A unified structure-preserving parametric finite element method for anisotropic surface diffusion
HTML articles powered by AMS MathViewer
- by Weizhu Bao and Yifei Li;
- Math. Comp. 94 (2025), 2113-2149
- DOI: https://doi.org/10.1090/mcom/4022
- Published electronically: October 9, 2024
- HTML | PDF | Request permission
Abstract:
We propose and analyze a unified structure-preserving parametric finite element method (SP-PFEM) for the anisotropic surface diffusion of curves in two dimensions $(d=2)$ and surfaces in three dimensions $(d=3)$ with an arbitrary anisotropic surface energy density $\gamma (\boldsymbol {n})$, where $\boldsymbol {n}\in \mathbb {S}^{d-1}$ represents the outward unit vector. By introducing a novel unified surface energy matrix $\boldsymbol {G}_k(\boldsymbol {n})$ depending on $\gamma (\boldsymbol {n})$, the Cahn-Hoffman $\boldsymbol {\xi }$-vector and a stabilizing function $k(\boldsymbol {n}):\ \mathbb {S}^{d-1}\to {\mathbb R}$, we obtain a unified and conservative variational formulation for the anisotropic surface diffusion via different surface differential operators, including the surface gradient operator, the surface divergence operator and the surface Laplace-Beltrami operator. A SP-PFEM discretization is presented for the variational problem. In order to establish the unconditional energy stability of the proposed SP-PFEM under a very mild condition on $\gamma (\boldsymbol {n})$, we propose a new framework via local energy estimate for proving energy stability/structure-preserving properties of the parametric finite element method for the anisotropic surface diffusion. This framework sheds light on how to prove unconditional energy stability of other numerical methods for geometric partial differential equations. Extensive numerical results are reported to demonstrate the efficiency and accuracy as well as structure-preserving properties of the proposed SP-PFEM for the anisotropic surface diffusion with arbitrary anisotropic surface energy density $\gamma (\boldsymbol {n})$ arising from different applications.References
- Eberhard Bänsch, Pedro Morin, and Ricardo H. Nochetto, Surface diffusion of graphs: variational formulation, error analysis, and simulation, SIAM J. Numer. Anal. 42 (2004), no. 2, 773–799. MR 2084235, DOI 10.1137/S0036142902419272
- Weizhu Bao, Harald Garcke, Robert Nürnberg, and Quan Zhao, Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations, J. Comput. Phys. 460 (2022), Paper No. 111180, 23. MR 4404537, DOI 10.1016/j.jcp.2022.111180
- Weizhu Bao, Wei Jiang, and Yifei Li, A symmetrized parametric finite element method for anisotropic surface diffusion of closed curves, SIAM J. Numer. Anal. 61 (2023), no. 2, 617–641. MR 4566814, DOI 10.1137/22M1472851
- Weizhu Bao, Wei Jiang, Yan Wang, and Quan Zhao, A parametric finite element method for solid-state dewetting problems with anisotropic surface energies, J. Comput. Phys. 330 (2017), 380–400. MR 3581472, DOI 10.1016/j.jcp.2016.11.015
- Weizhu Bao and Yifei Li, A structure-preserving parametric finite element method for geometric flows with anisotropic surface energy, Numer. Math. 156 (2024), no. 2, 609–639. MR 4735392, DOI 10.1007/s00211-024-01398-8
- Weizhu Bao and Yifei Li, A symmetrized parametric finite element method for anisotropic surface diffusion in three dimensions, SIAM J. Sci. Comput. 45 (2023), no. 4, A1438–A1461. MR 4610665, DOI 10.1137/22M1500575
- Weizhu Bao and Quan Zhao, A structure-preserving parametric finite element method for surface diffusion, SIAM J. Numer. Anal. 59 (2021), no. 5, 2775–2799. MR 4331938, DOI 10.1137/21M1406751
- Weizhu Bao and Quan Zhao, An energy-stable parametric finite element method for simulating solid-state dewetting problems in three dimensions, J. Comput. Math. 41 (2023), no. 4, 771–796. MR 4586461, DOI 10.4208/jcm.2205-m2021-0237
- John W. Barrett, Harald Garcke, and Robert Nürnberg, A parametric finite element method for fourth order geometric evolution equations, J. Comput. Phys. 222 (2007), no. 1, 441–462. MR 2298053, DOI 10.1016/j.jcp.2006.07.026
- John W. Barrett, Harald Garcke, and Robert Nürnberg, Numerical approximation of anisotropic geometric evolution equations in the plane, IMA J. Numer. Anal. 28 (2008), no. 2, 292–330. MR 2401200, DOI 10.1093/imanum/drm013
- John W. Barrett, Harald Garcke, and Robert Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in $\Bbb R^3$, J. Comput. Phys. 227 (2008), no. 9, 4281–4307. MR 2406538, DOI 10.1016/j.jcp.2007.11.023
- John W. Barrett, Harald Garcke, and Robert Nürnberg, A variational formulation of anisotropic geometric evolution equations in higher dimensions, Numer. Math. 109 (2008), no. 1, 1–44. MR 2377611, DOI 10.1007/s00211-007-0135-5
- John W. Barrett, Harald Garcke, and Robert Nürnberg, Parametric finite element approximations of curvature-driven interface evolutions, Geometric partial differential equations. Part I, Handb. Numer. Anal., vol. 21, Elsevier/North-Holland, Amsterdam, [2020] ©2020, pp. 275–423. MR 4378429
- Richard Bellman, Introduction to matrix analysis, Classics in Applied Mathematics, vol. 19, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. Reprint of the second (1970) edition; With a foreword by Gene Golub. MR 1455129, DOI 10.1137/1.9781611971170
- Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge University Press, Cambridge, 2004. MR 2061575, DOI 10.1017/CBO9780511804441
- J. W. Cahn and D. W. Hoffman, A vector thermodynamics for anisotropic surfaces–II. Curved and faceted surfaces, Acta Metall. Mater. 22 (1974), no. 10, 1205–1214.
