Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

 
 

 

Boundary properties of solutions of differential equations and general boundary-value problems


Author: V. P. Burskiĭ
Translated by: G. G. Gould
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 68 (2007).
Journal: Trans. Moscow Math. Soc. 2007, 163-200
MSC (2000): Primary 35G05, 35B30, 35E20, 35A05, 35B05
DOI: https://doi.org/10.1090/S0077-1554-07-00162-8
Published electronically: October 29, 2007
MathSciNet review: 2429270
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a general differential operator with smooth matrix-valued coefficients in a bounded domain with smooth boundary we consider the boundary properties of functions from the domain of definition of a maximal extension in $L_2(\Omega )$ and we study the properties of extensions and boundary-value problems corresponding to them. The investigations are based on Green’s formula.


References [Enhancements On Off] (What's this?)

References
  • M. S. Agranovič, On partial differential equations with constant coefficients, Uspehi Mat. Nauk 16 (1961), no. 2 (98), 27–93 (Russian). MR 0133597
  • Ju. M. Berezans′kiĭ, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Izdat. “Naukova Dumka”, Kiev, 1965 (Russian). Akademijá Nauk Ukrainskoĭ SSSR. Institut Matematiki. MR 0222719
  • N. Bourbaki, Topological vector spaces. Chapters 1–5, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987. Translated from the French by H. G. Eggleston and S. Madan. MR 910295
  • V. P. Burskiĭ, Harmonic analysis in boundary value problems for partial differential equations with constant coefficients, Dokl. Akad. Nauk Ukrain. SSR Ser. A 3 (1986), 7–10, 90 (Russian, with English summary). MR 842785
  • V. P. Burskiĭ, Boundary properties of $L_2$-solutions of linear differential equations and the equation-domain duality, Dokl. Akad. Nauk SSSR 309 (1989), no. 5, 1036–1039 (Russian); English transl., Soviet Math. Dokl. 40 (1990), no. 3, 592–595. MR 1037114
  • V. P. Burskiĭ, Uniqueness of the solution of the Dirichlet problem in a ball for the wave equation, Differentsial′nye Uravneniya 24 (1988), no. 6, 1038–1039, 1101 (Russian). MR 953854
  • V. P. Burskiĭ, Remarks on the Dirichlet problem for an ultrahyperbolic equation and on integral geometry on the sphere, Uspekhi Mat. Nauk 43 (1988), no. 5(263), 181–182 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 5, 215–216. MR 971474, DOI https://doi.org/10.1070/RM1988v043n05ABEH001938
  • V. P. Burskiĭ, Boundary value problems for a second-order hyperbolic equation in a disk, Izv. Vyssh. Uchebn. Zaved. Mat. 2 (1987), 22–29, 83 (Russian). MR 889192
  • V.P. Burskiĭ, Methods of investigating boundary-value problems for general differential equations, Naukova Dumka, Kiev, 2002. (Russian)
  • V. P. Burskiĭ, Generalized solutions of boundary value problems for differential equations of general type, Uspekhi Mat. Nauk 53 (1998), no. 4(322), 215–216 (Russian); English transl., Russian Math. Surveys 53 (1998), no. 4, 864–865. MR 1668066, DOI https://doi.org/10.1070/rm1998v053n04ABEH000061
  • V. P. Burskiĭ, A commutative diagram connected with a differential operator in a domain, Ukrain. Mat. Zh. 43 (1991), no. 12, 1703–1709 (Russian, with Ukrainian summary); English transl., Ukrainian Math. J. 43 (1991), no. 12, 1588–1594 (1992). MR 1172313, DOI https://doi.org/10.1007/BF01066700
  • V. P. Burskiĭ, On the uniqueness of the solution of some boundary value problems for differential equations in a domain with an algebraic boundary, Ukraïn. Mat. Zh. 45 (1993), no. 7, 898–906 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 45 (1993), no. 7, 993–1003 (1994). MR 1260648, DOI https://doi.org/10.1007/BF01057446
  • V. P. Burskiĭ, Boundary value problems for an elliptic equation with complex coefficients and a moment problem, Ukraïn. Mat. Zh. 45 (1993), no. 11, 1476–1483 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 45 (1993), no. 11, 1659–1668 (1994). MR 1307364, DOI https://doi.org/10.1007/BF01060856
