Dynamical low-rank approximation for stochastic differential equations
HTML articles powered by AMS MathViewer
- by Yoshihito Kazashi, Fabio Nobile and Fabio Zoccolan;
- Math. Comp. 94 (2025), 1335-1375
- DOI: https://doi.org/10.1090/mcom/3999
- Published electronically: August 22, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we set the mathematical foundations of the Dynamical Low-Rank Approximation (DLRA) method for stochastic differential equations (SDEs). DLRA aims at approximating the solution as a linear combination of a small number of basis vectors with random coefficients (low-rank format) with the peculiarity that both the basis vectors and the random coefficients vary in time.
While the formulation and properties of DLRA are now well understood for random/parametric equations, the same cannot be said for SDEs and this work aims to fill this gap. We start by rigorously formulating a Dynamically Orthogonal (DO) approximation (an instance of DLRA successfully used in applications) for SDEs, which we then generalize to define a parametrization independent DLRA for SDEs. We show local well-posedness of the DO equations and their equivalence with the DLRA formulation. We also characterize the explosion time of the DO solution by a loss of linear independence of the random coefficients defining the solution expansion and give sufficient conditions for global existence.
References
- Michael F. Adamer, Heather A. Harrington, Eamonn A. Gaffney, and Thomas E. Woolley, Coloured noise from stochastic inflows in reaction-diffusion systems, Bull. Math. Biol. 82 (2020), no. 4, Paper No. 44, 28. MR 4078403, DOI 10.1007/s11538-020-00719-w
- Markus Bachmayr, Low-rank tensor methods for partial differential equations, Acta Numer. 32 (2023), 1–121. MR 4586820, DOI 10.1017/S0962492922000125
- Markus Bachmayr, Henrik Eisenmann, Emil Kieri, and André Uschmajew, Existence of dynamical low-rank approximations to parabolic problems, Math. Comp. 90 (2021), no. 330, 1799–1830. MR 4273116, DOI 10.1090/mcom/3626
- Yu Cao and Jianfeng Lu, Stochastic dynamical low-rank approximation method, J. Comput. Phys. 372 (2018), 564–586. MR 3847446, DOI 10.1016/j.jcp.2018.06.058
- Gianluca Ceruti and Christian Lubich, An unconventional robust integrator for dynamical low-rank approximation, BIT 62 (2022), no. 1, 23–44. MR 4375023, DOI 10.1007/s10543-021-00873-0
- Mulin Cheng, Thomas Y. Hou, and Zhiwen Zhang, A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: derivation and algorithms, J. Comput. Phys. 242 (2013), 843–868. MR 3062063, DOI 10.1016/j.jcp.2013.02.033
- Mulin Cheng, Thomas Y. Hou, and Zhiwen Zhang, A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: adaptivity and generalizations, J. Comput. Phys. 242 (2013), 753–776. MR 3062058, DOI 10.1016/j.jcp.2013.02.020
- Minseok Choi, Themistoklis P. Sapsis, and George Em Karniadakis, On the equivalence of dynamically orthogonal and bi-orthogonal methods: theory and numerical simulations, J. Comput. Phys. 270 (2014), 1–20. MR 3209372, DOI 10.1016/j.jcp.2014.03.050
- Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 152, Cambridge University Press, Cambridge, 2014. MR 3236753, DOI 10.1017/CBO9781107295513
- Florian Feppon and Pierre F. J. Lermusiaux, Dynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transport, SIAM Rev. 60 (2018), no. 3, 595–625. MR 3841159, DOI 10.1137/16M1109394
