Toward optimal exponent pairs
HTML articles powered by AMS MathViewer
- by Timothy S. Trudgian and Andrew Yang;
- Math. Comp. 94 (2025), 1467-1502
- DOI: https://doi.org/10.1090/mcom/3993
- Published electronically: July 10, 2024
- HTML | PDF | Request permission
Abstract:
We quantify the set of known exponent pairs $(k, \ell )$ and develop a framework to compute the optimal exponent pair for an arbitrary objective function. Applying this methodology, we make progress on several open problems, including bounds of the Riemann zeta-function $\zeta (s)$ in the critical strip, estimates of the moments of $\zeta (1/2 + it)$ and the generalised Dirichlet divisor problem.References
- C. Bellotti and A. Yang, On the generalised Dirichlet divisor problem, Bull. Lond. Math. Soc. 56 (2024), no. 5, 1859â1878.
- E. Bombieri and H. Iwaniec, On the order of $\zeta ({1\over 2}+it)$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 3, 449â472. MR 881101
- E. Bombieri and H. Iwaniec, Some mean-value theorems for exponential sums, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 3, 473â486. MR 881102
- J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc. 30 (2017), no. 1, 205â224. MR 3556291, DOI 10.1090/jams/860
- J. Bourgain, Remarks on Halasz-Montgomery type inequalities, Geometric aspects of functional analysis (Israel, 1992â1994) Oper. Theory Adv. Appl., vol. 77, BirkhĂ€user, Basel, 1995, pp. 25â39. MR 1353447
- Jean Bourgain, On large values estimates for Dirichlet polynomials and the density hypothesis for the Riemann zeta function, Internat. Math. Res. Notices 3 (2000), 133â146. MR 1741611, DOI 10.1155/S107379280000009X
- Jean Bourgain, Ciprian Demeter, and Larry Guth, Proof of the main conjecture in Vinogradovâs mean value theorem for degrees higher than three, Ann. of Math. (2) 184 (2016), no. 2, 633â682. MR 3548534, DOI 10.4007/annals.2016.184.2.7
- Julien Cassaigne, Sary Drappeau, and Olivier RamarĂ©, Notes on the domain of exponent pairs, Math. Newsl. 33 (2023), no. 3-4, 7â16. MR 4623667
- B. Chen, G. Debruyne, and J. Vindas, On the density hypothesis for L functions associated with holomorphic cusp forms, Revista MatemĂĄtica Iberoamericana (Apr. 2024), arXiv:2310.14797
- J. B. Conrey, At least two-fifths of the zeros of the Riemann zeta function are on the critical line, Bull. Amer. Math. Soc. (N.S.) 20 (1989), no. 1, 79â81. MR 959210, DOI 10.1090/S0273-0979-1989-15704-2
- Ciprian Demeter, Larry Guth, and Hong Wang, Small cap decouplings, Geom. Funct. Anal. 30 (2020), no. 4, 989â1062. With an appendix by D. R. Heath-Brown. MR 4153908, DOI 10.1007/s00039-020-00541-5
- Johann Duttlinger and Wolfgang Schwarz, Ăber die Verteilung der pythagorĂ€ischen Dreiecke, Colloq. Math. 43 (1980), no. 2, 365â372 (1981) (German). MR 628191, DOI 10.4064/cm-43-2-365-372
- S. W. Graham, An algorithm for computing optimal exponent pairs, J. London Math. Soc. (2) 33 (1986), no. 2, 203â218. MR 838631, DOI 10.1112/jlms/s2-33.2.203
- S. W. Graham and G. Kolesnik, van der Corputâs method of exponential sums, London Mathematical Society Lecture Note Series, vol. 126, Cambridge University Press, Cambridge, 1991. MR 1145488, DOI 10.1017/CBO9780511661976
- L. Guth and J. Maynard, New large value estimates for Dirichlet polynomials, 2024, preprint, arXiv:2405.20552
- W. Haneke, VerschĂ€rfung der AbschĂ€tzung von $\zeta (1/2+it)$, Acta Arith. 8 (1962/63), 357â430 (German). MR 157951, DOI 10.4064/aa-8-4-357-430
- G. H. Hardy, On Dirichletâs Divisor Problem, Proc. London Math. Soc. (2) 15 (1916), 1â25. MR 1576550, DOI 10.1112/plms/s2-15.1.1
- G. H. Hardy and J. E. Littlewood, Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes, Acta Math. 41 (1916), no. 1, 119â196. MR 1555148, DOI 10.1007/BF02422942
- G. H. Hardy and J. E. Littlewood, The Approximate Functional Equation in the Theory of the Zeta-Function, with Applications to the Divisor-Problems of Dirichlet and Piltz, Proc. London Math. Soc. (2) 21 (1923), 39â74. MR 1575368, DOI 10.1112/plms/s2-21.1.39
- G. H. Hardy and J. E. Littlewood, The zeros of Riemannâs zeta-function on the critical line, Math. Z. 10 (1921), no. 3-4, 283â317. MR 1544477, DOI 10.1007/BF01211614
- D. R. Heath-Brown, The fourth power moment of the Riemann zeta function, Proc. London Math. Soc. (3) 38 (1979), no. 3, 385â422. MR 532980, DOI 10.1112/plms/s3-38.3.385
- D. R. Heath-Brown, Zero density estimates for the Riemann zeta-function and Dirichlet $L$-functions, J. London Math. Soc. (2) 19 (1979), no. 2, 221â232. MR 533320, DOI 10.1112/jlms/s2-19.2.221
- D. R. Heath-Brown, Mean Values of the Zeta-Function and Divisor Problems, Recent Progress in Analytic Number Theory (Durham 1979), vol. 1, Academic, London, 1981, pp. 115â119.