  • V. P. Burskiĭ, Solutions of the Dirichlet problem for elliptic systems in a disk, Ukraïn. Mat. Zh. 44 (1992), no. 10, 1307–1313 (Russian, with Russian and Ukrainian summaries); English transl., Ukrainian Math. J. 44 (1992), no. 10, 1197–1203 (1993). MR 1201128, DOI https://doi.org/10.1007/BF01057674
  • V.P. Burskiĭ, On the kernel of a differential operator with constant lower-order coefficients in a disk, Manuscript deposited in VINITI, no. 3796–82 Dep. (Russian)
  • V. P. Burskiĭ, Theorems on traces of the solution of the string vibration equation in the disk, Akad. Nauk Ukrain. SSR Inst. Mat. Preprint 23 (1985), 35 (Russian). MR 830507
  • L. Ĭ. Vaĭnerman, Extensions of closed operators in Hilbert space, Mat. Zametki 28 (1980), no. 6, 833–842, 960 (Russian). MR 603218
  • M. I. Višik, On general boundary problems for elliptic differential equations, Trudy Moskov. Mat. Obšč. 1 (1952), 187–246 (Russian). MR 0051404
  • V. I. Gorbachuk and M. L. Gorbachuk, Granichnye zadachi dlya differentsial′no-operatornykh uravneniĭ, “Naukova Dumka”, Kiev, 1984 (Russian). MR 776604
  • V. I. Gorbachuk, M. L. Gorbachuk, and A. N. Kochubeĭ, The theory of extensions of symmetric operators, and boundary value problems for differential equations, Ukrain. Mat. Zh. 41 (1989), no. 10, 1299–1313, 1436 (Russian); English transl., Ukrainian Math. J. 41 (1989), no. 10, 1117–1129 (1990). MR 1034669, DOI https://doi.org/10.1007/BF01057246
  • M. L. Gorbačuk, Selfadjoint boundary value problems for a second order differential equation with an unbounded operator coefficient, Funkcional. Anal. i Priložen. 5 (1971), no. 1, 10–21 (Russian). MR 0283624
  • Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral theory. Selfadjoint operators in Hilbert space; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1009163
  • A. A. Dezin, Obshchie voprosy teorii granichnykh zadach, “Nauka”, Moscow, 1980 (Russian). MR 596223
  • Yu. V. Egorov and M. A. Shubin, Linear partial differential equations. Foundations of the classical theory, Partial differential equations, 1 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, pp. 5–265 (Russian). MR 1141629
  • M. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Rec. Math. [Mat. Sbornik] N.S. 20(62) (1947), 431–495 (Russian, with English summary). MR 0024574
  • S. G. Kreĭn, Lineĭ nye uravneniya v banakhovom prostranstve, Izdat. “Nauka”, Moscow, 1971 (Russian). MR 0374949
  • A. N. Kočubeĭ, Extensions of symmetric operators and of symmetric binary relations, Mat. Zametki 17 (1975), 41–48 (Russian). MR 365218
  • L. P. Kupcov, The mean value property and the maximum principle for second order parabolic equations, Dokl. Akad. Nauk SSSR 242 (1978), no. 3, 529–532 (Russian). MR 507137
  • O. A. Ladyzhenskaya and N. N. Ural′tseva, Lineĭ nye i kvazilineĭ nye uravneniya èllipticheskogo tipa, Izdat. “Nauka”, Moscow, 1973 (Russian). Second edition, revised. MR 0509265
  • J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243
  • V. È. Lyantse and O. G. Storozh, Metody teorii neogranichennykh operatorov, “Naukova Dumka”, Kiev, 1983 (Russian). MR 757535
  • Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985
  • A. H. Mamjan, The construction of solvable extensions in a parallelepiped for linear differential operators with constant coefficients, Differencial′nye Uravnenija 6 (1970), 358–370 (Russian). MR 0279426
  • M. A. Naĭmark, Linear differential operators. Part II: Linear differential operators in Hilbert space, Frederick Ungar Publishing Co., New York, 1968. With additional material by the author, and a supplement by V. È. Ljance; Translated from the Russian by E. R. Dawson; English translation edited by W. N. Everitt. MR 0262880
  • V. P. Palamodov, Linear differential operators with constant coefficients, Die Grundlehren der mathematischen Wissenschaften, Band 168, Springer-Verlag, New York-Berlin, 1970. Translated from the Russian by A. A. Brown. MR 0264197
