Discrete tensor product BGG sequences: Splines and finite elements
HTML articles powered by AMS MathViewer
- by Francesca Bonizzoni, Kaibo Hu, Guido Kanschat and Duygu Sap;
- Math. Comp. 94 (2025), 517-549
- DOI: https://doi.org/10.1090/mcom/3969
- Published electronically: April 17, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we provide a systematic discretization of the Bernstein-Gelfand-Gelfand diagrams and complexes over cubical meshes in arbitrary dimension via the use of tensor product structures of one-dimensional piecewise-polynomial spaces, such as spline and finite element spaces. We demonstrate the construction of the Hessian, the elasticity, and $\operatorname {div}\operatorname {div}$ complexes as examples for our construction.References
- Arzhang Angoshtari and Arash Yavari, Differential complexes in continuum mechanics, Arch. Ration. Mech. Anal. 216 (2015), no. 1, 193â220. MR 3305657, DOI 10.1007/s00205-014-0806-1
- J. Arf and B. Simeon, Structure-preserving discretization of the Hessian complex based on spline spaces, arXiv:2109.05293, 2021.
- J. Arf and B. Simeon, Mixed isogeometric discretizations for planar linear elasticity, arXiv:2204.08095, 2022.
- Daniel Arndt and Guido Kanschat, A differentiable mapping of mesh cells based on finite elements on quadrilateral and hexahedral meshes, Comput. Methods Appl. Math. 21 (2021), no. 1, 1â11. MR 4193447, DOI 10.1515/cmam-2020-0159
- Douglas N. Arnold, Daniele Boffi, and Francesca Bonizzoni, Finite element differential forms on curvilinear cubic meshes and their approximation properties, Numer. Math. 129 (2015), no. 1, 1â20. MR 3296150, DOI 10.1007/s00211-014-0631-3
- Douglas N. Arnold, Finite element exterior calculus, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 93, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2018. MR 3908678, DOI 10.1137/1.9781611975543.ch1
- Douglas N. Arnold and Gerard Awanou, Rectangular mixed finite elements for elasticity, Math. Models Methods Appl. Sci. 15 (2005), no. 9, 1417â1429. MR 2166210, DOI 10.1142/S0218202505000741
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Differential complexes and stability of finite element methods. II. The elasticity complex, Compatible spatial discretizations, IMA Vol. Math. Appl., vol. 142, Springer, New York, 2006, pp. 47â67. MR 2249345, DOI 10.1007/0-387-38034-5_{3}
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006), 1â155. MR 2269741, DOI 10.1017/S0962492906210018
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comp. 76 (2007), no. 260, 1699â1723. MR 2336264, DOI 10.1090/S0025-5718-07-01998-9
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 2, 281â354. MR 2594630, DOI 10.1090/S0273-0979-10-01278-4
- Douglas N. Arnold and Kaibo Hu, Complexes from complexes, Found. Comput. Math. 21 (2021), no. 6, 1739â1774. MR 4343022, DOI 10.1007/s10208-021-09498-9
- D. N. Arnold and A. Logg, Periodic Table of the Finite Elements, Siam News 47 (2014), no. 9, 212.
- Douglas N. Arnold and Ragnar Winther, Mixed finite elements for elasticity, Numer. Math. 92 (2002), no. 3, 401â419. MR 1930384, DOI 10.1007/s002110100348
- Francesca Bonizzoni and Guido Kanschat, $H^1$-conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes, Calcolo 58 (2021), no. 2, Paper No. 18, 29. MR 4244253, DOI 10.1007/s10092-021-00409-6
- F. Bonizzoni and G. Kanschat, A tensor-product finite element cochain complex with arbitrary continuity, ECCOMAS 2022, https://www.scipedia.com/public/Bonizzoni_Kanschat_2022a, 2022.
- A. Buffa, J. Rivas, G. Sangalli, and R. VĂĄzquez, Isogeometric discrete differential forms in three dimensions, SIAM J. Numer. Anal. 49 (2011), no. 2, 818â844. MR 2792397, DOI 10.1137/100786708
- A. Äap and K. Hu, BGG sequences with weak regularity and applications, arXiv:2203.01300, 2022.