- D. W. Hoffman and J. W. Cahn, A vector thermodynamics for anisotropic surfaces: I. Fundamentals and application to plane surface junctions, Surf. Sci. 31 (1972), 368–388.
- J. W. Cahn and J. E. Taylor, Overview no. 113 surface motion by surface diffusion, Acta Metall. Mater. 42 (1994), no. 4, 1045–1063.
- W. C. Carter, A. Roosen, J. W. Cahn, and J. E. Taylor, Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces, Acta Metall. Mater. 43 (1995), no. 12, 4309–4323.
- L.-S. Chang, E. Rabkin, B. B. Straumal, B. Baretzky, and W. Gust, Thermodynamic aspects of the grain boundary segregation in Cu (Bi) alloys, Acta Mater. 47 (1999), no. 15–16, 4041–4046.
- U. Clarenz, U. Diewald, and M. Rumpf, Anisotropic geometric diffusion in surface processing, IEEE Vis. 2000 (2000).
- Klaus Deckelnick, Gerhard Dziuk, and Charles M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numer. 14 (2005), 139–232. MR 2168343, DOI 10.1017/S0962492904000224
- Ping Du, Mikhail Khenner, and Harris Wong, A tangent-plane marker-particle method for the computation of three-dimensional solid surfaces evolving by surface diffusion on a substrate, J. Comput. Phys. 229 (2010), no. 3, 813–827. MR 2566365, DOI 10.1016/j.jcp.2009.10.013
- Beiping Duan and Buyang Li, New artificial tangential motions for parametric finite element approximation of surface evolution, SIAM J. Sci. Comput. 46 (2024), no. 1, A587–A608. MR 4708913, DOI 10.1137/23M1551857
- Charles M. Elliott and Hans Fritz, On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick, IMA J. Numer. Anal. 37 (2017), no. 2, 543–603. MR 3649420, DOI 10.1093/imanum/drw020
- Irene Fonseca, Aldo Pratelli, and Barbara Zwicknagl, Shapes of epitaxially grown quantum dots, Arch. Ration. Mech. Anal. 214 (2014), no. 2, 359–401. MR 3255695, DOI 10.1007/s00205-014-0767-4
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Yoshikazu Giga, Surface evolution equations, Monographs in Mathematics, vol. 99, Birkhäuser Verlag, Basel, 2006. A level set approach. MR 2238463
- Pedro Martins Girão and Robert V. Kohn, The crystalline algorithm for computing motion by curvature, Variational methods for discontinuous structures (Como, 1994) Progr. Nonlinear Differential Equations Appl., vol. 25, Birkhäuser, Basel, 1996, pp. 7–18. MR 1414485
- Morton E. Gurtin and Michel E. Jabbour, Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: interface-controlled evolution, phase transitions, epitaxial growth of elastic films, Arch. Ration. Mech. Anal. 163 (2002), no. 3, 171–208. MR 1912105, DOI 10.1007/s002050200193
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- K. Hauffe, The application of the theory of semiconductors to problems of heterogeneous catalysis, Adv. Catal. 7 (1955), 213–257.
- Frank Haußer and Axel Voigt, A discrete scheme for parametric anisotropic surface diffusion, J. Sci. Comput. 30 (2007), no. 2, 223–235. MR 2288190, DOI 10.1007/s10915-005-9064-6
- Jiashun Hu and Buyang Li, Evolving finite element methods with an artificial tangential velocity for mean curvature flow and Willmore flow, Numer. Math. 152 (2022), no. 1, 127–181. MR 4474058, DOI 10.1007/s00211-022-01309-9
- W. Jiang, W. Bao, C. V. Thompson, and D. J. Srolovitz, Phase field approach for simulating solid-state dewetting problems, Acta Mater. 60 (2012), no. 15, 5578–5592.
