Quadratic constraint consistency in the projection-free approximation of harmonic maps and bending isometries
HTML articles powered by AMS MathViewer
- by Georgios Akrivis, Sören Bartels and Christian Palus;
- Math. Comp. 94 (2025), 2251-2269
- DOI: https://doi.org/10.1090/mcom/4035
- Published electronically: November 8, 2024
- HTML | PDF | Request permission
Abstract:
We devise a projection-free iterative scheme for the approximation of harmonic maps that provides a second-order accuracy of the constraint violation and is unconditionally energy stable. A corresponding error estimate is valid under a mild but necessary discrete regularity condition. The method is based on the application of a BDF2 scheme and the considered problem serves as a model for partial differential equations with holonomic constraint. The performance of the method is illustrated via the computation of stationary harmonic maps and bending isometries.References
- Georgios Akrivis, Michael Feischl, Balázs Kovács, and Christian Lubich, Higher-order linearly implicit full discretization of the Landau-Lifshitz-Gilbert equation, Math. Comp. 90 (2021), no. 329, 995–1038. MR 4232216, DOI 10.1090/mcom/3597
- Rong An, Huadong Gao, and Weiwei Sun, Optimal error analysis of Euler and Crank-Nicolson projection finite difference schemes for Landau-Lifshitz equation, SIAM J. Numer. Anal. 59 (2021), no. 3, 1639–1662. MR 4272916, DOI 10.1137/20M1335431
- François Alouges, Evaggelos Kritsikis, Jutta Steiner, and Jean-Christophe Toussaint, A convergent and precise finite element scheme for Landau-Lifschitz-Gilbert equation, Numer. Math. 128 (2014), no. 3, 407–430. MR 3268842, DOI 10.1007/s00211-014-0615-3
- Georgios Akrivis and Christian Lubich, Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations, Numer. Math. 131 (2015), no. 4, 713–735. MR 3422451, DOI 10.1007/s00211-015-0702-0
- François Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case, SIAM J. Numer. Anal. 34 (1997), no. 5, 1708–1726. MR 1472192, DOI 10.1137/S0036142994264249
- Sören Bartels, Stability and convergence of finite-element approximation schemes for harmonic maps, SIAM J. Numer. Anal. 43 (2005), no. 1, 220–238. MR 2177142, DOI 10.1137/040606594
- Sören Bartels, Approximation of large bending isometries with discrete Kirchhoff triangles, SIAM J. Numer. Anal. 51 (2013), no. 1, 516–525. MR 3033021, DOI 10.1137/110855405
- Sören Bartels, Numerical methods for nonlinear partial differential equations, Springer Series in Computational Mathematics, vol. 47, Springer, Cham, 2015. MR 3309171, DOI 10.1007/978-3-319-13797-1
- Sören Bartels, Projection-free approximation of geometrically constrained partial differential equations, Math. Comp. 85 (2016), no. 299, 1033–1049. MR 3454357, DOI 10.1090/mcom/3008
- Santiago Badia, Francisco Guillén-González, and Juan Vicente Gutiérrez-Santacreu, Finite element approximation of nematic liquid crystal flows using a saddle-point structure, J. Comput. Phys. 230 (2011), no. 4, 1686–1706. MR 2753385, DOI 10.1016/j.jcp.2010.11.033
- Andrea Bonito, Diane Guignard, Ricardo H. Nochetto, and Shuo Yang, Numerical analysis of the LDG method for large deformations of prestrained plates, IMA J. Numer. Anal. 43 (2023), no. 2, 627–662. MR 4568427, DOI 10.1093/imanum/drab103
- Sören Bartels, Balázs Kovács, and Zhangxian Wang, Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints, IMA J. Numer. Anal. 44 (2024), no. 2, 633–653. MR 4727106, DOI 10.1093/imanum/drad037
- Sören Bartels and Andreas Prohl, Constraint preserving implicit finite element discretization of harmonic map flow into spheres, Math. Comp. 76 (2007), no. 260, 1847–1859. MR 2336271, DOI 10.1090/S0025-5718-07-02026-1