- Andreas Äap and Jan SlovĂĄk, Parabolic geometries. I, Mathematical Surveys and Monographs, vol. 154, American Mathematical Society, Providence, RI, 2009. Background and general theory. MR 2532439, DOI 10.1090/surv/154
- Andreas Äap, Jan SlovĂĄk, and VladimĂr SouÄek, Bernstein-Gelfand-Gelfand sequences, Ann. of Math. (2) 154 (2001), no. 1, 97â113. MR 1847589, DOI 10.2307/3062111
- Long Chen and Xuehai Huang, Discrete Hessian complexes in three dimensions, The virtual element method and its applications, SEMA SIMAI Springer Ser., vol. 31, Springer, Cham, [2022] ©2022, pp. 93â135. MR 4510901, DOI 10.1007/978-3-030-95319-5_{3}
- Long Chen and Xuehai Huang, Finite elements for $\textrm {div\,div}$ conforming symmetric tensors in three dimensions, Math. Comp. 91 (2022), no. 335, 1107â1142. MR 4405490, DOI 10.1090/mcom/3700
- Long Chen and Xuehai Huang, A finite element elasticity complex in three dimensions, Math. Comp. 91 (2022), no. 337, 2095â2127. MR 4451457, DOI 10.1090/mcom/3739
- Long Chen and Xuehai Huang, Finite elements for div- and divdiv-conforming symmetric tensors in arbitrary dimension, SIAM J. Numer. Anal. 60 (2022), no. 4, 1932â1961. MR 4458899, DOI 10.1137/21M1433708
- L. Chen and X. Huang, Geometric decompositions of div-conforming finite element tensors, arXiv:2112.14351, 2021.
- L. Chen and X. Huang, Complexes from complexes: Finite element complexes in three dimensions, arXiv preprint arXiv:2211.08656-v2, 2023.
- L. Chen and X. Huang, Finite element complexes in two dimensions, arXiv preprint arXiv:2206.00851-v3, 2023.
- Snorre H. Christiansen, Foundations of finite element methods for wave equations of Maxwell type, Applied wave mathematics, Springer, Berlin, 2009, pp. 335â393. MR 2553283, DOI 10.1007/978-3-642-00585-5_{1}7
- Snorre H. Christiansen, Jay Gopalakrishnan, Johnny GuzmĂĄn, and Kaibo Hu, A discrete elasticity complex on three-dimensional Alfeld splits, Numer. Math. 156 (2024), no. 1, 159â204. MR 4700410, DOI 10.1007/s00211-023-01381-9
- Snorre H. Christiansen, Jun Hu, and Kaibo Hu, Nodal finite element de Rham complexes, Numer. Math. 139 (2018), no. 2, 411â446. MR 3802677, DOI 10.1007/s00211-017-0939-x
- Snorre H. Christiansen and Kaibo Hu, Finite element systems for vector bundles: elasticity and curvature, Found. Comput. Math. 23 (2023), no. 2, 545â596. MR 4568199, DOI 10.1007/s10208-022-09555-x
- Snorre H. Christiansen, Kaibo Hu, and Espen Sande, PoincarĂ© path integrals for elasticity, J. Math. Pures Appl. (9) 135 (2020), 83â102 (English, with English and French summaries). MR 4066098, DOI 10.1016/j.matpur.2019.06.002
- Martin Costabel and Alan McIntosh, On BogovskiÄ and regularized PoincarĂ© integral operators for de Rham complexes on Lipschitz domains, Math. Z. 265 (2010), no. 2, 297â320. MR 2609313, DOI 10.1007/s00209-009-0517-8
- J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs, Isogeometric analysis, John Wiley & Sons, Ltd., Chichester, 2009. Toward integration of CAD and FEA. MR 3618875, DOI 10.1002/9780470749081
- L. BeirĂŁo da Veiga, A. Buffa, G. Sangalli, and R. VĂĄzquez, Mathematical analysis of variational isogeometric methods, Acta Numer. 23 (2014), 157â287. MR 3202239, DOI 10.1017/S096249291400004X
- Carl de Boor, On calculating with $B$-splines, J. Approximation Theory 6 (1972), 50â62. MR 338617, DOI 10.1016/0021-9045(72)90080-9
- Michael Eastwood, A complex from linear elasticity, The Proceedings of the 19th Winter School âGeometry and Physicsâ (SrnĂ, 1999), 2000, pp. 23â29. MR 1758075
- John A. Evans, Michael A. Scott, Kendrick M. Shepherd, Derek C. Thomas, and Rafael VĂĄzquez HernĂĄndez, Hierarchical B-spline complexes of discrete differential forms, IMA J. Numer. Anal. 40 (2020), no. 1, 422â473. MR 4050546, DOI 10.1093/imanum/dry077
- Richard S. Falk and Ragnar Winther, The bubble transform and the de Rham complex, Found. Comput. Math. 24 (2024), no. 1, 99â147. MR 4707060, DOI 10.1007/s10208-022-09589-1
- Michael S. Floater and Kaibo Hu, A characterization of supersmoothness of multivariate splines, Adv. Comput. Math. 46 (2020), no. 5, Paper No. 70, 15. MR 4141530, DOI 10.1007/s10444-020-09813-y
- Wolfgang Hackbusch, Numerical tensor calculus, Acta Numer. 23 (2014), 651â742. MR 3202243, DOI 10.1017/S0962492914000087
- Jun Hu and Yizhou Liang, Conforming discrete Gradgrad-complexes in three dimensions, Math. Comp. 90 (2021), no. 330, 1637â1662. MR 4273111, DOI 10.1090/mcom/3628
- Jun Hu, Yizhou Liang, and Rui Ma, Conforming finite element divdiv complexes and the application for the linearized Einstein-Bianchi system, SIAM J. Numer. Anal. 60 (2022), no. 3, 1307â1330. MR 4431967, DOI 10.1137/21M1404235
- Kaibo Hu, Qian Zhang, and Zhimin Zhang, A family of finite element Stokes complexes in three dimensions, SIAM J. Numer. Anal. 60 (2022), no. 1, 222â243. MR 4369574, DOI 10.1137/20M1358700
- Jun Hu, Hongying Man, and Shangyou Zhang, A simple conforming mixed finite element for linear elasticity on rectangular grids in any space dimension, J. Sci. Comput. 58 (2014), no. 2, 367â379. MR 3150263, DOI 10.1007/s10915-013-9736-6
- K. Hu, Oberwolfach report: Discretization of Hilbert complexes, arXiv:2208.03420, 2022.
