How to reconstruct a planar map from its branching curve
HTML articles powered by AMS MathViewer
- by Eriola Hoxhaj and Josef Schicho;
- Math. Comp. 94 (2025), 935-952
- DOI: https://doi.org/10.1090/mcom/3988
- Published electronically: July 24, 2024
- HTML | PDF | Request permission
Abstract:
We present an algorithm for constructing a map $\mathbb {P}^2\to \mathbb {P}^2$ with a given branching curve. The stepping stone is the ramification curve, which is obtained as the linear normalisation of the branching curve.References
- Michela Artebani and Igor Dolgachev, The Hesse pencil of plane cubic curves, Enseign. Math. (2) 55 (2009), no. 3-4, 235–273. MR 2583779, DOI 10.4171/LEM/55-3-3
- A. Bernardi, M. V. Catalisano, A. Gimigliano, and M. Idà, Osculating varieties of Veronese varieties and their higher secant varieties, Canad. J. Math. 59 (2007), no. 3, 488–502. MR 2319156, DOI 10.4153/CJM-2007-021-6
- Janko Böhm, Wolfram Decker, Santiago Laplagne, and Gerhard Pfister, Local to global algorithms for the Gorenstein adjoint ideal of a curve, Algorithmic and experimental methods in algebra, geometry, and number theory, Springer, Cham, 2017, pp. 51–96. MR 3792721
- F. Catanese, On a problem of Chisini, Duke Math. J. 53 (1986), no. 1, 33–42. MR 835794, DOI 10.1215/S0012-7094-86-05302-0
- Stefano Canino and Enrico Carlini, Complete intersections on Veronese surfaces, J. Algebra 622 (2023), 328–350. MR 4548990, DOI 10.1016/j.jalgebra.2023.01.025
- C. Ciliberto and F. Flamini, On the branch curve of a general projection of a surface to a plane, Trans. Amer. Math. Soc. 363 (2011), no. 7, 3457–3471. MR 2775814, DOI 10.1090/S0002-9947-2011-05401-2
- Oscar Chisini, Sulla identita birazionale delle funzioni algebriche di due variabili dotate di una medesima curva di diramazione, Ist. Lombardo Sci. Lett. Cl. Sci. Mat. Nat. Rend. (3) 8(77) (1944), 339–356 (Italian). MR 19351
- Willem A. de Graaf, Michael Harrison, Jana Pílniková, and Josef Schicho, A Lie algebra method for rational parametrization of Severi-Brauer surfaces, J. Algebra 303 (2006), no. 2, 514–529. MR 2255120, DOI 10.1016/j.jalgebra.2005.06.022
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417, DOI 10.1007/978-0-8176-4771-1
- Vik. S. Kulikov, On Chisini’s conjecture. II, Izv. Ross. Akad. Nauk Ser. Mat. 72 (2008), no. 5, 63–76 (Russian, with Russian summary); English transl., Izv. Math. 72 (2008), no. 5, 901–913. MR 2473772, DOI 10.1070/IM2008v072n05ABEH002423
- Mario Pucci, The Veronese variety and catalecticant matrices, J. Algebra 202 (1998), no. 1, 72–95. MR 1614174, DOI 10.1006/jabr.1997.7190
- Hans-Christian Graf v. Bothmer, Scrollar syzygies of general canonical curves with genus $\leq 8$, Trans. Amer. Math. Soc. 359 (2007), no. 2, 465–488. MR 2255182, DOI 10.1090/S0002-9947-06-04353-4
Bibliographic Information
- Eriola Hoxhaj
- Affiliation: Research Institute for Symbolic Computation (RISC), Johannes Kepler University of Linz, Altenberger Strasse 69, A-4040 Linz, Austria
- Josef Schicho
- Affiliation: Research Institute for Symbolic Computation (RISC), Johannes Kepler University of Linz, Altenberger Strasse 69, A-4040 Linz, Austria
- MR Author ID: 332588
- ORCID: 0000-0002-5556-4001
- Received by editor(s): July 19, 2023
- Received by editor(s) in revised form: March 13, 2024
- Published electronically: July 24, 2024
- Additional Notes: This work was part of GRAPES project that had received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 860843.
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 935-952
- MSC (2020): Primary 14-XX, 14Exx, 14E05
- DOI: https://doi.org/10.1090/mcom/3988