An approximation theory framework for measure-transport sampling algorithms
HTML articles powered by AMS MathViewer
- by Ricardo Baptista, Bamdad Hosseini, Nikola B. Kovachki, Youssef Marzouk and Amir Sagiv;
- Math. Comp. 94 (2025), 1863-1909
- DOI: https://doi.org/10.1090/mcom/4013
- Published electronically: September 4, 2024
- HTML | PDF | Request permission
Abstract:
This article presents a general approximation-theoretic framework to analyze measure transport algorithms for probabilistic modeling. A primary motivating application for such algorithms is sampling—a central task in statistical inference and generative modeling. We provide a priori error estimates in the continuum limit, i.e., when the measures (or their densities) are given, but when the transport map is discretized or approximated using a finite-dimensional function space. Our analysis relies on the regularity theory of transport maps and on classical approximation theory for high-dimensional functions. A third element of our analysis, which is of independent interest, is the development of new stability estimates that relate the distance between two maps to the distance (or divergence) between the pushforward measures they define. We present a series of applications of our framework, where quantitative convergence rates are obtained for practical problems using Wasserstein metrics, maximum mean discrepancy, and Kullback–Leibler divergence. Specialized rates for approximations of the popular triangular Knöthe–Rosenblatt maps are obtained, followed by numerical experiments that demonstrate and extend our theory.References
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. MR 2129498
- C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, An introduction to MCMC for machine learning, Mach. Learn. 50 (2003), 5–43.
- M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative adversarial networks, in International conference on machine learning, PMLR, 2017, pp. 214–223.
- R. Baptista, Y. Marzouk, O. Zahm, On the representation and learning of monotone triangular transport maps, Found. Comput. Math. (2023), 1–46, DOI:10.1007/s10208-023-09630-x.
- Jean-David Benamou and Yann Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math. 84 (2000), no. 3, 375–393. MR 1738163, DOI 10.1007/s002110050002
- Jean-David Benamou, Brittany D. Froese, and Adam M. Oberman, Numerical solution of the optimal transportation problem using the Monge-Ampère equation, J. Comput. Phys. 260 (2014), 107–126. MR 3151832, DOI 10.1016/j.jcp.2013.12.015
- Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, and Andrew M. Stuart, Model reduction and neural networks for parametric PDEs, SMAI J. Comput. Math. 7 (2021), 121–157. MR 4290514, DOI 10.5802/smai-jcm.74
- M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, Demystifying MMD GANs, in International Conference on Learning Representations, 2018.
- Jeremiah Birrell, Paul Dupuis, Markos A. Katsoulakis, Yannis Pantazis, and Luc Rey-Bellet, $(f,\Gamma )$-divergences: interpolating between $f$-divergences and integral probability metrics, J. Mach. Learn. Res. 23 (2022), Paper No. [39], 70. MR 4420764
- Christopher M. Bishop, Pattern recognition and machine learning, Information Science and Statistics, Springer, New York, 2006. MR 2247587, DOI 10.1007/978-0-387-45528-0
- David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe, Variational inference: a review for statisticians, J. Amer. Statist. Assoc. 112 (2017), no. 518, 859–877. MR 3671776, DOI 10.1080/01621459.2017.1285773
- V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR 2267655, DOI 10.1007/978-3-540-34514-5
- V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR 2267655, DOI 10.1007/978-3-540-34514-5