- Bernard Kapidani and Rafael VĂĄzquez Hernandez, High order geometric methods with splines: an analysis of discrete Hodge-star operators, SIAM J. Sci. Comput. 44 (2022), no. 6, A3673âA3699. MR 4512979, DOI 10.1137/22M1481762
- Michael Neilan and Duygu Sap, Stokes elements on cubic meshes yielding divergence-free approximations, Calcolo 53 (2016), no. 3, 263â283. MR 3541155, DOI 10.1007/s10092-015-0148-x
- D. Pauly and W. Zulehner, On closed and exact Grad-grad-and div-Div-complexes, corresponding compact embeddings for tensor rotations, and a related decomposition result for biharmonic problems in 3D. arXiv preprint arXiv:1609.05873-v4, 2017.
- Dirk Pauly and Walter Zulehner, The divDiv-complex and applications to biharmonic equations, Appl. Anal. 99 (2020), no. 9, 1579â1630. MR 4113080, DOI 10.1080/00036811.2018.1542685
- Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny, BĂ©zier and B-spline techniques, Mathematics and Visualization, Springer-Verlag, Berlin, 2002. MR 1993341, DOI 10.1007/978-3-662-04919-8
- O. Sander, Conforming finite elements for $H(\operatorname {sym}\operatorname {curl})$ and $H(\operatorname {dev}\operatorname {sym}\operatorname {curl})$, arXiv:2104.12825, 2021.
- Larry L. Schumaker, Spline functions: basic theory, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2007. MR 2348176, DOI 10.1017/CBO9780511618994
- Yi Zhang, Varun Jain, Artur Palha, and Marc Gerritsma, The use of dual B-spline representations for the double de Rham complex of discrete differential forms, Isogeometric analysis and applications 2018, Lect. Notes Comput. Sci. Eng., vol. 133, Springer, Cham, [2021] ©2021, pp. 227â242. MR 4238509, DOI 10.1007/978-3-030-49836-8_{1}1
Bibliographic Information
- Francesca Bonizzoni
- Affiliation: MOX, Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- MR Author ID: 1081834
- ORCID: 0000-0002-6222-3352
- Email: francesca.bonizzoni@polimi.it
- Kaibo Hu
- Affiliation: School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, United Kingdom
- MR Author ID: 1161425
- ORCID: 0000-0001-9574-9644
- Email: kaibo.hu@ed.ac.uk
- Guido Kanschat
- Affiliation: Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
- MR Author ID: 622524
- ORCID: 0000-0003-1687-7328
- Email: kanschat@uni-heidelberg.de
- Duygu Sap
- Affiliation: Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, United Kingtom
- MR Author ID: 1175313
- ORCID: 0000-0003-4816-7275
- Email: duygu.sap@maths.ox.ac.uk
- Received by editor(s): February 4, 2023
- Received by editor(s) in revised form: October 2, 2023, December 21, 2023, and February 11, 2024
- Published electronically: April 17, 2024
- Additional Notes: The first author was supported from the HGS MathComp through the Distinguished Romberg Guest Professorship Program. Moreover, the first author is member of the INdAM Research group GNCS and her work was part of a project that has received funding from the European Research Council ERC under the European Unionâs Horizon 2020 research and innovation program (Grant agreement No. 865751). The second author was supported by a Hooke Research Fellowship and a Royal Society University Research Fellowship (URF\textbackslash{}R1\textbackslash{}221398). The third author was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanyâs Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster). The fourth author was supported by the Engineering and Physical Sciences Research Council (EPSRC) grants EP/S005072/1 and EP/R029423/1.
The fourth author is the corresponding author - © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 517-549
- MSC (2020): Primary 65N99, 41A15, 41A63, 65N30
- DOI: https://doi.org/10.1090/mcom/3969