On Darmon’s program for the generalized Fermat equation, II
HTML articles powered by AMS MathViewer
- by Nicolas Billerey, Imin Chen, Luis Dieulefait and Nuno Freitas;
- Math. Comp. 94 (2025), 1977-2003
- DOI: https://doi.org/10.1090/mcom/4012
- Published electronically: September 6, 2024
- HTML | PDF | Request permission
Abstract:
We obtain additional Diophantine applications of the methods surrounding Darmon’s program for the generalized Fermat equation developed in the first part of this series of papers. As a first application, we use a multi-Frey approach combining two Frey elliptic curves over totally real fields, a Frey hyperelliptic curve over $\mathbb {Q}$ due to Kraus, and ideas from the Darmon program to give a complete resolution of the generalized Fermat equation \begin{equation*} x^7 + y^7 = 3 z^n \end{equation*} for all integers $n \ge 2$. Moreover, we explain how the use of higher dimensional Frey abelian varieties allows a more efficient proof of this result due to additional structures that they afford, compared to using only Frey elliptic curves.
As a second application, we use some of these additional structures that Frey abelian varieties possess to show that a full resolution of the generalized Fermat equation $x^7 + y^7 = z^n$ depends only on the Cartan case of Darmon’s big image conjecture. In the process, we solve the previous equation for solutions $(a,b,c)$ such that $a$ and $b$ satisfy certain $2$- or $7$-adic conditions and all $n \ge 2$.
References
- Samuele Anni and Samir Siksek, Modular elliptic curves over real abelian fields and the generalized Fermat equation $x^{2\ell }+y^{2m}=z^p$, Algebra Number Theory 10 (2016), no. 6, 1147–1172. MR 3544293, DOI 10.2140/ant.2016.10.1147
- Michael A. Bennett and Chris M. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56 (2004), no. 1, 23–54. MR 2031121, DOI 10.4153/CJM-2004-002-2
- Michael A. Bennett, Vinayak Vatsal, and Soroosh Yazdani, Ternary Diophantine equations of signature $(p,p,3)$, Compos. Math. 140 (2004), no. 6, 1399–1416. MR 2098394, DOI 10.1112/S0010437X04000983
- Nicolas Billerey, Critères d’irréductibilité pour les représentations des courbes elliptiques, Int. J. Number Theory 7 (2011), no. 4, 1001–1032 (French, with English and French summaries). MR 2812649, DOI 10.1142/S1793042111004538
- Nicolas Billerey, Imin Chen, Lassina Dembélé, Luis Dieulefait, and Nuno Freitas, Some extensions of the modular method and Fermat equations of signature $(13,13,n)$, Publ. Mat. 67 (2023), no. 2, 715–741. MR 4609017, DOI 10.5565/publmat6722309
- N. Billerey, I. Chen, L. V. Dieulefait, and N. Freitas, Supporting files for this paper, https://github.com/NicolasBillerey/xhyper, 2024.
- Nicolas Billerey, Imin Chen, Luis Dieulefait, and Nuno Freitas, A multi-Frey approach to Fermat equations of signature $(r,r,p)$, Trans. Amer. Math. Soc. 371 (2019), no. 12, 8651–8677. MR 3955559, DOI 10.1090/tran/7477
- N. Billerey, I. Chen, L. V. Dieulefait, and N. Freitas, On Darmon’s program for the generalized Fermat equation, I, Preprint, arXiv:2205.15861, 2023.
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Christophe Breuil and Fred Diamond, Formes modulaires de Hilbert modulo $p$ et valeurs d’extensions entre caractères galoisiens, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 5, 905–974 (French, with English and French summaries). MR 3294620, DOI 10.24033/asens.2230
- Sander R. Dahmen and Samir Siksek, Perfect powers expressible as sums of two fifth or seventh powers, Acta Arith. 164 (2014), no. 1, 65–100. MR 3223319, DOI 10.4064/aa164-1-5
- Henri Darmon, Rigid local systems, Hilbert modular forms, and Fermat’s last theorem, Duke Math. J. 102 (2000), no. 3, 413–449. MR 1756104, DOI 10.1215/S0012-7094-00-10233-5
- Henri Darmon and Loïc Merel, Winding quotients and some variants of Fermat’s last theorem, J. Reine Angew. Math. 490 (1997), 81–100. MR 1468926
- Maarten Derickx, Filip Najman, and Samir Siksek, Elliptic curves over totally real cubic fields are modular, Algebra Number Theory 14 (2020), no. 7, 1791–1800. MR 4150250, DOI 10.2140/ant.2020.14.1791
- Fred Diamond and Kenneth Kramer, Appendix: classification of $\overline \rho _{E,l}$ by the $j$-invariant of $E$, Modular forms and Fermat’s last theorem (Boston, MA, 1995) Springer, New York, 1997, pp. 491–498. MR 1638491
- Luis Dieulefait and Nuno Freitas, Fermat-type equations of signature $(13,13,p)$ via Hilbert cuspforms, Math. Ann. 357 (2013), no. 3, 987–1004. MR 3118622, DOI 10.1007/s00208-013-0920-7
- Luis Dieulefait and Nuno Freitas, The Fermat-type equations $x^5+y^5=2z^p$ or $3z^p$ solved through $\Bbb {Q}$-curves, Math. Comp. 83 (2014), no. 286, 917–933. MR 3143698, DOI 10.1090/S0025-5718-2013-02731-7
- Nuno Freitas, Recipes to Fermat-type equations of the form $x^r+y^r=Cz^p$, Math. Z. 279 (2015), no. 3-4, 605–639. MR 3318242, DOI 10.1007/s00209-014-1384-5
- Nuno Freitas and Samir Siksek, Criteria for irreducibility of $\textrm {mod}\, p$ representations of Frey curves, J. Théor. Nombres Bordeaux 27 (2015), no. 1, 67–76 (English, with English and French summaries). MR 3346965, DOI 10.5802/jtnb.894
- K. Fujiwara, Level optimization in the totally real case, Preprint, arXiv:math/0602586, 2006.