- V. I. Bogachev and A. V. Kolesnikov, Nonlinear transformations of convex measures, Teor. Veroyatn. Primen. 50 (2005), no. 1, 27–51 (Russian, with Russian summary); English transl., Theory Probab. Appl. 50 (2006), no. 1, 34–52. MR 2222736, DOI 10.1137/S0040585X97981457
- V. I. Bogachev, A. V. Kolesnikov, and K. V. Medvedev, Triangular transformations of measures, Mat. Sb. 196 (2005), no. 3, 3–30 (Russian, with Russian summary); English transl., Sb. Math. 196 (2005), no. 3-4, 309–335. MR 2144274, DOI 10.1070/SM2005v196n03ABEH000882
- Nicolas Bonnotte, From Knothe’s rearrangement to Brenier’s optimal transport map, SIAM J. Math. Anal. 45 (2013), no. 1, 64–87. MR 3032969, DOI 10.1137/120874850
- Yann Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 19, 805–808 (French, with English summary). MR 923203
- T. Butler, J. Jakeman, and T. Wildey, Convergence of probability densities using approximate models for forward and inverse problems in uncertainty quantification, SIAM J. Sci. Comput. 40 (2018), no. 5, A3523–A3548. MR 3866569, DOI 10.1137/18M1181675
- T. Butler, T. Wildey, and W. Zhang, $L^p$ convergence of approximate maps and probability densities for forward and inverse problems in uncertainty quantification, Int. J. Uncertain. Quantif. 12 (2022), no. 4, 65–92. MR 4440583, DOI 10.1615/Int.J.UncertaintyQuantification.2022038086
- Luis A. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc. 5 (1992), no. 1, 99–104. MR 1124980, DOI 10.1090/S0894-0347-1992-1124980-8
- Luis A. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys. 214 (2000), no. 3, 547–563. MR 1800860, DOI 10.1007/s002200000257
- C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. 38 (1982), no. 157, 67–86. MR 637287, DOI 10.1090/S0025-5718-1982-0637287-3
- Guillaume Carlier, Victor Chernozhukov, and Alfred Galichon, Vector quantile regression: an optimal transport approach, Ann. Statist. 44 (2016), no. 3, 1165–1192. MR 3485957, DOI 10.1214/15-AOS1401
- G. Carlier, A. Galichon, and F. Santambrogio, From Knothe’s transport to Brenier’s map and a continuation method for optimal transport, SIAM J. Math. Anal. 41 (2009/10), no. 6, 2554–2576. MR 2607321, DOI 10.1137/080740647
- Cheng-Long Xu and Ben-Yu Guo, Hermite spectral and pseudospectral methods for nonlinear partial differential equations in multiple dimensions, Comput. Appl. Math. 22 (2003), no. 2, 167–193. MR 2022077, DOI 10.1590/S0101-82052003000200002
- Maria Colombo, Alessio Figalli, and Yash Jhaveri, Lipschitz changes of variables between perturbations of log-concave measures, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17 (2017), no. 4, 1491–1519. MR 3752535
- S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White, MCMC methods for functions: modifying old algorithms to make them faster, Statist. Sci. 28 (2013), no. 3, 424–446. MR 3135540, DOI 10.1214/13-STS421
- A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, Generative adversarial networks: An overview, IEEE Signal Process. Mag. 35 (2018), 53–65.
- Tiangang Cui and Sergey Dolgov, Deep composition of tensor-trains using squared inverse Rosenblatt transports, Found. Comput. Math. 22 (2022), no. 6, 1863–1922. MR 4509118, DOI 10.1007/s10208-021-09537-5
- M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, Adv. Neural Inf. Process. Syst. 26 (2013).
- N. Deb, P. Ghosal, and B. Sen, Rates of estimation of optimal transport maps using plug-in estimators via barycentric projections, Adv. Neural Inf. Process. Syst. 34 (2021), 29736–29753.
- Adi Ditkowski, Gadi Fibich, and Amir Sagiv, Density estimation in uncertainty propagation problems using a surrogate model, SIAM/ASA J. Uncertain. Quantif. 8 (2020), no. 1, 261–300. MR 4059388, DOI 10.1137/18M1205959
- V. Divol, J. Niles-Weed, and A.-A. Pooladian, Optimal transport map estimation in general function spaces, Preprint, arXiv:2212.03722, (2022).
