Polynomial preserving recovery for the finite volume element methods under simplex meshes
HTML articles powered by AMS MathViewer
- by Yonghai Li, Peng Yang and Zhimin Zhang;
- Math. Comp. 94 (2025), 611-645
- DOI: https://doi.org/10.1090/mcom/3980
- Published electronically: June 27, 2024
- HTML | PDF | Request permission
Abstract:
The recovered gradient, using the polynomial preserving recovery (PPR), is constructed for the finite volume element method (FVEM) under simplex meshes. Regarding the main results of this paper, there are two aspects. Firstly, we investigate the supercloseness property of the FVEM, specifically examining the quadratic FVEM under tetrahedral meshes. Secondly, we present several guidelines for selecting computing nodes such that the least-squares fitting procedure of the PPR admits a unique solution. Numerical experiments demonstrate that the recovered gradient by the PPR exhibits superconvergence.References
- Randolph E. Bank and Donald J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal. 24 (1987), no. 4, 777–787. MR 899703, DOI 10.1137/0724050
- Jan Brandts and Michal Křížek, Superconvergence of tetrahedral quadratic finite elements, J. Comput. Math. 23 (2005), no. 1, 27–36. MR 2124141
- Zhi Qiang Cai, On the finite volume element method, Numer. Math. 58 (1991), no. 7, 713–735. MR 1090257, DOI 10.1007/BF01385651
- Hongtao Chen, Xiaobing Feng, and Zhimin Zhang, A recovery-based linear $C^0$ finite element method for a fourth-order singularly perturbed Monge-Ampère equation, Adv. Comput. Math. 47 (2021), no. 2, Paper No. 21, 37. MR 4220020, DOI 10.1007/s10444-021-09847-w
- Zhongying Chen, Junfeng Wu, and Yuesheng Xu, Higher-order finite volume methods for elliptic boundary value problems, Adv. Comput. Math. 37 (2012), no. 2, 191–253. MR 2944051, DOI 10.1007/s10444-011-9201-8
- Zhongying Chen, Yuesheng Xu, and Yuanyuan Zhang, A construction of higher-order finite volume methods, Math. Comp. 84 (2015), no. 292, 599–628. MR 3290957, DOI 10.1090/S0025-5718-2014-02881-0
- Heng Chi, Lourenço Beirão da Veiga, and Glaucio H. Paulino, A simple and effective gradient recovery scheme and a posteriori error estimator for the virtual element method (VEM), Comput. Methods Appl. Mech. Engrg. 347 (2019), 21–58. MR 3895675, DOI 10.1016/j.cma.2018.08.014
- David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. An introduction to computational algebraic geometry and commutative algebra. MR 1417938
- Antonio Maria D’Altri, Stefano de Miranda, Luca Patruno, Edoardo Artioli, and Carlo Lovadina, Error estimation and mesh adaptivity for the virtual element method based on recovery by compatibility in patches, Internat. J. Numer. Methods Engrg. 121 (2020), no. 19, 4374–4405. MR 4161199, DOI 10.1002/nme.6438
- Andreas Dedner, Jan Giesselmann, Tristan Pryer, and Jennifer K. Ryan, Residual estimates for post-processors in elliptic problems, J. Sci. Comput. 88 (2021), no. 2, Paper No. 34, 28. MR 4277320, DOI 10.1007/s10915-021-01502-2
- D. Estep, S. Tavener, and T. Wildey, A posteriori analysis and improved accuracy for an operator decomposition solution of a conjugate heat transfer problem, SIAM J. Numer. Anal. 46 (2008), no. 4, 2068–2089. MR 2399408, DOI 10.1137/060678737
- Robert Eymard, Thierry Gallouët, and Raphaèle Herbin, Finite volume methods, Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020. MR 1804748, DOI 10.1016/S1570-8659(00)07005-8
