Low-regularity exponential-type integrators for the Zakharov system with rough data in all dimensions
HTML articles powered by AMS MathViewer
- by Hang Li and Chunmei Su;
- Math. Comp. 94 (2025), 727-762
- DOI: https://doi.org/10.1090/mcom/3973
- Published electronically: April 22, 2024
- HTML | PDF | Request permission
Abstract:
We propose and analyze a type of low-regularity exponential-type integrators (LREIs) for the Zakharov system (ZS) with rough solutions. Our LREIs include a first-order integrator and a second-order one, and they achieve optimal convergence under weaker regularity assumptions on the exact solution compared to the existing numerical methods in literature. Specifically, the first-order integrator exhibits linear convergence in $H^{m+2}(\mathbb {T}^d)\times H^{m+1}(\mathbb {T}^d)\times H^m(\mathbb {T}^d)$ for solutions in $H^{m+3}(\mathbb {T}^d)\times H^{m+2}(\mathbb {T}^d)\times H^{m+1}(\mathbb {T}^d)$ if $m>d/2$, meaning that only the boundedness of one additional derivative of the solution is required to achieve the first-order convergence. While for the second-order integrator, we show that it achieves second-order accuracy by requiring the boundedness of two additional spatial derivatives of the solution. The order of additional derivatives required is reduced by half compared to the classical trigonometric integrators. The main techniques to design the integrators include a reformulation by introducing new variables to exclude the loss of spatial regularity in the original ZS, accurate integration for the dominant term in the linear part of the equations and appropriate approximations (or averaging approximations) to the exponential phase functions involving the nonlinear interactions. Numerical comparisons with classical integrators confirm that our newly proposed LREIs are superior in accuracy and robustness for handling rough data.References
- Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078
- Weizhu Bao and Chunmei Su, A uniformly and optimally accurate method for the Zakharov system in the subsonic limit regime, SIAM J. Sci. Comput. 40 (2018), no. 2, A929–A953. MR 3780752, DOI 10.1137/17M1113333
- Weizhu Bao and Chunmei Su, Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, Math. Comp. 87 (2018), no. 313, 2133–2158. MR 3802430, DOI 10.1090/mcom/3278
- Weizhu Bao and Fangfang Sun, Efficient and stable numerical methods for the generalized and vector Zakharov system, SIAM J. Sci. Comput. 26 (2005), no. 3, 1057–1088. MR 2126126, DOI 10.1137/030600941
- Weizhu Bao, Fangfang Sun, and G. W. Wei, Numerical methods for the generalized Zakharov system, J. Comput. Phys. 190 (2003), no. 1, 201–228. MR 2046763, DOI 10.1016/S0021-9991(03)00271-7
- Jean Bourgain, On the Cauchy and invariant measure problem for the periodic Zakharov system, Duke Math. J. 76 (1994), no. 1, 175–202. MR 1301190, DOI 10.1215/S0012-7094-94-07607-2
- J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Internat. Math. Res. Notices 11 (1996), 515–546. MR 1405972, DOI 10.1155/S1073792896000359
- María Cabrera Calvo and Katharina Schratz, Uniformly accurate low regularity integrators for the Klein-Gordon equation from the classical to nonrelativistic limit regime, SIAM J. Numer. Anal. 60 (2022), no. 2, 888–912. MR 4410269, DOI 10.1137/21M1415030
- Yongyong Cai and Yan Wang, Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime, SIAM J. Numer. Anal. 57 (2019), no. 4, 1602–1624. MR 3978485, DOI 10.1137/18M121931X
- Yongyong Cai and Yongjun Yuan, Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime, Math. Comp. 87 (2018), no. 311, 1191–1225. MR 3766385, DOI 10.1090/mcom/3269
- Qian Shun Chang, Bo Ling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations, Math. Comp. 64 (1995), no. 210, 537–553, S7–S11. MR 1284664, DOI 10.1090/S0025-5718-1995-1284664-5
- Qian Shun Chang and Hong Jiang, A conservative difference scheme for the Zakharov equations, J. Comput. Phys. 113 (1994), no. 2, 309–319. MR 1284857, DOI 10.1006/jcph.1994.1138
- J. Colliander, Wellposedness for Zakharov systems with generalized nonlinearity, J. Differential Equations 148 (1998), no. 2, 351–363. MR 1643187, DOI 10.1006/jdeq.1998.3445
- James Colliander, Justin Holmer, and Nikolaos Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Amer. Math. Soc. 360 (2008), no. 9, 4619–4638. MR 2403699, DOI 10.1090/S0002-9947-08-04295-5
- A. S. Davydov, Solitons in molecular systems, Phys. Scripta 20 (1979), no. 3-4, 387–394. Special issue on solitons in physics. MR 544482, DOI 10.1088/0031-8949/20/3-4/013
- L. M. Degtiarev, V. G. Nakhankov, and L. I. Rudakov, Dynamics of the formation and interaction of Langmuir solitons and strong turbulence. Sov. Phys. JETP 40 (1975), 264–268.
