The best ways to slice a Polytope
HTML articles powered by AMS MathViewer
- by Marie-Charlotte Brandenburg, Jesús A. De Loera and Chiara Meroni;
- Math. Comp. 94 (2025), 1003-1042
- DOI: https://doi.org/10.1090/mcom/4006
- Published electronically: August 7, 2024
- HTML | PDF | Request permission
Abstract:
We study the structure of the set of all possible affine hyperplane sections of a convex polytope. We present two different cell decompositions of this set, induced by hyperplane arrangements. Using our decomposition, we bound the number of possible combinatorial types of sections and craft algorithms that compute optimal sections of the polytope according to various combinatorial and metric criteria, including sections that maximize the number of $k$-dimensional faces, maximize the volume, and maximize the integral of a polynomial. Our optimization algorithms run in polynomial time in fixed dimension, but the same problems show computational complexity hardness otherwise. Our tools can be extended to intersection with halfspaces and projections onto hyperplanes. Finally, we present several experiments illustrating our theorems and algorithms on famous polytopes.References
- N. Amenta and G. M. Ziegler, Shadows and Slices of Polytopes, Proceedings of the Twelfth Annual Symposium on Computational Geometry (New York, NY, USA), SCG ’96, Association for Computing Machinery, 1996, pp. 10–19.
- Federico Ardila, Anna Schindler, and Andrés R. Vindas-Meléndez, The equivariant volumes of the permutahedron, Discrete Comput. Geom. 65 (2021), no. 3, 618–635. MR 4226485, DOI 10.1007/s00454-019-00146-2
- Velleda Baldoni, Nicole Berline, Jesus A. De Loera, Matthias Köppe, and Michele Vergne, How to integrate a polynomial over a simplex, Math. Comp. 80 (2011), no. 273, 297–325. MR 2728981, DOI 10.1090/S0025-5718-2010-02378-6
- Keith Ball, Cube slicing in $\textbf {R}^n$, Proc. Amer. Math. Soc. 97 (1986), no. 3, 465–473. MR 840631, DOI 10.1090/S0002-9939-1986-0840631-0
- Keith Ball, Volumes of sections of cubes and related problems, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 251–260. MR 1008726, DOI 10.1007/BFb0090058
- Imre Bárány and Péter Frankl, How (not) to cut your cheese, Amer. Math. Monthly 128 (2021), no. 6, 543–552. MR 4265480, DOI 10.1080/00029890.2021.1901463
- Alexander Barvinok, A course in convexity, Graduate Studies in Mathematics, vol. 54, American Mathematical Society, Providence, RI, 2002. MR 1940576, DOI 10.1090/gsm/054
- Alexander Barvinok and James E. Pommersheim, An algorithmic theory of lattice points in polyhedra, New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97) Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 91–147. MR 1731815
- Saugata Basu, Richard Pollack, and Marie-Françoise Roy, Algorithms in real algebraic geometry, 2nd ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2006. MR 2248869
- Katalin Berlow, Marie-Charlotte Brandenburg, Chiara Meroni, and Isabelle Shankar, Intersection bodies of polytopes, Beitr. Algebra Geom. 63 (2022), no. 2, 419–439. MR 4429334, DOI 10.1007/s13366-022-00621-7
- L. J. Billera, M. M. Kapranov, and B. Sturmfels, Cellular strings on polytopes, Proc. Amer. Math. Soc. 122 (1994), no. 2, 549–555. MR 1205482, DOI 10.1090/S0002-9939-1994-1205482-0
- Louis J. Billera and Bernd Sturmfels, Fiber polytopes, Ann. of Math. (2) 135 (1992), no. 3, 527–549. MR 1166643, DOI 10.2307/2946575
- M.-C. Brandenburg, J. A. De Loera, and C. Meroni, MATHREPO. Mathematical data and software, 2023, https://mathrepo.mis.mpg.de/BestSlicePolytopes/
- M.-C. Brandenburg and C. Meroni, Intersection bodies of polytopes: Translations and convexity, J. Algebr. Comb., 60 (2024), 127–143, DOI:10.1007/s10801-024-01328-9
- Graham Brightwell and Peter Winkler, Counting linear extensions, Order 8 (1991), no. 3, 225–242. MR 1154926, DOI 10.1007/BF00383444
- G. D. Chakerian and P. Filliman, The measures of the projections of a cube, Studia Sci. Math. Hungar. 21 (1986), no. 1-2, 103–110. MR 898848
- Don Chakerian and Dave Logothetti, Cube slices, pictorial triangles, and probability, Math. Mag. 64 (1991), no. 4, 219–241. MR 1131009, DOI 10.2307/2690829
