Convergence of a stabilized parametric finite element method of the Barrett–Garcke–Nürnberg type for curve shortening flow
HTML articles powered by AMS MathViewer
- by Genming Bai and Buyang Li;
- Math. Comp. 94 (2025), 2151-2220
- DOI: https://doi.org/10.1090/mcom/4019
- Published electronically: October 3, 2024
- HTML | PDF | Request permission
Abstract:
The parametric finite element methods of the Barrett–Garcke–Nürnberg (BGN) type have been successful in preventing mesh distortion/ degeneration in approximating the evolution of surfaces under various geometric flows, including mean curvature flow, Willmore flow, Helfrich flow, surface diffusion, and so on. However, the rigorous justification of convergence of the BGN-type methods and the characeterization of the particle trajectories produced by these methods still remain open since this class of methods was proposed in 2007. The main difficulty lies in the stability of the artificial tangential velocity implicitly determined by the BGN methods. In this paper, we give the first proof of convergence of a stabilized BGN method for curve shortening flow, with optimal-order convergence in $L^2$ norm for finite elements of degree $k \geq 2$ under the stepsize condition $\tau \leq c h^{k+1}$ (for any fixed constant $c$). Moreover, we give the first rigorous characterization of the particle trajectories produced by the BGN-type methods for one-dimensional curves, i.e., we prove that the particle trajectories produced by the stabilized BGN methods converge to the particle trajectories determined by a system of geometric partial differential equations which differs from the standard curve shortening flow by a tangential motion. The characterization of the particle trajectories also rigorously explains, for one-dimensional curves, why the BGN-type methods could maintain the quality of the underlying evolving mesh.References
- Genming Bai and Buyang Li, Erratum: Convergence of Dziuk’s semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements, SIAM J. Numer. Anal. 61 (2023), no. 3, 1609–1612. MR 4605925, DOI 10.1137/22M1521791
- G. Bai and B. Li. A new approach to the analysis of parametric finite element approximations to mean curvature flow. Found. Comput. Math., 2023. doi: 10.1007/s10208-023-09622-x.
- Eberhard Bänsch, Pedro Morin, and Ricardo H. Nochetto, A finite element method for surface diffusion: the parametric case, J. Comput. Phys. 203 (2005), no. 1, 321–343. MR 2104399, DOI 10.1016/j.jcp.2004.08.022
- Weizhu Bao, Harald Garcke, Robert Nürnberg, and Quan Zhao, Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations, J. Comput. Phys. 460 (2022), Paper No. 111180, 23. MR 4404537, DOI 10.1016/j.jcp.2022.111180
- John W. Barrett, Harald Garcke, and Robert Nürnberg, Parametric finite element approximations of curvature-driven interface evolutions, Geometric partial differential equations. Part I, Handb. Numer. Anal., vol. 21, Elsevier/North-Holland, Amsterdam, [2020] ©2020, pp. 275–423. MR 4378429
- John W. Barrett, Klaus Deckelnick, and Vanessa Styles, Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve, SIAM J. Numer. Anal. 55 (2017), no. 2, 1080–1100. MR 3639582, DOI 10.1137/16M1083682
- John W. Barrett, Harald Garcke, and Robert Nürnberg, A parametric finite element method for fourth order geometric evolution equations, J. Comput. Phys. 222 (2007), no. 1, 441–462. MR 2298053, DOI 10.1016/j.jcp.2006.07.026
- John W. Barrett, Harald Garcke, and Robert Nürnberg, A variational formulation of anisotropic geometric evolution equations in higher dimensions, Numer. Math. 109 (2008), no. 1, 1–44. MR 2377611, DOI 10.1007/s00211-007-0135-5
- John W. Barrett, Harald Garcke, and Robert Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in $\Bbb R^3$, J. Comput. Phys. 227 (2008), no. 9, 4281–4307. MR 2406538, DOI 10.1016/j.jcp.2007.11.023
- John W. Barrett, Harald Garcke, and Robert Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J. Sci. Comput. 31 (2008), no. 1, 225–253. MR 2460777, DOI 10.1137/070700231
- Sören Bartels, A simple scheme for the approximation of the elastic flow of inextensible curves, IMA J. Numer. Anal. 33 (2013), no. 4, 1115–1125. MR 3119710, DOI 10.1093/imanum/drs041
- Andrea Bonito, Ricardo H. Nochetto, and M. Sebastian Pauletti, Parametric FEM for geometric biomembranes, J. Comput. Phys. 229 (2010), no. 9, 3171–3188. MR 2601095, DOI 10.1016/j.jcp.2009.12.036
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- K. Deckelnick and G. Dziuk, On the approximation of the curve shortening flow, Calculus of variations, applications and computations (Pont-à-Mousson, 1994) Pitman Res. Notes Math. Ser., vol. 326, Longman Sci. Tech., Harlow, 1995, pp. 100–108. MR 1419337
- Klaus Deckelnick and Gerhard Dziuk, Error analysis for the elastic flow of parametrized curves, Math. Comp. 78 (2009), no. 266, 645–671. MR 2476555, DOI 10.1090/S0025-5718-08-02176-5
- Klaus Deckelnick, Gerhard Dziuk, and Charles M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numer. 14 (2005), 139–232. MR 2168343, DOI 10.1017/S0962492904000224
- Alan Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal. 47 (2009), no. 2, 805–827. MR 2485433, DOI 10.1137/070708135
- Dennis M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), no. 1, 157–162. MR 697987
- G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math. 58 (1991), no. 6, 603–611. MR 1083523, DOI 10.1007/BF01385643
- Gerhard Dziuk, Convergence of a semi-discrete scheme for the curve shortening flow, Math. Models Methods Appl. Sci. 4 (1994), no. 4, 589–606. MR 1291140, DOI 10.1142/S0218202594000339
- Gerhard Dziuk, Computational parametric Willmore flow, Numer. Math. 111 (2008), no. 1, 55–80. MR 2448203, DOI 10.1007/s00211-008-0179-1
- G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal. 27 (2007), no. 2, 262–292. MR 2317005, DOI 10.1093/imanum/drl023
- Gerhard Dziuk and Charles M. Elliott, A fully discrete evolving surface finite element method, SIAM J. Numer. Anal. 50 (2012), no. 5, 2677–2694. MR 3022237, DOI 10.1137/110828642
- Gerhard Dziuk and Charles M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013), 289–396. MR 3038698, DOI 10.1017/S0962492913000056
- Gerhard Dziuk, Dietmar Kröner, and Thomas Müller, Scalar conservation laws on moving hypersurfaces, Interfaces Free Bound. 15 (2013), no. 2, 203–236. MR 3105772, DOI 10.4171/IFB/301
- Charles M. Elliott, Harald Garcke, and Balázs Kovács, Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces, Numer. Math. 151 (2022), no. 4, 873–925. MR 4453294, DOI 10.1007/s00211-022-01301-3
- Charles M. Elliott and Hans Fritz, On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick, IMA J. Numer. Anal. 37 (2017), no. 2, 543–603. MR 3649420, DOI 10.1093/imanum/drw020
- H. Fritz, Finite elemente approximation der Ricci-Krümmung und simulation des Ricci-Deturck-Flusses, PhD thesis, 2013.