- Ludwig Gauckler, On a splitting method for the Zakharov system, Numer. Math. 139 (2018), no. 2, 349–379. MR 3802675, DOI 10.1007/s00211-017-0942-2
- J. Ginibre, Y. Tsutsumi, and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997), no. 2, 384–436. MR 1491547, DOI 10.1006/jfan.1997.3148
- R. T. Glassey, Approximate solutions to the Zakharov equations via finite differences, J. Comput. Phys. 100 (1992), no. 2, 377–383. MR 1167750, DOI 10.1016/0021-9991(92)90243-R
- R. T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension, Math. Comp. 58 (1992), no. 197, 83–102. MR 1106968, DOI 10.1090/S0025-5718-1992-1106968-6
- Hichem Hadouaj, Boris A. Malomed, and Gérard A. Maugin, Dynamics of a soliton in a generalized Zakharov system with dissipation, Phys. Rev. A (3) 44 (1991), no. 6, 3925–3931. MR 1130098, DOI 10.1103/PhysRevA.44.3925
- Sebastian Herr and Katharina Schratz, Trigonometric time integrators for the Zakharov system, IMA J. Numer. Anal. 37 (2017), no. 4, 2042–2066. MR 3712185, DOI 10.1093/imanum/drw059
- Martina Hofmanová and Katharina Schratz, An exponential-type integrator for the KdV equation, Numer. Math. 136 (2017), no. 4, 1117–1137. MR 3671599, DOI 10.1007/s00211-016-0859-1
- Shi Jin, Peter A. Markowich, and Chunxiong Zheng, Numerical simulation of a generalized Zakharov system, J. Comput. Phys. 201 (2004), no. 1, 376–395. MR 2098862, DOI 10.1016/j.jcp.2004.06.001
- Nobu Kishimoto, Local well-posedness for the Zakharov system on the multidimensional torus, J. Anal. Math. 119 (2013), 213–253. MR 3043152, DOI 10.1007/s11854-013-0007-0
- Marvin Knöller, Alexander Ostermann, and Katharina Schratz, A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data, SIAM J. Numer. Anal. 57 (2019), no. 4, 1967–1986. MR 3992056, DOI 10.1137/18M1198375
- Buyang Li, Shu Ma, and Katharina Schratz, A semi-implicit exponential low-regularity integrator for the Navier-Stokes equations, SIAM J. Numer. Anal. 60 (2022), no. 4, 2273–2292. MR 4471050, DOI 10.1137/21M1437007
- Buyang Li and Yifei Wu, A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation, Numer. Math. 149 (2021), no. 1, 151–183. MR 4312402, DOI 10.1007/s00211-021-01226-3
- Hang Li and Chunmei Su, Low regularity exponential-type integrators for the “good” Boussinesq equation, IMA J. Numer. Anal. 43 (2023), no. 6, 3656–3684. MR 4673671, DOI 10.1093/imanum/drac081
- Nader Masmoudi and Kenji Nakanishi, Energy convergence for singular limits of Zakharov type systems, Invent. Math. 172 (2008), no. 3, 535–583. MR 2393080, DOI 10.1007/s00222-008-0110-5
- Cui Ning, Yifei Wu, and Xiaofei Zhao, An embedded exponential-type low-regularity integrator for mKdV equation, SIAM J. Numer. Anal. 60 (2022), no. 3, 999–1025. MR 4418808, DOI 10.1137/21M1408166
- Alexander Ostermann, Frédéric Rousset, and Katharina Schratz, Error estimates at low regularity of splitting schemes for NLS, Math. Comp. 91 (2021), no. 333, 169–182. MR 4350536, DOI 10.1090/mcom/3676
- Alexander Ostermann, Frédéric Rousset, and Katharina Schratz, Fourier integrator for periodic NLS: low regularity estimates via discrete Bourgain spaces, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 10, 3913–3952. MR 4634686, DOI 10.4171/jems/1275