- Tarek A. El Moselhy and Youssef M. Marzouk, Bayesian inference with optimal maps, J. Comput. Phys. 231 (2012), no. 23, 7815–7850. MR 2972870, DOI 10.1016/j.jcp.2012.07.022
- Oliver G. Ernst, Antje Mugler, Hans-Jörg Starkloff, and Elisabeth Ullmann, On the convergence of generalized polynomial chaos expansions, ESAIM Math. Model. Numer. Anal. 46 (2012), no. 2, 317–339. MR 2855645, DOI 10.1051/m2an/2011045
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015. MR 3409135, DOI 10.1201/b18333
- Alessio Figalli, The Monge-Ampère equation and its applications, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2017. MR 3617963, DOI 10.4171/170
- Brittany D. Froese, A numerical method for the elliptic Monge-Ampère equation with transport boundary conditions, SIAM J. Sci. Comput. 34 (2012), no. 3, A1432–A1459. MR 2970259, DOI 10.1137/110822372
- Alfred Galichon, A survey of some recent applications of optimal transport methods to econometrics, Econom. J. 20 (2017), no. 2, C1–C11. MR 3685644, DOI 10.1111/ectj.12083
- Alfred Galichon, Optimal transport methods in economics, Princeton University Press, Princeton, NJ, 2016. MR 3586373, DOI 10.1515/9781400883592
- Wilfrid Gangbo and Robert J. McCann, The geometry of optimal transportation, Acta Math. 177 (1996), no. 2, 113–161. MR 1440931, DOI 10.1007/BF02392620
- A. Genevay, G. Peyré, and M. Cuturi, Learning Generative Models with Sinkhorn Divergences, in International Conference on Artificial Intelligence and Statistics, PMLR, 2018, pp. 1608–1617.
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 4th ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. MR 3024913, DOI 10.56021/9781421407944
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets, Adv. Neural Inf. Process. Syst. 27 (2014).
- J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, A review on generative adversarial networks: Algorithms, theory, and applications, IEEE Trans. Knowl. Data Eng. (2021).
- C. E. Gutiérrez and H. Brezis, The Monge-Ampere Equation, vol. 44, Springer, 2001.
- Jan-Christian Hütter and Philippe Rigollet, Minimax estimation of smooth optimal transport maps, Ann. Statist. 49 (2021), no. 2, 1166–1194. MR 4255123, DOI 10.1214/20-aos1997
- Ilse C. F. Ipsen and Rizwana Rehman, Perturbation bounds for determinants and characteristic polynomials, SIAM J. Matrix Anal. Appl. 30 (2008), no. 2, 762–776. MR 2421470, DOI 10.1137/070704770
- N. J. Irons, M. Scetbon, S. Pal, and Z. Harchaoui, Triangular Flows for Generative Modeling: Statistical Consistency, Smoothness Classes, and Fast Rates, in International Conference on Artificial Intelligence and Statistics, PMLR, 2022, pp. 10161–10195.
- P. Jaini, K. A. Selby, and Y. Yu, Sum-of-Squares Polynomial Flow, in International Conference on Machine Learning, PMLR, 2019, pp. 3009–3018.
- Richard Jordan, David Kinderlehrer, and Felix Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), no. 1, 1–17. MR 1617171, DOI 10.1137/S0036141096303359
- L. Kantorovitch, On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942), 199–201. MR 9619
- Herbert Knothe, Contributions to the theory of convex bodies, Michigan Math. J. 4 (1957), 39–52. MR 83759
- I. Kobyzev, S. J. Prince, and M. A. Brubaker, Normalizing flows: An introduction and review of current methods, IEEE Tran. Pattern Anal. Mach. Intell. 43 (2020), 3964–3979.
