Uniform error estimate of an asymptotic preserving scheme for the Lévy-Fokker-Planck equation
HTML articles powered by AMS MathViewer
- by Weiran Sun and Li Wang;
- Math. Comp. 94 (2025), 681-725
- DOI: https://doi.org/10.1090/mcom/3975
- Published electronically: May 1, 2024
- HTML | PDF | Request permission
Abstract:
We establish a uniform-in-scaling error estimate for the asymptotic preserving (AP) scheme proposed by Xu and Wang [Commun. Math. Sci. 21 (2023), pp. 1–23] for the Lévy-Fokker-Planck (LFP) equation. The main difficulties stem not only from the interplay between the scaling and numerical parameters but also the slow decay of the tail of the equilibrium state. We tackle these problems by separating the parameter domain according to the relative size of the scaling parameter $\varepsilon$: in the regime where $\varepsilon$ is large, we design a weighted norm to mitigate the issue caused by the fat tail, while in the regime where $\varepsilon$ is small, we prove a strong convergence of LFP towards its fractional diffusion limit with an explicit convergence rate. This method extends the traditional AP estimates to cases where uniform bounds are unavailable. Our result applies to any dimension and to the whole span of the fractional power.References
- Naoufel Ben Abdallah, Antoine Mellet, and Marjolaine Puel, Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach, Kinet. Relat. Models 4 (2011), no. 4, 873–900. MR 2861578, DOI 10.3934/krm.2011.4.873
- Pedro Aceves-Sanchez and Ludovic Cesbron, Fractional diffusion limit for a fractional Vlasov-Fokker-Planck equation, SIAM J. Math. Anal. 51 (2019), no. 1, 469–488. MR 3916950, DOI 10.1137/17M1152073
- Marianne Bessemoulin-Chatard, Maxime Herda, and Thomas Rey, Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations, Math. Comp. 89 (2020), no. 323, 1093–1133. MR 4063313, DOI 10.1090/mcom/3490
- L. Cesbron, A. Mellet, and K. Trivisa, Anomalous transport of particles in plasma physics, Appl. Math. Lett. 25 (2012), no. 12, 2344–2348. MR 2967841, DOI 10.1016/j.aml.2012.06.029
- Nicolas Crouseilles, Hélène Hivert, and Mohammed Lemou, Numerical schemes for kinetic equations in the anomalous diffusion limit. Part I: The case of heavy-tailed equilibrium, SIAM J. Sci. Comput. 38 (2016), no. 2, A737–A764. MR 3470742, DOI 10.1137/15M1011366
- N. Crouseilles, H. Hivert, and M. Lemou, Numerical schemes for kinetic equations in the anomalous diffusion limit. Part II: Degenerate collision frequency, SIAM J. Sci. Comput., 38 (2016), A2464–A2491.
- Pierre Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 4, 519–542. MR 875086, DOI 10.24033/asens.1516
- Gustav Doetsch, Introduction to the theory and application of the Laplace transformation, Springer-Verlag, New York-Heidelberg, 1974. Translated from the second German edition by Walter Nader. MR 344810, DOI 10.1007/978-3-642-65690-3
- Francis Filbet and Amélie Rambaud, Analysis of an asymptotic preserving scheme for relaxation systems, ESAIM Math. Model. Numer. Anal. 47 (2013), no. 2, 609–633. MR 3021700, DOI 10.1051/m2an/2012042
- Francis Filbet, L. Miguel Rodrigues, and Hamed Zakerzadeh, Convergence analysis of asymptotic preserving schemes for strongly magnetized plasmas, Numer. Math. 149 (2021), no. 3, 549–593. MR 4344593, DOI 10.1007/s00211-021-01248-x
- Ivan Gentil and Cyril Imbert, The Lévy-Fokker-Planck equation: $\Phi$-entropies and convergence to equilibrium, Asymptot. Anal. 59 (2008), no. 3-4, 125–138. MR 2450356, DOI 10.3233/ASY-2008-0887
- François Golse, Shi Jin, and C. David Levermore, The convergence of numerical transfer schemes in diffusive regimes. I. Discrete-ordinate method, SIAM J. Numer. Anal. 36 (1999), no. 5, 1333–1369. MR 1706766, DOI 10.1137/S0036142997315986
- Laurent Gosse and Giuseppe Toscani, Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation, Numer. Math. 98 (2004), no. 2, 223–250. MR 2092741, DOI 10.1007/s00211-004-0533-x