- Sören Bartels and Christian Palus, Stable gradient flow discretizations for simulating bilayer plate bending with isometry and obstacle constraints, IMA J. Numer. Anal. 42 (2022), no. 3, 1903–1928. MR 4454912, DOI 10.1093/imanum/drab050
- Kung-Ching Chang, Wei Yue Ding, and Rugang Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom. 36 (1992), no. 2, 507–515. MR 1180392
- Giovanni Di Fratta, Carl-Martin Pfeiler, Dirk Praetorius, Michele Ruggeri, and Bernhard Stiftner, Linear second-order IMEX-type integrator for the (eddy current) Landau-Lifshitz-Gilbert equation, IMA J. Numer. Anal. 40 (2020), no. 4, 2802–2838. MR 4167063, DOI 10.1093/imanum/drz046
- Gero Friesecke, Richard D. James, and Stefan Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002), no. 11, 1461–1506. MR 1916989, DOI 10.1002/cpa.10048
- Xinping Gui, Buyang Li, and Jilu Wang, Convergence of renormalized finite element methods for heat flow of harmonic maps, SIAM J. Numer. Anal. 60 (2022), no. 1, 312–338. MR 4377027, DOI 10.1137/21M1402212
- Juan Vicente Gutiérrez-Santacreu and Marco Restelli, Inf-sup stable finite element methods for the Landau-Lifshitz-Gilbert and harmonic map heat flow equations, SIAM J. Numer. Anal. 55 (2017), no. 6, 2565–2591. MR 3719027, DOI 10.1137/17M1116799
- Qiya Hu, Xue-Cheng Tai, and Ragnar Winther, A saddle point approach to the computation of harmonic maps, SIAM J. Numer. Anal. 47 (2009), no. 2, 1500–1523. MR 2497338, DOI 10.1137/060675575
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, 2nd ed., Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1996. Stiff and differential-algebraic problems. MR 1439506, DOI 10.1007/978-3-642-05221-7
- Johannes Kraus, Carl-Martin Pfeiler, Dirk Praetorius, Michele Ruggeri, and Bernhard Stiftner, Iterative solution and preconditioning for the tangent plane scheme in computational micromagnetics, J. Comput. Phys. 398 (2019), 108866, 27. MR 3995784, DOI 10.1016/j.jcp.2019.108866
- Norbert J. Mauser, Carl-Martin Pfeiler, Dirk Praetorius, and Michele Ruggeri, Unconditional well-posedness and IMEX improvement of a family of predictor-corrector methods in micromagnetics, Appl. Numer. Math. 180 (2022), 33–54. MR 4432060, DOI 10.1016/j.apnum.2022.05.008
- Tristan Rivière, Everywhere discontinuous harmonic maps into spheres, Acta Math. 175 (1995), no. 2, 197–226. MR 1368247, DOI 10.1007/BF02393305
- Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024, DOI 10.1007/3-540-33122-0
Bibliographic Information
- Georgios Akrivis
- Affiliation: Department of Computer Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece, and Institute of Applied and Computational Mathematics, FORTH, 700 13 Heraklion, Crete, Greece
- MR Author ID: 24080
- Email: akrivis@cse.uoi.gr
- Sören Bartels
- Affiliation: Abteilung für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg i. Br., Germany
- Email: bartels@mathematik.uni-freiburg.de
- Christian Palus
- Affiliation: Abteilung für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg i. Br., Germany
- MR Author ID: 1508548
- Email: christian.palus@mathematik.uni-freiburg.de
- Received by editor(s): September 30, 2023
- Received by editor(s) in revised form: May 1, 2024, and August 6, 2024
- Published electronically: November 8, 2024
- Additional Notes: This research was supported by the German Research Foundation (DFG) via research unit FOR 3013 Vector- and tensor-valued surface PDEs (Grant no. BA2268/6-1).
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp. 94 (2025), 2251-2269
- MSC (2020): Primary 35J62; Secondary 35J50, 35J57, 65N30
- DOI: https://doi.org/10.1090/mcom/4035