Isogenies on Kummer Surfaces
HTML articles powered by AMS MathViewer
- by Maria Corte-Real Santos and E. Victor Flynn;
- Math. Comp. 94 (2025), 2575-2612
- DOI: https://doi.org/10.1090/mcom/4036
- Published electronically: November 7, 2024
Abstract:
We first give a cleaner and more direct approach to the derivation of the Fast model of the Kummer surface. We show how to construct efficient $(N,N)$-isogenies, for any odd $N$, both on the general Kummer surface and on the Fast model.References
- G. Bisson, Endomorphism rings in cryptography, Ph.D. Thesis, Institut National Polytechnique de Lorraine-INPL, Technische Universiteit Eindhoven, 2011.
- G. Bisson, R. Cosset, and D. Robert, AVIsogenies v0.7 (abelian varieties and isogenies), Magma Package for Explicit Isogenies Between Abelian Varieties, 2021, https://www.math.u-bordeaux.fr/~damienrobert/avisogenies/.
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Nils Bruin, E. Victor Flynn, and Damiano Testa, Descent via $(3,3)$-isogeny on Jacobians of genus 2 curves, Acta Arith. 165 (2014), no. 3, 201–223. MR 3263947, DOI 10.4064/aa165-3-1
- J. W. S. Cassels and E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus $2$, London Mathematical Society Lecture Note Series, vol. 230, Cambridge University Press, Cambridge, 1996.
- Wouter Castryck, Thomas Decru, and Benjamin Smith, Hash functions from superspecial genus-2 curves using Richelot isogenies, J. Math. Cryptol. 14 (2020), no. 1, 268–292. MR 4134760, DOI 10.1515/jmc-2019-0021
- D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by addition in formal groups and new primality and factorization tests, Adv. in Appl. Math. 7 (1986), no. 4, 385–434. MR 866702, DOI 10.1016/0196-8858(86)90023-0
- Ping Ngai Chung, Craig Costello, and Benjamin Smith, Fast, uniform scalar multiplication for genus 2 Jacobians with fast Kummers, Selected areas in cryptography—SAC 2016, Lecture Notes in Comput. Sci., vol. 10532, Springer, Cham, 2017, pp. 465–481. MR 3723015
- M. Corte-Real Santos, C. Costello, and B. Smith. Efficient (3,3)-isogenies on fast Kummer surfaces, 2024, https://arxiv.org/pdf/2402.01223.pdf.
- M. Corte-Real Santos and E. V. Flynn, Github repository, 2024, https://github.com/mariascrs/NN_isogenies.
- R. Cosset, Applications of theta functions for hyperelliptic curve cryptography, Ph.D. Thesis, Université Henri Poincaré - Nancy I, November 2011.
- Romain Cosset and Damien Robert, Computing $(\ell ,\ell )$-isogenies in polynomial time on Jacobians of genus $2$ curves, Math. Comp. 84 (2015), no. 294, 1953–1975. MR 3335899, DOI 10.1090/S0025-5718-2014-02899-8
- R. W. Farebrother, Linear least squares computations, Statistics: Textbooks and Monographs, vol. 91, Marcel Dekker, Inc., New York, 1988. MR 933081
- E. V. Flynn, Descent via $(5,5)$-isogeny on Jacobians of genus 2 curves, J. Number Theory 153 (2015), 270–282. MR 3327574, DOI 10.1016/j.jnt.2015.01.018
- E. V. Flynn and K. Khuri-Makdisi, An analog of the Edwards model for Jacobians of genus 2 curves, Res. Number Theory 10 (2024), no. 2, Paper No. 32, 41. MR 4722483, DOI 10.1007/s40993-024-00518-5
- E. V. Flynn and Yan Bo Ti, Genus two isogeny cryptography, Post-quantum cryptography, Lecture Notes in Comput. Sci., vol. 11505, Springer, Cham, 2019, pp. 286–306. MR 3989010, DOI 10.1007/978-3-030-25510-7_{1}6
- P. Gaudry, Fast genus 2 arithmetic based on theta functions, J. Math. Cryptol. 1 (2007), no. 3, 243–265. MR 2372155, DOI 10.1515/JMC.2007.012
- The GMP Developers, GMP, the GNU Multiple Precision Arithmetic Library (version 6.3.0), 2023, https://gmplib.org/.
- David Lubicz and Damien Robert, Computing separable isogenies in quasi-optimal time, LMS J. Comput. Math. 18 (2015), no. 1, 198–216. MR 3349315, DOI 10.1112/S146115701400045X
- David Lubicz and Damien Robert, Arithmetic on abelian and Kummer varieties, Finite Fields Appl. 39 (2016), 130–158. MR 3475546, DOI 10.1016/j.ffa.2016.01.009
- David Lubicz and Damien Robert, Fast change of level and applications to isogenies, Res. Number Theory 9 (2023), no. 1, Paper No. 7, 28. MR 4522829, DOI 10.1007/s40993-022-00407-9
- Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of applied cryptography, CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 1997. With a foreword by Ronald L. Rivest. MR 1412797
- Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. Comp. 48 (1987), no. 177, 243–264. MR 866113, DOI 10.1090/S0025-5718-1987-0866113-7
- Maple, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario, 2024.
- David Mumford, Tata lectures on theta. II, Progress in Mathematics, vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian theta functions and differential equations; With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. MR 742776, DOI 10.1007/978-0-8176-4578-6
- Joost Renes and Benjamin Smith, qDSA: small and secure digital signatures with curve-based Diffie-Hellman key pairs, Advances in cryptology—ASIACRYPT 2017. Part II, Lecture Notes in Comput. Sci., vol. 10625, Springer, Cham, 2017, pp. 273–302. MR 3747728, DOI 10.1007/978-3-319-70697-9_{1}0
- D. Robert, Theta functions and cryptographic applications, Ph.D. Thesis, Université Henri Poincaré - Nancy, 2010.
- D. Robert, Efficient algorithms for abelian varieties and their moduli spaces, Habilitation à Diriger des Recherches, Université de Bordeaux (UB), 2021.
- M. Scott, A note on the calculation of some functions in finite fields: tricks of the trade, 2020, https://eprint.iacr.org/2020/1497.
- Daniel Shanks, Five number-theoretic algorithms, Proceedings of the Second Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972) Congress. Numer., No. VII, Utilitas Math., Winnipeg, MB, 1973, pp. 51–70. MR 371855
- A. Tonelli, Bemerkung über die Auflösung quadratischer Congruenzen, Göttinger Nachrichten, 1891, pp. 344–346.
- Richard P. Brent and Paul Zimmermann, Modern computer arithmetic, Cambridge Monographs on Applied and Computational Mathematics, vol. 18, Cambridge University Press, Cambridge, 2011. MR 2760886
Bibliographic Information
- Maria Corte-Real Santos
- Affiliation: University College London, London WC1E 6BT, United Kingdom
- MR Author ID: 1554271
- ORCID: 0000-0003-2651-8951
- Email: maria.santos.20@ucl.ac.uk
- E. Victor Flynn
- Affiliation: Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom
- MR Author ID: 294150
- ORCID: 0000-0002-3340-8868
- Email: flynn@maths.ox.ac.uk
- Received by editor(s): June 3, 2024
- Received by editor(s) in revised form: September 17, 2024
- Published electronically: November 7, 2024
- Additional Notes: The first author was supported by UK EPSRC grant EP/S022503.
- © Copyright 2024 by the authors
- Journal: Math. Comp. 94 (2025), 2575-2612
- MSC (2020): Primary 11G30, 11G10, 14H40
- DOI: https://doi.org/10.1090/mcom/4036