- Stephen Gelbart, Three lectures on the modularity of $\overline \rho _{E,3}$ and the Langlands reciprocity conjecture, Modular forms and Fermat’s last theorem (Boston, MA, 1995) Springer, New York, 1997, pp. 155–207. MR 1638479
- Emmanuel Halberstadt and Alain Kraus, Courbes de Fermat: résultats et problèmes, J. Reine Angew. Math. 548 (2002), 167–234 (French, with English summary). MR 1915212, DOI 10.1515/crll.2002.058
- Frazer Jarvis, Level lowering for modular mod $l$ representations over totally real fields, Math. Ann. 313 (1999), no. 1, 141–160. MR 1666809, DOI 10.1007/s002080050255
- Frazer Jarvis, Correspondences on Shimura curves and Mazur’s principle at $p$, Pacific J. Math. 213 (2004), no. 2, 267–280. MR 2036920, DOI 10.2140/pjm.2004.213.267
- A. Kraus, On the equation $x^r+y^r=z^p$, Notes for a talk given at IEM, Universität Duisburg-Essen, 1998. A copy has been included in \cite{programs}.
- Alain Kraus, Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive, Manuscripta Math. 69 (1990), no. 4, 353–385 (French, with English summary). MR 1080288, DOI 10.1007/BF02567933
- Alain Kraus, Courbes elliptiques semi-stables et corps quadratiques, J. Number Theory 60 (1996), no. 2, 245–253 (French, with French summary). MR 1412962, DOI 10.1006/jnth.1996.0122
- Alain Kraus, Détermination du poids et du conducteur associés aux représentations des points de $p$-torsion d’une courbe elliptique, Dissertationes Math. (Rozprawy Mat.) 364 (1997), 39 (French, with French summary). MR 1446614
- Alain Kraus, On the equation $x^p+y^q=z^r$: a survey, Ramanujan J. 3 (1999), no. 3, 315–333. MR 1714945, DOI 10.1023/A:1009835521324
- G. Lamé, Mémoire d’analyse indéterminée, démontrant que l’équation $x^7+y^7=z^7$ est impossible en nombres entiers, J. Math. Pures Appl. 5 (1840) (fr).
- Kimball Martin, The Jacquet-Langlands correspondence, Eisenstein congruences, and integral $L$-values in weight 2, Math. Res. Lett. 24 (2017), no. 6, 1775–1795. MR 3762695, DOI 10.4310/MRL.2017.v24.n6.a11
- Ioannis Papadopoulos, Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle $2$ et $3$, J. Number Theory 44 (1993), no. 2, 119–152 (French, with French summary). MR 1225948, DOI 10.1006/jnth.1993.1040
- Pierre Parent, Torsion des courbes elliptiques sur les corps cubiques, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 723–749 (French, with English and French summaries). MR 1779891, DOI 10.5802/aif.1770
- Pierre Parent, No 17-torsion on elliptic curves over cubic number fields, J. Théor. Nombres Bordeaux 15 (2003), no. 3, 831–838 (English, with English and French summaries). MR 2142238, DOI 10.5802/jtnb.428
- Ali Rajaei, On the levels of mod $l$ Hilbert modular forms, J. Reine Angew. Math. 537 (2001), 33–65. MR 1856257, DOI 10.1515/crll.2001.058
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- Jean-Pierre Serre, Sur les représentations modulaires de degré $2$ de $\mathrm {Gal}(\overline {\mathbf {Q}}/\mathbf {Q})$, Duke Math. J. 54 (1987), no. 1, 179–230 (French). MR 885783, DOI 10.1215/S0012-7094-87-05413-5
- Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 236190, DOI 10.2307/1970722
- Goro Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), no. 3, 637–679. MR 507462
Bibliographic Information
- Nicolas Billerey
- Affiliation: Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne et CNRS, Campus universitaire des Cézeaux, 3, place Vasarely, 63178 Aubière Cedex, France
- MR Author ID: 823614
- ORCID: 0000-0001-7079-9100
- Email: nicolas.billerey@uca.fr
- Imin Chen
- Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- MR Author ID: 609304
- Email: ichen@sfu.ca
- Luis Dieulefait
- Affiliation: Departament de Matemàtiques i Informàtica, Universitat de Barcelona (UB), Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain; and Centre de Recerca Matemàtica (CRM), Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
- MR Author ID: 671876
- Email: ldieulefait@ub.edu
- Nuno Freitas
- Affiliation: Instituto de Ciencias Matemáticas, CSIC, Calle Nicolás Cabrera 13–15, 28049 Madrid, Spain
- MR Author ID: 1044711
- ORCID: 0000-0002-4740-3427
- Email: nuno.freitas@icmat.es
- Received by editor(s): January 29, 2024
- Received by editor(s) in revised form: July 22, 2024
- Published electronically: September 6, 2024
- Additional Notes: The first author was supported by the ANR-23-CE40-0006-01 Gaec project. The second author was supported by NSERC Discovery Grant RGPIN-2017-03892. The fourth author was partly supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłlodowska-Curie grant agreement No. 747808 and the grant Proyecto RSME-FBBVA $2015$ José Luis Rubio de Francia. The third and fourth authors were partly supported by the PID2019-107297GB-I00 grant of the MICINN (Spain). The third author was partly supported by the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M)
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 1977-2003
- MSC (2020): Primary 11D41, 11F33, 11G10
- DOI: https://doi.org/10.1090/mcom/4012