- Wei Jiang and Buyang Li, A perimeter-decreasing and area-conserving algorithm for surface diffusion flow of curves, J. Comput. Phys. 443 (2021), Paper No. 110531, 11. MR 4282657, DOI 10.1016/j.jcp.2021.110531
- W. Jiang, Y. Wang, Q. Zhao, D. J. Srolovitz, and W. Bao, Solid-state dewetting and island morphologies in strongly anisotropic materials, Scr. Mater. 115 (2016), 123–127.
- Wei Jiang, Quan Zhao, and Weizhu Bao, Sharp-interface model for simulating solid-state dewetting in three dimensions, SIAM J. Appl. Math. 80 (2020), no. 4, 1654–1677. MR 4123689, DOI 10.1137/19M1251345
- Wei Jiang and Quan Zhao, Sharp-interface approach for simulating solid-state dewetting in two dimensions: a Cahn-Hoffman $\xi$-vector formulation, Phys. D 390 (2019), 69–83. MR 3926447, DOI 10.1016/j.physd.2018.11.003
- Balázs Kovács, Buyang Li, Christian Lubich, and Christian A. Power Guerra, Convergence of finite elements on an evolving surface driven by diffusion on the surface, Numer. Math. 137 (2017), no. 3, 643–689. MR 3712288, DOI 10.1007/s00211-017-0888-4
- John M. Lee, Introduction to Riemannian manifolds, Graduate Texts in Mathematics, vol. 176, Springer, Cham, 2018. Second edition of [ MR1468735]. MR 3887684
- Yifei Li and Weizhu Bao, An energy-stable parametric finite element method for anisotropic surface diffusion, J. Comput. Phys. 446 (2021), Paper No. 110658, 27. MR 4305931, DOI 10.1016/j.jcp.2021.110658
- W. W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28 (1957), 333–339.
- M. Naffouti et al., Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures, Sci. Adv. 3 (2017), no. 11, 1472.
- A. Sharipova, L. Klinger, A. Bisht, B. B. Straumal, and E. Rabkin, Solid-state dewetting of thin Au films on oxidized surface of biomedical TiAlV alloy, Acta Mater. 231 (2022), 117919.
- J. E. Taylor, Mean curvature and weighted mean curvature, Acta Metall. Mater. 40 (1992), 1475–1485.
- J. E. Taylor, J. W. Cahn, and C. A. Handwerker, Overview no. 98 i—geometric models of crystal growth, Acta Metall. Mater. 40 (1992), no. 7, 1443–1474.
- C. V. Thompson, Solid-state dewetting of thin films, Annu. Rev. Mater. Res. 42 (2012), 399–434.
- Y. Wang, W. Jiang, W. Bao, and D. J. Srolovitz, Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies, Phys. Rev. B. 91 (2015), no. 4, 045303.
- Yan Xu and Chi-Wang Shu, Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs, J. Sci. Comput. 40 (2009), no. 1-3, 375–390. MR 2511740, DOI 10.1007/s10915-008-9262-0
- J. Ye and C. V. Thompson, Mechanisms of complex morphological evolution during solid-state dewetting of single-crystal nickel thin films, Appl. Phys. Lett. 97 (2010), no. 7, 071904.
- Quan Zhao, Wei Jiang, and Weizhu Bao, A parametric finite element method for solid-state dewetting problems in three dimensions, SIAM J. Sci. Comput. 42 (2020), no. 1, B327–B352. MR 4065198, DOI 10.1137/19M1281666
- Quan Zhao, Wei Jiang, and Weizhu Bao, An energy-stable parametric finite element method for simulating solid-state dewetting, IMA J. Numer. Anal. 41 (2021), no. 3, 2026–2055. MR 4286255, DOI 10.1093/imanum/draa070
Bibliographic Information
- Weizhu Bao
- Affiliation: Department of Mathematics, National University of Singapore, Singapore 119076, Singapore
- MR Author ID: 354327
- ORCID: 0000-0003-3418-9625
- Email: matbaowz@nus.edu.sg
- Yifei Li
- Affiliation: Department of Mathematics, National University of Singapore, Singapore 119076, Singapore
- ORCID: 0000-0002-9024-1435
- Email: e0444158@u.nus.edu
- Received by editor(s): January 31, 2024
- Received by editor(s) in revised form: July 4, 2024
- Published electronically: October 9, 2024
- Additional Notes: This work was partially supported by the Ministry of Education of Singapore under its AcRF Tier 2 funding MOE-T2EP20122-0002 (A-8000962-00-00). Part of the work was done when the authors were visiting the Institute of Mathematical Science at the National University of Singapore in 2023.
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 2113-2149
- MSC (2020): Primary 65M60, 65M12, 53E40, 53E10, 35K55
- DOI: https://doi.org/10.1090/mcom/4022