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Xinping Gui, Buyang Li, and Jilu Wang, Convergence of renormalized finite element methods for heat flow of harmonic maps, SIAM J. Numer. Anal. 60 (2022), no. 1, 312–338. MR 4377027, DOI 10.1137/21M1402212
- Jiashun Hu and Buyang Li, Evolving finite element methods with an artificial tangential velocity for mean curvature flow and Willmore flow, Numer. Math. 152 (2022), no. 1, 127–181. MR 4474058, DOI 10.1007/s00211-022-01309-9
- Balázs Kovács, High-order evolving surface finite element method for parabolic problems on evolving surfaces, IMA J. Numer. Anal. 38 (2018), no. 1, 430–459. MR 3800028, DOI 10.1093/imanum/drx013
- Balázs Kovács, Buyang Li, and Christian Lubich, A convergent evolving finite element algorithm for mean curvature flow of closed surfaces, Numer. Math. 143 (2019), no. 4, 797–853. MR 4026373, DOI 10.1007/s00211-019-01074-2
- Balázs Kovács, Buyang Li, and Christian Lubich, A convergent evolving finite element algorithm for Willmore flow of closed surfaces, Numer. Math. 149 (2021), no. 3, 595–643. MR 4344594, DOI 10.1007/s00211-021-01238-z
- Balázs Kovács, Buyang Li, Christian Lubich, and Christian A. Power Guerra, Convergence of finite elements on an evolving surface driven by diffusion on the surface, Numer. Math. 137 (2017), no. 3, 643–689. MR 3712288, DOI 10.1007/s00211-017-0888-4
- John M. Lee, Introduction to Riemannian manifolds, Graduate Texts in Mathematics, vol. 176, Springer, Cham, 2018. Second edition of [ MR1468735]. MR 3887684
- Buyang Li, Convergence of Dziuk’s linearly implicit parametric finite element method for curve shortening flow, SIAM J. Numer. Anal. 58 (2020), no. 4, 2315–2333. MR 4134364, DOI 10.1137/19M1305483
- Buyang Li, Convergence of Dziuk’s semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements, SIAM J. Numer. Anal. 59 (2021), no. 3, 1592–1617. MR 4269969, DOI 10.1137/20M136935X
- Carlo Mantegazza, Lecture notes on mean curvature flow, Progress in Mathematics, vol. 290, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2815949, DOI 10.1007/978-3-0348-0145-4
- A. Mierswa, Error estimates for a finite difference approximation of mean curvature flow for surfaces of torus type, PhD Thesis, Otto-von-Guericke-Universität, Magdeburg, 2020.
- Karol Mikula and Daniel Ševčovič, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy, SIAM J. Appl. Math. 61 (2001), no. 5, 1473–1501. MR 1824511, DOI 10.1137/S0036139999359288
- Changqing Ye and Junzhi Cui, Convergence of Dziuk’s fully discrete linearly implicit scheme for curve shortening flow, SIAM J. Numer. Anal. 59 (2021), no. 6, 2823–2842. MR 4333668, DOI 10.1137/21M1391626
Bibliographic Information
- Genming Bai
- Affiliation: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People’s Republic of China
- MR Author ID: 1509490
- ORCID: 0000-0002-4138-8051
- Email: genming.bai@connect.polyu.hk
- Buyang Li
- Affiliation: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People’s Republic of China
- MR Author ID: 910552
- Email: buyang.li@polyu.edu.hk
- Received by editor(s): October 30, 2023
- Received by editor(s) in revised form: August 6, 2024
- Published electronically: October 3, 2024
- Additional Notes: This work was supported in part by the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU/RFS2324-5S03, PolyU/GRF15303022) and an internal grant of The Hong Kong Polytechnic University (Project ID: P0051154).
The second author is the corresponding author - © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 2151-2220
- MSC (2020): Primary 65M12, 65M60, 53E10, 53A04, 35R01, 35R35
- DOI: https://doi.org/10.1090/mcom/4019