics.itcs.2023.42
- Shuhong Gao and Daniel Panario, Tests and constructions of irreducible polynomials over finite fields, Foundations of computational mathematics (Rio de Janeiro, 1997) Springer, Berlin, 1997, pp. 346–361. MR 1661992
- F. Götze and D. Zaporozhets, Discriminant and root separation of integral polynomials, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 441 (2015), no. Veroyatnost′i Statistika. 22, 144–153; English transl., J. Math. Sci. (N.Y.) 219 (2016), no. 5, 700–706. MR 3504502, DOI 10.1007/s10958-016-3139-9
- Rudolf Lidl and Harald Niederreiter, Finite fields, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997. With a foreword by P. M. Cohn. MR 1429394
- K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1964), 257–262. MR 166188, DOI 10.1307/mmj/1028999140
- M. Mignotte, Some useful bounds, Computer algebra, Springer, Vienna, 1983, pp. 259–263. MR 728976
- Tzon-Tzer Lu, Minimum eigenvalue separation, ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)–University of California, Berkeley. MR 2688482
- Olga Taussky, Matrices of rational integers, Bull. Amer. Math. Soc. 66 (1960), 327–345. MR 120237, DOI 10.1090/S0002-9904-1960-10439-9
- R. Tijdeman, On the maximal distance between integers composed of small primes, Compositio Math. 28 (1974), 159–162. MR 345917
- J. H. Wilkinson, The algebraic eigenvalue problem, Monographs on Numerical Analysis, The Clarendon Press, Oxford University Press, New York, 1988. Oxford Science Publications. MR 950175
Bibliographic Information
- Aaron Abrams
- Affiliation: Mathematics Department, Washington and Lee University, 204 W. Washington St. Lexington VA 24450; and School of Data Science, University of Virginia, P.O. Box 400249, Charlottesville, VA 22904
- MR Author ID: 619839
- ORCID: 0000-0002-2557-3003
- Email: abrams.aaron@gmail.com
- Zeph Landau
- Affiliation: Department of Computer Science, Soda Hall, University of California, Berkelely, Berkeley, CA 94706
- MR Author ID: 674938
- Email: zlandau@berkeley.edu
- Jamie Pommersheim
- Affiliation: Department of Mathematics, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202
- MR Author ID: 331720
- ORCID: 0009-0007-0309-1832
- Email: jamie@reed.edu
- Nikhil Srivastava
- Affiliation: Department of Mathematics, Evans Hall, University of California, Berkeley, Berkeley, CA 94720
- MR Author ID: 767822
- Email: nikhil@math.berkeley.edu
- Received by editor(s): July 31, 2022
- Received by editor(s) in revised form: June 13, 2023
- Published electronically: September 12, 2024
- Additional Notes: The fourth author was supported by NSF Grant CCF-2009011.
- © Copyright 2024 by the authors
- Journal: Math. Comp. 94 (2025), 853-862
- MSC (2020): Primary 15A18, 15B36
- DOI: https://doi.org/10.1090/mcom/3905