- A. V. Kolesnikov, On Sobolev regularity of mass transport and transportation inequalities, Theory Probab. Appl. 57 (2013), no. 2, 243–264. MR 3201654, DOI 10.1137/S0040585X97985947
- Alexander V. Kolesnikov and Michael Röckner, On continuity equations in infinite dimensions with non-Gaussian reference measure, J. Funct. Anal. 266 (2014), no. 7, 4490–4537. MR 3170213, DOI 10.1016/j.jfa.2014.01.010
- R. Baptista, B. Hosseini, N. Kovachki and Y. Marzouk, Conditional sampling with monotone GANs: from generative models to likelihood-free inference, SIAM/ASA Journal on Uncertainty Quantification (2024), vol 12, 868–900, DOI:10.1137/23M1581546.
- Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar, Neural operator: learning maps between function spaces with applications to PDEs, J. Mach. Learn. Res. 24 (2023), Paper No. [89], 97. MR 4582511, DOI 10.1080/15502287.2022.2066031
- Samuel Lanthaler, Siddhartha Mishra, and George E. Karniadakis, Error estimates for DeepONets: a deep learning framework in infinite dimensions, Trans. Math. Appl. 6 (2022), no. 1, tnac001, 141. MR 4395087, DOI 10.1093/imatrm/tnac001
- C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos, MMD GAN: towards deeper understanding of moment matching network, Adv. Neural Inf. Process. Syst. 30 (2017).
- Wenbo Li and Ricardo H. Nochetto, Quantitative stability and error estimates for optimal transport plans, IMA J. Numer. Anal. 41 (2021), no. 3, 1941–1965. MR 4286252, DOI 10.1093/imanum/draa045
- Michael Lindsey and Yanir A. Rubinstein, Optimal transport via a Monge-Ampère optimization problem, SIAM J. Math. Anal. 49 (2017), no. 4, 3073–3124. MR 3686795, DOI 10.1137/16M1071560
- Y. Lu and J. Lu, A universal approximation theorem of deep neural networks for expressing probability distributions, Adv. Neural Inf. Process. Syst. 33 (2020), 3094–3105.
- Youssef Marzouk, Tarek Moselhy, Matthew Parno, and Alessio Spantini, Sampling via measure transport: an introduction, Handbook of uncertainty quantification. Vol. 1, 2, 3, Springer, Cham, 2017, pp. 785–825. MR 3821485
- M. L. Menéndez, J. A. Pardo, L. Pardo, and M. C. Pardo, The Jensen-Shannon divergence, J. Franklin Inst. B 334 (1997), no. 2, 307–318. MR 1431445, DOI 10.1016/S0016-0032(96)00063-4
- G. Monge, Mémoire sur la théorie des déblais et des remblais, De l’Imprimerie Royale, 1781.
- K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf, Kernel mean embedding of distributions: A review and beyond, Found. Trends Mach. Learn. 10 (2017), 1–141.
- B. Muzellec and M. Cuturi, Subspace detours: Building transport plans that are optimal on subspace projections, Adv. Neural Inf. Process. Syst. 32 (2019).
- Jorge Nocedal and Stephen J. Wright, Numerical optimization, 2nd ed., Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006. MR 2244940
- Ricardo H. Nochetto and Wujun Zhang, Pointwise rates of convergence for the Oliker-Prussner method for the Monge-Ampère equation, Numer. Math. 141 (2019), no. 1, 253–288. MR 3903208, DOI 10.1007/s00211-018-0988-9
- Soumik Pal, On the difference between entropic cost and the optimal transport cost, Ann. Appl. Probab. 34 (2024), no. 1B, 1003–1028. MR 4700251, DOI 10.1214/23-aap1983
- Victor M. Panaretos and Yoav Zemel, An invitation to statistics in Wasserstein space, SpringerBriefs in Probability and Mathematical Statistics, Springer, Cham, [2020] ©2020. MR 4350694, DOI 10.1007/978-3-030-38438-8
- George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan, Normalizing flows for probabilistic modeling and inference, J. Mach. Learn. Res. 22 (2021), Paper No. 57, 64. MR 4253750
- G. Papamakarios, T. Pavlakou, and I. Murray, Masked autoregressive flow for density estimation, Adv. Neural Inf. Process. Syst. 30 (2017).