- Yuri E. Gliklikh, Global and stochastic analysis with applications to mathematical physics, Theoretical and Mathematical Physics, Springer-Verlag London, Ltd., London, 2011. MR 2766616, DOI 10.1007/978-0-85729-163-9
- Elton P. Hsu, Stochastic analysis on manifolds, Graduate Studies in Mathematics, vol. 38, American Mathematical Society, Providence, RI, 2002. MR 1882015, DOI 10.1090/gsm/038
- Kiyosi Itô, On a formula concerning stochastic differentials, Nagoya Math. J. 3 (1951), 55–65. MR 44063
- Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, 2nd ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR 1121940, DOI 10.1007/978-1-4612-0949-2
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
- Yoshihito Kazashi and Fabio Nobile, Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval, Stoch. Partial Differ. Equ. Anal. Comput. 9 (2021), no. 3, 603–629. MR 4297234, DOI 10.1007/s40072-020-00177-4
- Yoshihito Kazashi, Fabio Nobile, and Eva Vidličková, Stability properties of a projector-splitting scheme for dynamical low rank approximation of random parabolic equations, Numer. Math. 149 (2021), no. 4, 973–1024. MR 4344602, DOI 10.1007/s00211-021-01241-4
- Emil Kieri, Christian Lubich, and Hanna Walach, Discretized dynamical low-rank approximation in the presence of small singular values, SIAM J. Numer. Anal. 54 (2016), no. 2, 1020–1038. MR 3482397, DOI 10.1137/15M1026791
- Peter E. Kloeden and Eckhard Platen, Numerical solution of stochastic differential equations, Applications of Mathematics (New York), vol. 23, Springer-Verlag, Berlin, 1992. MR 1214374, DOI 10.1007/978-3-662-12616-5
- Othmar Koch and Christian Lubich, Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics, M2AN Math. Model. Numer. Anal. 41 (2007), no. 2, 315–331. MR 2339631, DOI 10.1051/m2an:2007020
- Othmar Koch and Christian Lubich, Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl. 29 (2007), no. 2, 434–454. MR 2318357, DOI 10.1137/050639703
- Hiroshi Kunita and Shinzo Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209–245. MR 217856
- Giovanni Leoni, A first course in Sobolev spaces, 2nd ed., Graduate Studies in Mathematics, vol. 181, American Mathematical Society, Providence, RI, 2017. MR 3726909, DOI 10.1090/gsm/181
- Christian Lubich, From quantum to classical molecular dynamics: reduced models and numerical analysis, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2474331, DOI 10.4171/067
- Christian Lubich and Ivan V. Oseledets, A projector-splitting integrator for dynamical low-rank approximation, BIT 54 (2014), no. 1, 171–188. MR 3177960, DOI 10.1007/s10543-013-0454-0
- Eleonora Musharbash and Fabio Nobile, Dual dynamically orthogonal approximation of incompressible Navier Stokes equations with random boundary conditions, J. Comput. Phys. 354 (2018), 135–162. MR 3738101, DOI 10.1016/j.jcp.2017.09.061
- Eleonora Musharbash, Fabio Nobile, and Eva Vidličková, Symplectic dynamical low rank approximation of wave equations with random parameters, BIT 60 (2020), no. 4, 1153–1201. MR 4179719, DOI 10.1007/s10543-020-00811-6
- E. Musharbash, F. Nobile, and T. Zhou, Error analysis of the dynamically orthogonal approximation of time dependent random PDEs, SIAM J. Sci. Comput. 37 (2015), no. 2, A776–A810. MR 3324979, DOI 10.1137/140967787
- Boris Muzellec, Kanji Sato, Mathurin Massias, and Taiji Suzuki, Dimension-free convergence rates for gradient Langevin dynamics in RKHS, Conference on learning theory, 2022, pp. 1356–1420.
