Normal-normal continuous symmetric stresses in mixed finite element elasticity
HTML articles powered by AMS MathViewer
- by Carsten Carstensen and Norbert Heuer;
- Math. Comp. 94 (2025), 1571-1602
- DOI: https://doi.org/10.1090/mcom/4017
- Published electronically: September 4, 2024
- HTML | PDF
Abstract:
The classical continuous mixed formulation of linear elasticity with pointwise symmetric stresses allows for a conforming finite element discretization with piecewise polynomials of degree at least three. Symmetric stress approximations of lower polynomial order are only possible when their $\operatorname {div}$-conformity is weakened to the continuity of normal-normal components. In two dimensions, this condition is meant pointwise along edges for piecewise polynomials, but a corresponding characterization for general piecewise $H(\operatorname {div})$ tensors has been elusive.
We introduce such a space and establish a continuous mixed formulation of linear planar elasticity with pointwise symmetric stresses that have, in a distributional sense, continuous normal-normal components across the edges of a shape-regular triangulation. The displacement is split into an $L_2$ field and a tangential trace on the skeleton of the mesh. The well-posedness of the new mixed formulation follows with a duality lemma relating the normal-normal continuous stresses with the tangential traces of displacements.
For this new formulation we present a lowest-order conforming discretization. Stresses are approximated by piecewise quadratic symmetric tensors, whereas displacements are discretized by piecewise linear polynomials. The tangential displacement trace acts as a Lagrange multiplier and guarantees global $\operatorname {div}$-conformity in the limit as the mesh-size tends to zero. We prove locking-free, quasi-optimal convergence of our scheme and illustrate this with numerical examples.
References
- Scot Adams and Bernardo Cockburn, A mixed finite element method for elasticity in three dimensions, J. Sci. Comput. 25 (2005), no. 3, 515–521. MR 2221175, DOI 10.1007/s10915-004-4807-3
- C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (1998), no. 9, 823–864 (English, with English and French summaries). MR 1626990, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
- Douglas N. Arnold, Gerard Awanou, and Ragnar Winther, Finite elements for symmetric tensors in three dimensions, Math. Comp. 77 (2008), no. 263, 1229–1251. MR 2398766, DOI 10.1090/S0025-5718-08-02071-1
- Douglas N. Arnold and Ragnar Winther, Mixed finite elements for elasticity, Numer. Math. 92 (2002), no. 3, 401–419. MR 1930384, DOI 10.1007/s002110100348
- S. Bartels, C. Carstensen, and G. Dolzmann, Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis, Numer. Math. 99 (2004), no. 1, 1–24. MR 2101782, DOI 10.1007/s00211-004-0548-3
- Daniele Boffi, Franco Brezzi, and Michel Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. MR 3097958, DOI 10.1007/978-3-642-36519-5
- Carlo L. Bottasso, Stefano Micheletti, and Riccardo Sacco, The discontinuous Petrov-Galerkin method for elliptic problems, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 31, 3391–3409. MR 1908187, DOI 10.1016/S0045-7825(02)00254-2
- C. Carstensen, L. Demkowicz, and J. Gopalakrishnan, Breaking spaces and forms for the DPG method and applications including Maxwell equations, Comput. Math. Appl. 72 (2016), no. 3, 494–522. MR 3521055, DOI 10.1016/j.camwa.2016.05.004
- Carsten Carstensen and Norbert Heuer, A fractional-order trace-dev-div inequality, arXiv:2403.01291, 2024.
- Olivier Cessenat and Bruno Despres, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem, SIAM J. Numer. Anal. 35 (1998), no. 1, 255–299. MR 1618464, DOI 10.1137/S0036142995285873
- L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions, Numer. Methods Partial Differential Equations 27 (2011), no. 1, 70–105. MR 2743600, DOI 10.1002/num.20640
- Jim Douglas Jr. and Jean E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39–52. MR 771029, DOI 10.1090/S0025-5718-1985-0771029-9
- Thomas Führer, Superconvergence in a DPG method for an ultra-weak formulation, Comput. Math. Appl. 75 (2018), no. 5, 1705–1718. MR 3766545, DOI 10.1016/j.camwa.2017.11.029
- Thomas Führer and Norbert Heuer, Fully discrete DPG methods for the Kirchhoff-Love plate bending model, Comput. Methods Appl. Mech. Engrg. 343 (2019), 550–571. MR 3864098, DOI 10.1016/j.cma.2018.08.041
- Thomas Führer, Norbert Heuer, and Antti H. Niemi, An ultraweak formulation of the Kirchhoff-Love plate bending model and DPG approximation, Math. Comp. 88 (2019), no. 318, 1587–1619. MR 3925478, DOI 10.1090/mcom/3381
- T. Führer, N. Heuer, and A. H. Niemi, A DPG method for shallow shells, Numer. Math. 152 (2022), no. 1, 76–99.