- D. R. Heath-Brown, A new $k$th derivative estimate for exponential sums via Vinogradovâs mean value, Proceedings of the Steklov Institute of Mathematics 296 (2017), no. 1, 88â103.
- M. N. Huxley, Exponential sums and the Riemann zeta function. IV, Proc. London Math. Soc. (3) 66 (1993), no. 1, 1â40. MR 1189090, DOI 10.1112/plms/s3-66.1.1
- M. N. Huxley, Area, lattice points, and exponential sums, London Mathematical Society Monographs. New Series, vol. 13, The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications. MR 1420620, DOI 10.1093/oso/9780198534662.001.0001
- M. N. Huxley, Exponential sums and the Riemann zeta function. V, Proc. London Math. Soc. (3) 90 (2005), no. 1, 1â41. MR 2107036, DOI 10.1112/S0024611504014959
- M. N. Huxley and G. Kolesnik, Exponential sums and the Riemann zeta function. III, Proc. London Math. Soc. (3) 62 (1991), no. 3, 449â468. MR 1095228, DOI 10.1112/plms/s3-62.3.449
- M. N. Huxley and N. Watt, Exponential sums and the Riemann zeta function, Proc. London Math. Soc. (3) 57 (1988), no. 1, 1â24. MR 940429, DOI 10.1112/plms/s3-57.1.1
- M. N. Huxley and N. Watt, The Hardy-Littlewood method for exponential sums, Number theory, Vol. I (Budapest, 1987) Colloq. Math. Soc. JĂĄnos Bolyai, vol. 51, North-Holland, Amsterdam, 1990, pp. 173â191. MR 1058215
- Martin Huxley and Grigori Kolesnik, Exponential sums with a large second derivative, Number theory (Turku, 1999) de Gruyter, Berlin, 2001, pp. 131â143. MR 1822005
- A. E. Ingham, Mean-Value Theorems in the Theory of the Riemann Zeta-Function, Proc. London Math. Soc. (2) 27 (1927), no. 4, 273â300. MR 1575391, DOI 10.1112/plms/s2-27.1.273
- A. E. Ingham, On the estimation of $N(\sigma ,T)$, Quart. J. Math. Oxford Ser. 11 (1940), 291â292. MR 3649
- Aleksandar IviÄ, Exponent pairs and the zeta function of Riemann, Studia Sci. Math. Hungar. 15 (1980), no. 1-3, 157â181. MR 681438
- Aleksandar IviÄ, The Riemann zeta-function, Dover Publications, Inc., Mineola, NY, 2003. Theory and applications; Reprint of the 1985 original [Wiley, New York; MR0792089 (87d:11062)]. MR 1994094
- A. IviÄ, A mean value result involving the fourth moment of $|\zeta (\frac 12+it)|$, Ann. Univ. Sci. Budapest. Sect. Comput. 23 (2004), 47â58. MR 2089177
- Aleksandar IviÄ, On the Riemann zeta-function and the divisor problem. II, Cent. Eur. J. Math. 3 (2005), no. 2, 203â214. MR 2129919, DOI 10.2478/BF02479196
- Aleksandar IviÄ and Michel Ouellet, Some new estimates in the Dirichlet divisor problem, Acta Arith. 52 (1989), no. 3, 241â253. MR 1031337, DOI 10.4064/aa-52-3-241-253
- A. IviÄ and Wenguang Zhai, A mean value result for the fourth moment of $|\zeta (\frac {1}{2}+it)|$ II, Ann. Univ. Sci. Budapest. Sect. Comput. 38 (2012), 233â244. MR 3046517
- A. A. Karacuba, Uniform approximation of the remainder term in the Dirichlet divisor problem, Mathematics of the USSR-Izvestiya 6 (1972), no. 3, 467â475.