- Diane Guignard, Fabio Nobile, and Marco Picasso, A posteriori error estimation for elliptic partial differential equations with small uncertainties, Numer. Methods Partial Differential Equations 32 (2016), no. 1, 175–212. MR 3434623, DOI 10.1002/num.21991
- Diane Guignard, Fabio Nobile, and Marco Picasso, A posteriori error estimation for the steady Navier-Stokes equations in random domains, Comput. Methods Appl. Mech. Engrg. 313 (2017), 483–511. MR 3577949, DOI 10.1016/j.cma.2016.10.008
- Hailong Guo, Surface Crouzeix-Raviart element for the Laplace-Beltrami equation, Numer. Math. 144 (2020), no. 3, 527–551. MR 4071824, DOI 10.1007/s00211-019-01099-7
- Hailong Guo, Zhimin Zhang, and Ren Zhao, Hessian recovery for finite element methods, Math. Comp. 86 (2017), no. 306, 1671–1692. MR 3626532, DOI 10.1090/mcom/3186
- W. Hackbusch, On first and second order box schemes, Computing 41 (1989), no. 4, 277–296 (English, with German summary). MR 993825, DOI 10.1007/BF02241218
- Weizhang Huang and Robert D. Russell, Adaptive moving mesh methods, Applied Mathematical Sciences, vol. 174, Springer, New York, 2011. MR 2722625, DOI 10.1007/978-1-4419-7916-2
- Yunqing Huang and Nianyu Yi, The superconvergent cluster recovery method, J. Sci. Comput. 44 (2010), no. 3, 301–322. MR 2671291, DOI 10.1007/s10915-010-9379-9
- S. N. Krivoshapko and V. N. Ivanov, The Second Order Surfaces, Springer, 2015, pp. 613–626.
- Ronghua Li, Zhongying Chen, and Wei Wu, Generalized difference methods for differential equations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 226, Marcel Dekker, Inc., New York, 2000. Numerical analysis of finite volume methods. MR 1731376
- Yung Hua Li and Pi Qi Zhu, Generalized difference methods for second-order elliptic partial differential equations. I. The case of a triangular mesh, Numer. Math. J. Chinese Univ. 4 (1982), no. 2, 140–152 (Chinese, with English summary). MR 670028
- Yanping Lin, Min Yang, and Qingsong Zou, $L^2$ error estimates for a class of any order finite volume schemes over quadrilateral meshes, SIAM J. Numer. Anal. 53 (2015), no. 4, 2009–2029. MR 3384836, DOI 10.1137/140963121
- Junliang Lv and Yonghai Li, Optimal biquadratic finite volume element methods on quadrilateral meshes, SIAM J. Numer. Anal. 50 (2012), no. 5, 2379–2399. MR 3022223, DOI 10.1137/100805881
- G. Maisano, S. Micheletti, S. Perotto, and C. L. Bottasso, On some new recovery-based a posteriori error estimators, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 37-40, 4794–4815. MR 2240581, DOI 10.1016/j.cma.2005.07.024
- Ahmed Naga and Zhimin Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal. 42 (2004), no. 4, 1780–1800. MR 2114301, DOI 10.1137/S0036142903413002
- A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methods in 2D and 3D, Discrete Contin. Dyn. Syst. Ser. B 5 (2005), no. 3, 769–798. MR 2151732, DOI 10.3934/dcdsb.2005.5.769
- Ahmed Naga, Zhimin Zhang, and Aihui Zhou, Enhancing eigenvalue approximation by gradient recovery, SIAM J. Sci. Comput. 28 (2006), no. 4, 1289–1300. MR 2255457, DOI 10.1137/050640588
- Enrique Ortega, Roberto Flores, Eugenio Oñate, and Sergio Idelsohn, A-posteriori error estimation for the finite point method with applications to compressible flow, Comput. Mech. 60 (2017), no. 2, 219–233. MR 3684494, DOI 10.1007/s00466-017-1402-7
- Jeffrey S. Ovall, Function, gradient, and Hessian recovery using quadratic edge-bump functions, SIAM J. Numer. Anal. 45 (2007), no. 3, 1064–1080. MR 2318802, DOI 10.1137/060648908