- John Hawkes, A lower Lipschitz condition for the stable subordinator, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 23–32. MR 282413, DOI 10.1007/BF00538471
- Jingwei Hu and Ruiwen Shu, On the uniform accuracy of implicit-explicit backward differentiation formulas (IMEX-BDF) for stiff hyperbolic relaxation systems and kinetic equations, Math. Comp. 90 (2021), no. 328, 641–670. MR 4194158, DOI 10.1090/mcom/3602
- Juhi Jang, Fengyan Li, Jing-Mei Qiu, and Tao Xiong, Analysis of asymptotic preserving DG-IMEX schemes for linear kinetic transport equations in a diffusive scaling, SIAM J. Numer. Anal. 52 (2014), no. 4, 2048–2072. MR 3248034, DOI 10.1137/130938955
- Shi Jin, Asymptotic-preserving schemes for multiscale physical problems, Acta Numer. 31 (2022), 415–489. MR 4436589, DOI 10.1017/S0962492922000010
- Shi Jin, Min Tang, and Houde Han, A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface, Netw. Heterog. Media 4 (2009), no. 1, 35–65. MR 2480422, DOI 10.3934/nhm.2009.4.35
- A. Klar and A. Unterreiter, Uniform stability of a finite difference scheme for transport equations in diffusive regimes, SIAM J. Numer. Anal. 40 (2002), no. 3, 891–913. MR 1949397, DOI 10.1137/S0036142900375700
- Qin Li and Li Wang, Uniform regularity for linear kinetic equations with random input based on hypocoercivity, SIAM/ASA J. Uncertain. Quantif. 5 (2017), no. 1, 1193–1219. MR 3725287, DOI 10.1137/16M1106675
- J.-L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Die Grundlehren der mathematischen Wissenschaften, Band 111, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961 (French). MR 153974
- Jian-Guo Liu and Luc Mieussens, Analysis of an asymptotic preserving scheme for linear kinetic equations in the diffusion limit, SIAM J. Numer. Anal. 48 (2010), no. 4, 1474–1491. MR 2684343, DOI 10.1137/090772770
- Antoine Mellet, Stéphane Mischler, and Clément Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal. 199 (2011), no. 2, 493–525. MR 2763032, DOI 10.1007/s00205-010-0354-2
- Zhichao Peng, Yingda Cheng, Jing-Mei Qiu, and Fengyan Li, Stability-enhanced AP IMEX1-LDG method: energy-based stability and rigorous AP property, SIAM J. Numer. Anal. 59 (2021), no. 2, 925–954. MR 4238013, DOI 10.1137/20M1336503
- Vladimir V. Uchaikin and Vladimir M. Zolotarev, Chance and stability, Modern Probability and Statistics, VSP, Utrecht, 1999. Stable distributions and their applications; With a foreword by V. Yu. Korolev and Zolotarev. MR 1745764, DOI 10.1515/9783110935974
- Li Wang and Bokai Yan, An asymptotic-preserving scheme for linear kinetic equation with fractional diffusion limit, J. Comput. Phys. 312 (2016), 157–174. MR 3471173, DOI 10.1016/j.jcp.2016.02.034
- Li Wang and Bokai Yan, An asymptotic-preserving scheme for the kinetic equation with anisotropic scattering: heavy tail equilibrium and degenerate collision frequency, SIAM J. Sci. Comput. 41 (2019), no. 1, A422–A451. MR 3907931, DOI 10.1137/17M1138029
- Wuzhe Xu and Li Wang, An asymptotic preserving scheme for Lévy-Fokker-Planck equation with fractional diffusion limit, Commun. Math. Sci. 21 (2023), no. 1, 1–23. MR 4530015, DOI 10.4310/CMS.2023.v21.n1.a1
Bibliographic Information
- Weiran Sun
- Affiliation: Department of Mathematics, Simon Fraser University, Burnaby BC V5A 4X9, Canada
- MR Author ID: 904601
- ORCID: 0000-0002-3657-5848
- Email: weirans@sfu.edu
- Li Wang
- Affiliation: School of Mathematics, University of Minnesota, Twin cities, Minnesota 55455
- ORCID: 0000-0002-0593-8175
- Email: liwang@umn.edu
- Received by editor(s): August 26, 2022
- Received by editor(s) in revised form: January 20, 2024, and April 4, 2024
- Published electronically: May 1, 2024
- Additional Notes: The first author was partially supported by NSERC Discovery Grant R611626. The second author was partially supported by NSF CAREER grant DMS-1846854
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 681-725
- MSC (2020): Primary 65M12, 82C40, 35R11, 35B40; Secondary 35Q84
- DOI: https://doi.org/10.1090/mcom/3975