- B. Kerr, Large values of Dirichlet polynomials and zero density estimates for the Riemann zeta function, (2019), Preprint available at arXiv:1909.12075.
- G. Kolesnik, On the estimation of multiple exponential sums, Recent progress in analytic number theory, Vol. 1 (Durham, 1979) Academic Press, London-New York, 1981, pp. 231â246. MR 637349
- G. Kolesnik, On the order of $\zeta ({1\over 2}+it)$ and $\Delta (R)$, Pacific J. Math. 98 (1982), no. 1, 107â122. MR 644943
- J. Lambek and L. Moser, On the distribution of Pythagorean triangles, Pacific J. Math. 5 (1955), 73â83. MR 67911, DOI 10.2140/pjm.1955.5.73
- A. V. Lelechenko, Linear programming over exponent pairs, Acta Univ. Sapientiae Inform. 5 (2014), no. 2, 271â287.
- H.-Q. Liu, On the distribution of squarefree numbers, J. Number Theory 159 (2016), 202â222. MR 3412720, DOI 10.1016/j.jnt.2015.07.013
- Hartmut Menzer, On the number of primitive Pythagorean triangles, Math. Nachr. 128 (1986), 129â133. MR 855949, DOI 10.1002/mana.19861280111
- A. Meurer, C. P. Smith, M. Paprocki, O. ÄertĂk, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, S. RouÄka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, Sympy: symbolic computing in python, PeerJ Comput. Sci. 3 (2017), e103.
- Szu-Hoa Min, On the order of $\zeta (1/2+it)$, Trans. Amer. Math. Soc. 65 (1949), 448â472. MR 30996, DOI 10.1090/S0002-9947-1949-0030996-6
- Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 337847, DOI 10.1007/BFb0060851
- Y.-F. S. PĂ©termann, Divisor problems and exponent pairs, Arch. Math. (Basel) 50 (1988), no. 3, 243â250. MR 933919, DOI 10.1007/BF01187741
- E. Phillips, The zeta-function of Riemann; further developments of van der Corputâs method, Q. J. Math. os-4 (1933), no. 1, 209â225.
- JĂĄnos Pintz, Density theorems for Riemannâs zeta-function near the line $\textrm {Re}\,s = 1$, Acta Arith. 208 (2023), no. 1, 1â13. MR 4616869, DOI 10.4064/aa210824-10-5
- I. I. PyateckiÄ-Ć apiro, On the distribution of prime numbers in sequences of the form $[f(n)]$, Mat. Sbornik N.S. 33(75) (1953), 559â566 (Russian). MR 59302
- R. A. Rankin, Van der Corputâs method and the theory of exponent pairs, Quart. J. Math. Oxford Ser. (2) 6 (1955), 147â153. MR 72170, DOI 10.1093/qmath/6.1.147
- Hans-Egon Richert, EinfĂŒhrung in die Theorie der starken Rieszschen Summierbarkeit von Dirichletreihen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1960 (1960), 17â75 (German). MR 130497
- J. Rivat and J. Wu, Prime numbers of the form $[n^c]$, Glasg. Math. J. 43 (2001), no. 2, 237â254. MR 1838628, DOI 10.1017/S0017089501020080
- O. Robert, An analogue of van der Corputâs $A^5$-process for exponential sums, Mathematika 49 (2002), no. 1-2, 167â183 (2004). MR 2059052, DOI 10.1112/S0025579300016156
- O. Robert and P. Sargos, A fourth derivative test for exponential sums, Compositio Math. 130 (2002), no. 3, 275â292. MR 1887116, DOI 10.1023/A:1014363224308
- O. Robert, Applications des systĂšmes diophantiens aux sommes dâexponentielles, Theses, UniversitĂ© Henri PoincarĂ©, Nancy 1, June 2001, Texte intĂ©gral accessible uniquement aux membres de lâUniversitĂ© de Lorraine.