- Matthew D. Parno and Youssef M. Marzouk, Transport map accelerated Markov chain Monte Carlo, SIAM/ASA J. Uncertain. Quantif. 6 (2018), no. 2, 645–682. MR 3800241, DOI 10.1137/17M1134640
- G. Peyré and M. Cuturi, Computational optimal transport: With applications to data science, Found. Trends Mach. Learn. 11 (2019), 355–607.
- Allan Pinkus, Approximation theory of the MLP model in neural networks, Acta numerica, 1999, Acta Numer., vol. 8, Cambridge Univ. Press, Cambridge, 1999, pp. 143–195. MR 1819645, DOI 10.1017/S0962492900002919
- A.-A. Pooladian, V. Divol, and J. Niles-Weed, Minimax estimation of discontinuous optimal transport maps: The semi-discrete case, Preprint, arXiv:2301.11302, (2023).
- A.-A. Pooladian and J. Niles-Weed, Entropic estimation of optimal transport maps, Preprint, arXiv:2109.12004, (2021).
- D. Rezende and S. Mohamed, Variational Inference with Normalizing Flows, in International conference on machine learning, PMLR, 2015, pp. 1530–1538.
- Christian P. Robert and George Casella, Monte Carlo statistical methods, Springer Texts in Statistics, Springer-Verlag, New York, 1999. MR 1707311, DOI 10.1007/978-1-4757-3071-5
- Murray Rosenblatt, Remarks on a multivariate transformation, Ann. Math. Statistics 23 (1952), 470–472. MR 49525, DOI 10.1214/aoms/1177729394
- Amir Sagiv, The Wasserstein distances between pushed-forward measures with applications to uncertainty quantification, Commun. Math. Sci. 18 (2020), no. 3, 707–724. MR 4120535, DOI 10.4310/CMS.2020.v18.n3.a6
- Amir Sagiv, Spectral convergence of probability densities for forward problems in uncertainty quantification, Numer. Math. 150 (2022), no. 4, 1165–1186. MR 4405693, DOI 10.1007/s00211-022-01281-4
- Filippo Santambrogio, Optimal transport for applied mathematicians, Progress in Nonlinear Differential Equations and their Applications, vol. 87, Birkhäuser/Springer, Cham, 2015. Calculus of variations, PDEs, and modeling. MR 3409718, DOI 10.1007/978-3-319-20828-2
- V. Seguy, B. B. Damodaran, R. Flamary, N. Courty, A. Rolet, and M. Blondel, Large-scale Optimal Transport and Mapping Estimation, in International Conference on Learning Representations, 2018, pp. 1–15.
- Zuowei Shen, Haizhao Yang, and Shijun Zhang, Deep network approximation characterized by number of neurons, Commun. Comput. Phys. 28 (2020), no. 5, 1768–1811. MR 4188521, DOI 10.4208/cicp.oa-2020-0149
- Alessio Spantini, Ricardo Baptista, and Youssef Marzouk, Coupling techniques for nonlinear ensemble filtering, SIAM Rev. 64 (2022), no. 4, 921–953. MR 4503348, DOI 10.1137/20M1312204
- Alessio Spantini, Daniele Bigoni, and Youssef Marzouk, Inference via low-dimensional couplings, J. Mach. Learn. Res. 19 (2018), Paper No. 71. MR 3899768
- A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numer. 19 (2010), 451–559. MR 2652785, DOI 10.1017/S0962492910000061
- Gabor Szegö, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, New York, 1939. MR 77, DOI 10.1090/coll/023
- E. G. Tabak and Cristina V. Turner, A family of nonparametric density estimation algorithms, Comm. Pure Appl. Math. 66 (2013), no. 2, 145–164. MR 2999294, DOI 10.1002/cpa.21423
- Esteban G. Tabak and Eric Vanden-Eijnden, Density estimation by dual ascent of the log-likelihood, Commun. Math. Sci. 8 (2010), no. 1, 217–233. MR 2655907, DOI 10.4310/cms.2010.v8.n1.a11
- Roman Vershynin, High-dimensional probability, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 47, Cambridge University Press, Cambridge, 2018. An introduction with applications in data science; With a foreword by Sara van de Geer. MR 3837109, DOI 10.1017/9781108231596
- Cédric Villani, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454, DOI 10.1007/978-3-540-71050-9
- M. J. Wainwright and M. I. Jordan, Graphical models, exponential families, and variational inference, Found. Trends Mach. Learn. 1 (2008), 1–305.