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- P. Grisvard, Singularités en elasticité, Arch. Rational Mech. Anal. 107 (1989), no. 2, 157–180 (French, with English summary). MR 996909, DOI 10.1007/BF00286498
- Kåre Hellan, Analysis of elastic plates in flexure by a simplified finite element method, Acta Polytech. Scand. Civ. Eng. Build. Constr. Ser. 46 (1967), 1.
- Leonard R. Herrmann, Finite-element bending analysis for plates, J. Eng. Mech. Div. 93 (1967), no. 5, 13–26.
- Jun Hu, Finite element approximations of symmetric tensors on simplicial grids in $\Bbb R^n$: the higher order case, J. Comput. Math. 33 (2015), no. 3, 283–296. MR 3352360, DOI 10.4208/jcm.1412-m2014-0071
- Jun Hu and Shangyou Zhang, Finite element approximations of symmetric tensors on simplicial grids in $\Bbb {R}^n$: the lower order case, Math. Models Methods Appl. Sci. 26 (2016), no. 9, 1649–1669. MR 3529252, DOI 10.1142/S0218202516500408
- Claes Johnson, On the convergence of a mixed finite-element method for plate bending problems, Numer. Math. 21 (1973), 43–62. MR 388807, DOI 10.1007/BF01436186
- William McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000. MR 1742312
- Astrid Pechstein and Joachim Schöberl, Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity, Math. Models Methods Appl. Sci. 21 (2011), no. 8, 1761–1782. MR 2826472, DOI 10.1142/S0218202511005568
- A. Pechstein and J. Schöberl, Anisotropic mixed finite elements for elasticity, Internat. J. Numer. Methods Engrg. 90 (2012), no. 2, 196–217. MR 2910289, DOI 10.1002/nme.3319
- Astrid S. Pechstein and Joachim Schöberl, An analysis of the TDNNS method using natural norms, Numer. Math. 139 (2018), no. 1, 93–120. MR 3785664, DOI 10.1007/s00211-017-0933-3
- Katharina Rafetseder and Walter Zulehner, A decomposition result for Kirchhoff plate bending problems and a new discretization approach, SIAM J. Numer. Anal. 56 (2018), no. 3, 1961–1986. MR 3819164, DOI 10.1137/17M1118427
- Marie E. Rognes, Robert C. Kirby, and Anders Logg, Efficient assembly of $H(\textrm {div})$ and $H(\textrm {curl})$ conforming finite elements, SIAM J. Sci. Comput. 31 (2009/10), no. 6, 4130–4151. MR 2566587, DOI 10.1137/08073901X
- Andreas Rössle, Corner singularities and regularity of weak solutions for the two-dimensional Lamé equations on domains with angular corners, J. Elasticity 60 (2000), no. 1, 57–75. MR 1832016, DOI 10.1023/A:1007639413619
- Anna-Margarete Sändig, Uwe Richter, and Rainer Sändig, The regularity of boundary value problems for the Lamé equations in a polygonal domain, Rostock. Math. Kolloq. 36 (1989), 21–50. MR 1006837
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- Luc Tartar, An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana, vol. 3, Springer, Berlin; UMI, Bologna, 2007. MR 2328004
Bibliographic Information
- Carsten Carstensen
- Affiliation: Department of Mathematics, Humboldt–Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
- MR Author ID: 263782
- Email: cc@math.hu-berlin.de
- Norbert Heuer
- Affiliation: Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
- MR Author ID: 314970
- ORCID: 0000-0002-5171-1457
- Email: nheuer@uc.cl
- Received by editor(s): March 5, 2024
- Received by editor(s) in revised form: July 3, 2024
- Published electronically: September 4, 2024
- Additional Notes: This work was supported by ANID-Chile through FONDECYT project 1230013
- © Copyright 2024 by the authors
- Journal: Math. Comp. 94 (2025), 1571-1602
- MSC (2020): Primary 65N30, 74G15, 74S05
- DOI: https://doi.org/10.1090/mcom/4017
- MathSciNet review: 4888016