- Jesús A. De Loera, Jörg Rambau, and Francisco Santos, Triangulations, Algorithms and Computation in Mathematics, vol. 25, Springer-Verlag, Berlin, 2010. Structures for algorithms and applications. MR 2743368, DOI 10.1007/978-3-642-12971-1
- M. E. Dyer and A. M. Frieze, On the complexity of computing the volume of a polyhedron, SIAM J. Comput. 17 (1988), no. 5, 967–974. MR 961051, DOI 10.1137/0217060
- Martin Dyer, Peter Gritzmann, and Alexander Hufnagel, On the complexity of computing mixed volumes, SIAM J. Comput. 27 (1998), no. 2, 356–400. MR 1616544, DOI 10.1137/S0097539794278384
- P. Filliman, The volume of duals and sections of polytopes, Mathematika 39 (1992), no. 1, 67–80. MR 1176472, DOI 10.1112/S0025579300006860
- Ansgar Freyer and Martin Henk, Bounds on the lattice point enumerator via slices and projections, Discrete Comput. Geom. 67 (2022), no. 3, 895–918. MR 4393084, DOI 10.1007/s00454-021-00310-7
- Hiroshi Fukuda, Nobuaki Muto, Kikuko Goto, and Gisaku Nakamura, Sections of hyper-cube in five dimensions, Forma 12 (1997), no. 1, 15–33. MR 1473339
- Komei Fukuda, Shigemasa Saito, Akihisa Tamura, and Takeshi Tokuyama, Bounding the number of $k$-faces in arrangements of hyperplanes, Discrete Appl. Math. 31 (1991), no. 2, 151–165. First Canadian Conference on Computational Geometry (Montreal, PQ, 1989). MR 1106697, DOI 10.1016/0166-218X(91)90067-7
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- Michael R. Garey and David S. Johnson, Computers and intractability, A Series of Books in the Mathematical Sciences, W. H. Freeman and Co., San Francisco, CA, 1979. A guide to the theory of NP-completeness. MR 519066
- Apostolos Giannopoulos, Alexander Koldobsky, and Artem Zvavitch, Inequalities for sections and projections of convex bodies, Harmonic analysis and convexity, Adv. Anal. Geom., vol. 9, De Gruyter, Berlin, [2023] ©2023, pp. 223–256. MR 4654480
- Nick Gravin, Jean Lasserre, Dmitrii V. Pasechnik, and Sinai Robins, The inverse moment problem for convex polytopes, Discrete Comput. Geom. 48 (2012), no. 3, 596–621. MR 2957634, DOI 10.1007/s00454-012-9426-4
- Peter Gritzmann and Victor Klee, On the complexity of some basic problems in computational convexity. I. Containment problems, Discrete Math. 136 (1994), no. 1-3, 129–174. Trends in discrete mathematics. MR 1313285, DOI 10.1016/0012-365X(94)00111-U
- Peter Gritzmann and Victor Klee, On the complexity of some basic problems in computational convexity. II. Volume and mixed volumes, Polytopes: abstract, convex and computational (Scarborough, ON, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 440, Kluwer Acad. Publ., Dordrecht, 1994, pp. 373–466. MR 1322071
- Peter Gritzmann and Victor Klee, Computational convexity, Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl., CRC, Boca Raton, FL, 1997, pp. 491–515. MR 1730183
- Branko Grünbaum, Convex polytopes, Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. MR 226496
- D. S. Johnson and F. P. Preparata, The densest hemisphere problem, Theoret. Comput. Sci. 6 (1978), no. 1, 93–107. MR 464674, DOI 10.1016/0304-3975(78)90006-3
- Leonid Khachiyan, Complexity of polytope volume computation, New trends in discrete and computational geometry, Algorithms Combin., vol. 10, Springer, Berlin, 1993, pp. 91–101. MR 1228040, DOI 10.1007/978-3-642-58043-7_{5}
- Askold Khovanskii, Combinatorics of sections of polytopes and Coxeter groups in Lobachevsky spaces, The Coxeter legacy, Amer. Math. Soc., Providence, RI, 2006, pp. 129–157. MR 2209026
- Bo’az Klartag, Logarithmic bounds for isoperimetry and slices of convex sets, Ars Inven. Anal. (2023), Paper No. 4, 17. MR 4603941
- Bo’az Klartag and Joseph Lehec, Bourgain’s slicing problem and KLS isoperimetry up to polylog, Geom. Funct. Anal. 32 (2022), no. 5, 1134–1159. MR 4498841, DOI 10.1007/s00039-022-00612-9
- B. Klartag and V. Milman, The Slicing Problem by Bourgain, Analysis at Large: Dedicated to the Life and Work of Jean Bourgain (Artur Avila, Michael Th. Rassias, and Yakov Sinai, eds.), Springer International Publishing, Cham, 2022, pp. 203–231.