- Alexander Ostermann and Katharina Schratz, Low regularity exponential-type integrators for semilinear Schrödinger equations, Found. Comput. Math. 18 (2018), no. 3, 731–755. MR 3807360, DOI 10.1007/s10208-017-9352-1
- Alexander Ostermann and Chunmei Su, Two exponential-type integrators for the “good” Boussinesq equation, Numer. Math. 143 (2019), no. 3, 683–712. MR 4020668, DOI 10.1007/s00211-019-01064-4
- Alexander Ostermann, Yifei Wu, and Fangyan Yao, A second-order low-regularity integrator for the nonlinear Schrödinger equation, Adv. Contin. Discrete Models , posted on (2022), Paper No. 23, 14. MR 4395149, DOI 10.1186/s13662-022-03695-8
- Tohru Ozawa and Yoshio Tsutsumi, Existence and smoothing effect of solutions for the Zakharov equations, Publ. Res. Inst. Math. Sci. 28 (1992), no. 3, 329–361. MR 1184829, DOI 10.2977/prims/1195168430
- Hartmut Pecher, Global well-posedness below energy space for the 1-dimensional Zakharov system, Internat. Math. Res. Notices 19 (2001), 1027–1056. MR 1857386, DOI 10.1155/S1073792801000496
- N. R. Pereira, Soliton in the damped nonlinear Schrödinger equation, Phys. Fluids 20 (1977), no. 10, 1735–1743. MR 452098, DOI 10.1063/1.861774
- Katharina Schratz, Yan Wang, and Xiaofei Zhao, Low-regularity integrators for nonlinear Dirac equations, Math. Comp. 90 (2021), no. 327, 189–214. MR 4166458, DOI 10.1090/mcom/3557
- L. Stenflo, Nonlinear equations for acoustic gravity waves, Phys. Scripta 33 (1986), no. 2, 156–158. MR 828683, DOI 10.1088/0031-8949/33/2/010
- Benjamin Texier, Derivation of the Zakharov equations, Arch. Ration. Mech. Anal. 184 (2007), no. 1, 121–183. MR 2289864, DOI 10.1007/s00205-006-0034-4
- Yan Wang and Xiaofei Zhao, A symmetric low-regularity integrator for nonlinear Klein-Gordon equation, Math. Comp. 91 (2022), no. 337, 2215–2245. MR 4451461, DOI 10.1090/mcom/3751
- Yifei Wu and Fangyan Yao, A first-order Fourier integrator for the nonlinear Schrödinger equation on $\Bbb {T}$ without loss of regularity, Math. Comp. 91 (2022), no. 335, 1213–1235. MR 4405493, DOI 10.1090/mcom/3705
- Yinhua Xia, Yan Xu, and Chi-Wang Shu, Local discontinuous Galerkin methods for the generalized Zakharov system, J. Comput. Phys. 229 (2010), no. 4, 1238–1259. MR 2576247, DOI 10.1016/j.jcp.2009.10.029
- V. E. Zakharov, Collapse of Langmuir waves. Sov. Phys. JETP 35 (1972), 908–914.
Bibliographic Information
- Hang Li
- Affiliation: Yau Mathematical Sciences Center, Tsinghua University, 100084 Beijing, People’s Republic of China
- Email: lihang20@mails.tsinghua.edu.cn
- Chunmei Su
- Affiliation: Yau Mathematical Sciences Center, Tsinghua University, 100084 Beijing, People’s Republic of China
- ORCID: 0000-0002-7934-592X
- Email: sucm@tsinghua.edu.cn
- Received by editor(s): June 5, 2023
- Received by editor(s) in revised form: December 11, 2023
- Published electronically: April 22, 2024
- Additional Notes: The authors were supported by National Key R&D Program of China (Grant No. 2023Y-FA1008902) and NSFC (12201342).
The second author is the corresponding author. - © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 727-762
- MSC (2020): Primary 65M12, 65M15, 65T50
- DOI: https://doi.org/10.1090/mcom/3973