- S. Wang and Y. Marzouk, On minimax density estimation via measure transport, Preprint, arXiv:2207.10231, (2022).
- A. Wehenkel and G. Louppe, Unconstrained monotonic neural networks, Adv. Neural Inf. Process. Syst. 32 (2019).
- J. Westermann and J. Zech, Measure transport via polynomial density surrogates, Preprint, arXiv:2311.04172, (2023).
- Dongbin Xiu, Numerical methods for stochastic computations, Princeton University Press, Princeton, NJ, 2010. A spectral method approach. MR 2723020
- Jakob Zech and Youssef Marzouk, Sparse approximation of triangular transports, Part I: The finite-dimensional case, Constr. Approx. 55 (2022), no. 3, 919–986. MR 4434028, DOI 10.1007/s00365-022-09569-2
- Jakob Zech and Youssef Marzouk, Sparse approximation of triangular transports, Part II: The infinite-dimensional case, Constr. Approx. 55 (2022), no. 3, 987–1036. MR 4434029, DOI 10.1007/s00365-022-09570-9
- C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, Advances in variational inference, IEEE Tran. Pattern Anal. Mach. Intell. 41 (2018), 2008–2026.
Bibliographic Information
- Ricardo Baptista
- Affiliation: Computing and Mathematical Sciences, Caltech, Pasadena, California
- MR Author ID: 1315638
- ORCID: 0000-0002-0421-890X
- Email: rsb@caltech.edu
- Bamdad Hosseini
- Affiliation: Department of Applied Mathematics, University of Washington, Lewis Hall 201, Box 353925, Seattle, WA 98195-3925, USA
- MR Author ID: 928750
- ORCID: 0000-0001-5053-6223
- Email: bamdadh@uw.edu
- Nikola B. Kovachki
- Affiliation: NVIDIA Corporation, 2788 San Tomas Expy, Santa Clara, CA 95051, USA
- MR Author ID: 1338406
- Email: nkovachki@nvidia.com
- Youssef Marzouk
- Affiliation: Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Room 32-D714, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MR Author ID: 761311
- ORCID: 0000-0001-8242-3290
- Email: ymarz@mit.edu
- Amir Sagiv
- Affiliation: Faculty of Mathematics, Technion–Israel Institute of Technology, Haifa 32000, Israel
- MR Author ID: 1361084
- Email: asagiv88@gmail.com, amir.sagiv@njit.edu
- Received by editor(s): August 8, 2023
- Received by editor(s) in revised form: July 23, 2024
- Published electronically: September 4, 2024
- Additional Notes: The first author and the fourth author were supported from the United States Department of Energy M2dt MMICC center under award DE-SC0023187. The second author was supported by the National Science Foundation grant DMS-208535. The first author and the second author were supported from Air Force Office of Scientific Research under MURI award number FA9550-20-1-0358. The fifth author was supported in part by Simons Foundation Math + X Investigator Award #376319 (Michael I. Weinstein), the Binational Science Foundation grant #2022254, and the AMS-Simons Travel Grant.
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 1863-1909
- MSC (2020): Primary 65D15, 65D99, 49Q22, 41A17; Secondary 41A10, 62G07
- DOI: https://doi.org/10.1090/mcom/4013
- MathSciNet review: 4888025