- Alexander Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, vol. 116, American Mathematical Society, Providence, RI, 2005. MR 2132704, DOI 10.1090/surv/116
- Hermann König, Non-central sections of the simplex, the cross-polytope and the cube, Adv. Math. 376 (2021), Paper No. 107458, 35. MR 4178930, DOI 10.1016/j.aim.2020.107458
- Astrid Kousholt and Julia Schulte, Reconstruction of convex bodies from moments, Discrete Comput. Geom. 65 (2021), no. 1, 1–42. MR 4194435, DOI 10.1007/s00454-020-00225-9
- Jean B. Lasserre, Simple formula for integration of polynomials on a simplex, BIT 61 (2021), no. 2, 523–533. MR 4258026, DOI 10.1007/s10543-020-00828-x
- Jean B. Lasserre and Konstantin E. Avrachenkov, The multi-dimensional version of $\int ^b_a x^p dx$, Amer. Math. Monthly 108 (2001), no. 2, 151–154. MR 1818188, DOI 10.2307/2695528
- Jim Lawrence, Cutting the $d$-cube, J. Res. Nat. Bur. Standards 84 (1979), no. 1, 51–53 (1978). MR 527768, DOI 10.6028/jres.084.004
- Jim Lawrence, Polytope volume computation, Math. Comp. 57 (1991), no. 195, 259–271. MR 1079024, DOI 10.1090/S0025-5718-1991-1079024-2
- Ruoyuan Liu and Tomasz Tkocz, A note on the extremal non-central sections of the cross-polytope, Adv. in Appl. Math. 118 (2020), 102031, 17. MR 4081431, DOI 10.1016/j.aam.2020.102031
- Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232–261. MR 963487, DOI 10.1016/0001-8708(88)90077-1
- Mathieu Meyer and Alain Pajor, Sections of the unit ball of $L^n_p$, J. Funct. Anal. 80 (1988), no. 1, 109–123. MR 960226, DOI 10.1016/0022-1236(88)90068-7
- James Moody, Corey Stone, David Zach, and Artem Zvavitch, A remark on the extremal non-central sections of the unit cube, Asymptotic geometric analysis, Fields Inst. Commun., vol. 68, Springer, New York, 2013, pp. 211–228. MR 3076152, DOI 10.1007/978-1-4614-6406-8_{9}
- Piotr Nayar and Tomasz Tkocz, Extremal sections and projections of certain convex bodies: a survey, Harmonic analysis and convexity, Adv. Anal. Geom., vol. 9, De Gruyter, Berlin, [2023] ©2023, pp. 343–390. MR 4654482
- Arnau Padrol and Julian Pfeifle, Polygons as sections of higher-dimensional polytopes, Electron. J. Combin. 22 (2015), no. 1, Paper 1.24, 16. MR 3315466, DOI 10.37236/4315
- Arnau Padrol and Eva Philippe, Sweeps, polytopes, oriented matroids, and allowable graphs of permutations, Combinatorica 44 (2024), no. 1, 63–123. MR 4707565, DOI 10.1007/s00493-023-00062-3
- Lionel Pournin, Shallow sections of the hypercube, Israel J. Math. 255 (2023), no. 2, 685–704. MR 4619551, DOI 10.1007/s11856-022-2400-9
- The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 9.2), 2021, https://www.sagemath.org
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Alexander Schrijver, Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publication. MR 874114
- Richard P. Stanley, An introduction to hyperplane arrangements, Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 389–496. MR 2383131, DOI 10.1090/pcms/013/08
- Jeffrey D. Vaaler, A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979), no. 2, 543–553. MR 557952
- D. W. Walkup, A simplex with a large cross section, Amer. Math. Monthly 75 (1968), 34–36. MR 226506, DOI 10.2307/2315102
- Simon Webb, Central slices of the regular simplex, Geom. Dedicata 61 (1996), no. 1, 19–28. MR 1389634, DOI 10.1007/BF00149416
- Wolfram Research, Inc., Mathematica (Version 13.2), 2022, Champaign, IL.
- Thomas Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975), no. issue 1, 154, vii+102. MR 357135, DOI 10.1090/memo/0154
- Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR 1311028, DOI 10.1007/978-1-4613-8431-1
Bibliographic Information
- Marie-Charlotte Brandenburg
- Affiliation: KTH Royal Institute of Technology, Department of Mathematics, Lindstedtsvägen 25, 114 28 Stockholm, Sweden
- MR Author ID: 1502638
- ORCID: 0000-0002-5721-2325
- Email: brandenburg@kth.se
- Jesús A. De Loera
- Affiliation: Department of Mathematics, University of California, One Shields Avenue, Davis, California, 95616, United States
- MR Author ID: 364032
- ORCID: 0000-0002-9556-1112
- Email: deloera@math.ucdavis.edu
- Chiara Meroni
- Affiliation: ETH Institute for Theoretical Studies, Clausiusstrasse 47, 8092 Zürich, Switzerland
- MR Author ID: 1471588
- ORCID: 0000-0002-3992-4345
- Email: chiara.meroni@eth-its.ethz.ch
- Received by editor(s): October 4, 2023
- Received by editor(s) in revised form: April 4, 2024
- Published electronically: August 7, 2024
- Additional Notes: The first author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - SPP 2298. The second author was supported by NSF grant DMS-2348578. The third author was supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich Foundation.
Dedicated to Günter M. Ziegler on the occasion of his $60^{\text {th}}$ birthday. - © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 1003-1042
- MSC (2020): Primary 52B55, 52C35, 52A38, 52A40, 52B11, 90C27, 52C45, 14P10
- DOI: https://doi.org/10.1090/mcom/4006