- Olivier Robert, Quelques paires dâexposants par la mĂ©thode de Vinogradov, J. ThĂ©or. Nombres Bordeaux 14 (2002), no. 1, 271â285 (French, with English and French summaries). MR 1926003, DOI 10.5802/jtnb.359
- Olivier Robert, On the fourth derivative test for exponential sums, Forum Math. 28 (2016), no. 2, 403â404. MR 3466577, DOI 10.1515/forum-2014-0216
- Patrick Sargos, Points entiers au voisinage dâune courbe, sommes trigonomĂ©triques courtes et paires dâexposants, Proc. London Math. Soc. (3) 70 (1995), no. 2, 285â312 (French, with French summary). MR 1309231, DOI 10.1112/plms/s3-70.2.285
- Patrick Sargos, An analog of van der Corputâs $A^4$-process for exponential sums, Acta Arith. 110 (2003), no. 3, 219â231. MR 2008008, DOI 10.4064/aa110-3-2
- B. R. Srinivasan, The lattice point problem of many-dimensional hyperboloids. I, Acta Arith. 8 (1962/63), 153â172. MR 153640, DOI 10.4064/aa-8-2-153-172
- B. R. Srinivasan, The lattice point problem of many-dimensional hyperboloids. II, Acta Arith. 8 (1962/63), 173â204. MR 153641, DOI 10.4064/aa-8-2-173-204
- B. R. Srinivasan, The lattice point problem of many dimensional hyperboloids. III, Math. Ann. 160 (1965), 280â311. MR 181614, DOI 10.1007/BF01371611
- G. Szegö and A. Walfisz, Ăber das Piltzsche Teilerproblem in algebraischen Zahlkörpern, Math. Z. 26 (1927), no. 1, 138â156 (German). MR 1544849, DOI 10.1007/BF01475448
- G. Szegö and A. Walfisz, Ăber das Piltzsche Teilerproblem in algebraischen Zahlkörpern, Math. Z. 26 (1927), no. 1, 467â486 (German). MR 1544868, DOI 10.1007/BF01475467
- E. C. Titchmarsh, On van der Corputâs method and the zeta-function of Riemann (II), The Quarterly Journal of Mathematics os-2 (1931), no. 1, 313â320.
- E. C. Titchmarsh, On the order of $\zeta (\frac 12+it)$, Quart. J. Math. Oxford Ser. 13 (1942), 11â17. MR 7402, DOI 10.1093/qmath/os-13.1.11
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- J. G. van der Corput, Zahlentheoretische AbschĂ€tzungen, Math. Ann. 84 (1921), no. 1-2, 53â79 (German). MR 1512020, DOI 10.1007/BF01458693
- Georges Voronoi, Sur un problĂšme du calcul des fonctions asymptotiques, J. Reine Angew. Math. 126 (1903), 241â282 (French). MR 1580627, DOI 10.1515/crll.1903.126.241
- N. Watt, Exponential sums and the Riemann zeta-function. II, J. London Math. Soc. (2) 39 (1989), no. 3, 385â404. MR 1002452, DOI 10.1112/jlms/s2-39.3.385
- Roy E. Wild, On the number of primitive Pythagorean triangles with area less than $n$, Pacific J. Math. 5 (1955), 85â91. MR 67912, DOI 10.2140/pjm.1955.5.85
- Trevor D. Wooley, The cubic case of the main conjecture in Vinogradovâs mean value theorem, Adv. Math. 294 (2016), 532â561. MR 3479572, DOI 10.1016/j.aim.2016.02.033
- Jie Wu, Almost primes in short intervals, Sci. China Math. 53 (2010), no. 9, 2511â2524. MR 2718844, DOI 10.1007/s11425-010-4039-y
Bibliographic Information
- Timothy S. Trudgian
- Affiliation: School of Science, University of New South Wales (Canberra), Northcott Drive, Campbell, ACT 2600, Australia
- MR Author ID: 909247
- Email: timothy.trudgian@unsw.edu.au
- Andrew Yang
- Affiliation: School of Science, University of New South Wales (Canberra), Northcott Drive, Campbell, ACT 2600, Australia
- MR Author ID: 1564023
- ORCID: 0000-0002-7023-9880
- Email: andrew.yang1@unsw.edu.au
- Received by editor(s): June 21, 2023
- Received by editor(s) in revised form: May 5, 2024
- Published electronically: July 10, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 1467-1502
- MSC (2020): Primary 11L07, 11M06, 11T23
- DOI: https://doi.org/10.1090/mcom/3993