  • B. P. Panejah, General systems of differential equations with constant coefficients., Dokl. Akad. Nauk SSSR 138 (1961), 297–300 (Russian). MR 0126606
  • B. I. Ptashnik, Nekorrektnye granichnye zadachi dlya differentsial′nykh uravneniĭ s chastnymi proizvodnymi, “Naukova Dumka”, Kiev, 1984 (Russian). MR 772024
  • Ja. A. Roĭtberg, The existence of limit values of generalized solutions of elliptic equations on the boundary of the domain, Sibirsk. Mat. Zh. 20 (1979), no. 2, 386–396, 460 (Russian). MR 530503
  • Ja. A. Roĭtberg, On the boundary values of generalized solutions of systems that are elliptic in the sense of Douglis and Nirenberg, Sibirsk. Mat. Ž. 18 (1977), no. 4, 846–860, 957 (Russian). MR 0486967
  • Ya. A. Roĭtberg and V. A. Serdyuk, Elliptic problems with a parameter in $L_{2}$-spaces of generalized functions for general systems of equations, Akad. Nauk Ukrain. SSR Inst. Mat. Preprint 30 (1982), 62 (Russian). MR 692462
  • F. S. Rofe-Beketov, Selfadjoint extensions of differential operators in a space of vector-valued functions, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 8 (1969), 3–24 (Russian). MR 0281055
  • I. V. Skrypnik and I. V. Skrypnik, Nelineĭ nye èllipticheskie uravneniya vysshego poryadka, Izdat. “Naukova Dumka”, Kiev, 1973 (Russian). MR 0435590
  • Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035
  • Lars Hörmander, Differential operators of principal type, Math. Ann. 140 (1960), 124–146. MR 130574, DOI https://doi.org/10.1007/BF01360085
  • Lars Hörmander, The analysis of linear partial differential operators. I, 2nd ed., Springer Study Edition, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. MR 1065136
  • Lars Hörmander, The analysis of linear partial differential operators. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257, Springer-Verlag, Berlin, 1983. Differential operators with constant coefficients. MR 705278
  • V. P. Burskii, On well-posedness of boundary value problems for some class of general PDEs in a generalized setting, Funct. Differ. Equ. 8 (2001), no. 1-2, 89–100. International Conference on Differential and Functional Differential Equations (Moscow, 1999). MR 1949991
  • J. W. Calkin, Abstract symmetric boundary conditions, Trans. Amer. Math. Soc. 45 (1939), no. 3, 369–442. MR 1501997, DOI https://doi.org/10.1090/S0002-9947-1939-1501997-7
  • Avron Douglis and Louis Nirenberg, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math. 8 (1955), 503–538. MR 75417, DOI https://doi.org/10.1002/cpa.3160080406
  • Herbert Gajewski, Konrad Gröger, and Klaus Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 (German). Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, Band 38. MR 0636412
  • Gerd Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 425–513. MR 239269
  • Gudrun Gudmundsdottir, Global properties of differential operators of constant strength, Ark. Mat. 15 (1977), no. 2, 169–198. MR 509109, DOI https://doi.org/10.1007/BF02386038
  • V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1–95. MR 1087947, DOI https://doi.org/10.1016/0022-1236%2891%2990024-Y
  • M. M. Malamud and V. I. Mogilevskii, Kreĭn type formula for canonical resolvents of dual pairs of linear relations, Methods Funct. Anal. Topology 8 (2002), no. 4, 72–100. MR 1942823
  • Lars Hörmander, Definitions of maximal differential operators, Ark. Mat. 3 (1958), 501–504. MR 106333, DOI https://doi.org/10.1007/BF02589511
  • Bent Fuglede, A priori inequalities connected with systems of partial differential equations, Acta Math. 105 (1961), 177–195. MR 140818, DOI https://doi.org/10.1007/BF02559589

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2000): 35G05, 35B30, 35E20, 35A05, 35B05

Retrieve articles in all journals with MSC (2000): 35G05, 35B30, 35E20, 35A05, 35B05


Additional Information

Published electronically: October 29, 2007
Article copyright: © Copyright 2007 American Mathematical Society