- Achim Nonnenmacher and Christian Lubich, Dynamical low-rank approximation: applications and numerical experiments, Math. Comput. Simulation 79 (2008), no. 4, 1346–1357. MR 2487804, DOI 10.1016/j.matcom.2008.03.007
- Philip E. Protter, Stochastic Integration and Differential Equations, Stochastic Modelling and Applied Probability, vol. 21, Springer, Berlin, Heidelberg, 2005., DOI 10.1007/978-3-662-10061-5
- Alfio Quarteroni and Gianluigi Rozza (eds.), Reduced order methods for modeling and computational reduction, MS&A. Modeling, Simulation and Applications, vol. 9, Springer, Cham, 2014. Selected papers from the workshop “Reduced Basis, POD and Reduced Order Methods for Model and Computational Reduction: Towards Real-Time Computing and Visualization?” held at Ecole Polytechnique Fédérale de Lausanne, Lausanne, May 14–16, 2012. MR 3236886, DOI 10.1007/978-3-319-02090-7
- Martin Redmann, Solving high-dimensional optimal stopping problems using optimization based model order reduction, Appl. Math. Finance 29 (2022), no. 2, 110–140. MR 4531408, DOI 10.1080/1350486X.2022.2154682
- Martin Redmann, Christian Bayer, and Pawan Goyal, Low-dimensional approximations of high-dimensional asset price models, SIAM J. Financial Math. 12 (2021), no. 1, 1–28. MR 4194957, DOI 10.1137/20M1325666
- Themistoklis P. Sapsis and Pierre F. J. Lermusiaux, Dynamically orthogonal field equations for continuous stochastic dynamical systems, Phys. D 238 (2009), no. 23-24, 2347–2360. MR 2576078, DOI 10.1016/j.physd.2009.09.017
- Themistoklis P. Sapsis and Andrew J. Majda, Blended reduced subspace algorithms for uncertainty quantification of quadratic systems with a stable mean state, Phys. D 258 (2013), 61–76. MR 3079608, DOI 10.1016/j.physd.2013.05.004
- Themistoklis P. Sapsis and Andrew J. Majda, Blending modified Gaussian closure and non-Gaussian reduced subspace methods for turbulent dynamical systems, J. Nonlinear Sci. 23 (2013), no. 6, 1039–1071. MR 3132075, DOI 10.1007/s00332-013-9178-1
- Wilhelmus H. A. Schilders, Henk A. van der Vorst, and Joost Rommes (eds.), Model order reduction: theory, research aspects and applications, Mathematics in Industry, vol. 13, Springer-Verlag, Berlin, 2008. European Consortium for Mathematics in Industry (Berlin). MR 2516399, DOI 10.1007/978-3-540-78841-6
- René L. Schilling, Brownian motion—a guide to random processes and stochastic calculus, De Gruyter Textbook, De Gruyter, Berlin, [2021] ©2021. With a chapter on simulation by Björn Böttcher; Third edition [of 2962168]. MR 4368865, DOI 10.1515/9783110741278-202
- M. P. Ueckermann, P. F. J. Lermusiaux, and T. P. Sapsis, Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows, J. Comput. Phys. 233 (2013), 272–294. MR 3000931, DOI 10.1016/j.jcp.2012.08.041
- Bart Vandereycken, Low-rank matrix completion by Riemannian optimization, SIAM J. Optim. 23 (2013), no. 2, 1214–1236. MR 3069099, DOI 10.1137/110845768
- Eva Vidlicková, Dynamical low rank approximation for uncertainty quantification of time-dependent problems, Ph.D. Thesis, No. 9087, 2022.
- Ke Wei, Jian-Feng Cai, Tony F. Chan, and Shingyu Leung, Guarantees of Riemannian optimization for low rank matrix recovery, SIAM J. Matrix Anal. Appl. 37 (2016), no. 3, 1198–1222. MR 3543156, DOI 10.1137/15M1050525
Bibliographic Information
- Yoshihito Kazashi
- Affiliation: Department of Mathematics & Statistics, University of Strathclyde, 26 Richmond St., Glasgow G1 1XH, United Kingdom
- MR Author ID: 1067568
- ORCID: 0000-0003-4584-2829
- Email: y.kazashi@strath.ac.uk
- Fabio Nobile
- Affiliation: Institut de Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- MR Author ID: 650310
- ORCID: 0000-0002-8130-0114
- Email: fabio.nobile@epfl.ch
- Fabio Zoccolan
- Affiliation: Institut de Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- ORCID: 0000-0002-5845-8415
- Email: fabio.zoccolan@epfl.ch
- Received by editor(s): August 22, 2023
- Received by editor(s) in revised form: April 26, 2024
- Published electronically: August 22, 2024
- Additional Notes: Yoshihito Kazashi was supported by the University of Strathclyde through a Faculty of Science Starter Grant. This work was also supported by the Swiss National Science Foundation under the Project n. 200518 “Dynamical low rank methods for uncertainty quantification and data assimilation”.
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 1335-1375
- MSC (2020): Primary 58J65, 60H10, 60H35, 65C30
- DOI: https://doi.org/10.1090/mcom/3999