- Marco Picasso, Frédéric Alauzet, Houman Borouchaki, and Paul-Louis George, A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes, SIAM J. Sci. Comput. 33 (2011), no. 3, 1058–1076. MR 2800564, DOI 10.1137/100798715
- Arnold Reusken, A finite element level set redistancing method based on gradient recovery, SIAM J. Numer. Anal. 51 (2013), no. 5, 2723–2745. MR 3115462, DOI 10.1137/120895433
- Ming Zhong Tian and Zhong Ying Chen, A generalized difference method with quadratic elements for elliptic equations, Numer. Math. J. Chinese Univ. 13 (1991), no. 2, 99–113 (Chinese, with English summary). MR 1142295
- Xiang Wang and Yonghai Li, $L^2$ error estimates for high order finite volume methods on triangular meshes, SIAM J. Numer. Anal. 54 (2016), no. 5, 2729–2749. MR 3544655, DOI 10.1137/140988486
- Xiang Wang and Yonghai Li, Superconvergence of quadratic finite volume method on triangular meshes, J. Comput. Appl. Math. 348 (2019), 181–199. MR 3886669, DOI 10.1016/j.cam.2018.08.025
- Haijun Wu and Zhimin Zhang, Can we have superconvergent gradient recovery under adaptive meshes?, SIAM J. Numer. Anal. 45 (2007), no. 4, 1701–1722. MR 2338406, DOI 10.1137/060661430
- Jinchao Xu and Zhimin Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp. 73 (2004), no. 247, 1139–1152. MR 2047081, DOI 10.1090/S0025-5718-03-01600-4
- Jinchao Xu and Qingsong Zou, Analysis of linear and quadratic simplicial finite volume methods for elliptic equations, Numer. Math. 111 (2009), no. 3, 469–492. MR 2470148, DOI 10.1007/s00211-008-0189-z
- Min Yang, Jiangguo Liu, and Qingsong Zou, Unified analysis of higher-order finite volume methods for parabolic problems on quadrilateral meshes, IMA J. Numer. Anal. 36 (2016), no. 2, 872–896. MR 3483109, DOI 10.1093/imanum/drv029
- Peng Yang, Xiang Wang, and Yonghai Li, Construction and analysis of the quadratic finite volume methods on tetrahedral meshes, Sci. China Math. 66 (2023), no. 4, 855–886. MR 4577481, DOI 10.1007/s11425-021-1984-4
- Zhimin Zhang, Polynomial preserving recovery for anisotropic and irregular grids, J. Comput. Math. 22 (2004), no. 2, 331–340. Special issue dedicated to the 70th birthday of Professor Zhong-Ci Shi. MR 2058942
- Zhimin Zhang and Ahmed Naga, A new finite element gradient recovery method: superconvergence property, SIAM J. Sci. Comput. 26 (2005), no. 4, 1192–1213. MR 2143481, DOI 10.1137/S1064827503402837
- Zhimin Zhang and Qingsong Zou, Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems, Numer. Math. 130 (2015), no. 2, 363–393. MR 3343929, DOI 10.1007/s00211-014-0664-7
Bibliographic Information
- Yonghai Li
- Affiliation: School of Mathematics, Jilin University, Changchun 130012, People’s Republic of China
- MR Author ID: 363086
- Email: yonghai@jlu.edu.cn
- Peng Yang
- Affiliation: School of Mathematics, Jilin University, Changchun 130012, People’s Republic of China
- Email: yangpjlu@foxmail.com
- Zhimin Zhang
- Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- Email: ag7761@wayne.edu
- Received by editor(s): July 22, 2023
- Received by editor(s) in revised form: February 22, 2024, and March 30, 2024
- Published electronically: June 27, 2024
- Additional Notes: This work was supported in part by the National Science Foundation of China (NSFC) under grants 12071177 and 12131005
The third author is the corresponding author. - © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 611-645
- MSC (2020): Primary 65N08, 65N15
- DOI: https://doi.org/10.1090/mcom/3980