On holomorphic solutions of equations of Korteweg–de Vries type
HTML articles powered by AMS MathViewer
- by
A. V. Domrin
Translated by: V. E. Nazaikinskii - Trans. Moscow Math. Soc. 2012, 193-206
- DOI: https://doi.org/10.1090/S0077-1554-2013-00206-X
- Published electronically: March 21, 2013
- PDF | Request permission
Abstract:
We show that, for any of the equations indicated in the title, every solution locally holomorphic in $x$ and $t$ admits global meromorphic continuation in $x$ for each $t$ with trivial monodromy at each pole. By way of application, we describe all possible envelops of meromorphy of local holomorphic solutions of the Boussinesq equation.References
- V. G. Drinfel′d and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 81–180 (Russian). MR 760998
- Graeme Segal and George Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5–65. MR 783348
- B. V. Shabat, Introduction to complex analysis. Part II, Translations of Mathematical Monographs, vol. 110, American Mathematical Society, Providence, RI, 1992. Functions of several variables; Translated from the third (1985) Russian edition by J. S. Joel. MR 1192135, DOI 10.1090/mmono/110
- A. V. Domrin, Meromorphic extension of solutions of soliton equations, Izv. Ross. Akad. Nauk Ser. Mat. 74 (2010), no. 3, 23–44 (Russian, with Russian summary); English transl., Izv. Math. 74 (2010), no. 3, 461–480. MR 2682370, DOI 10.1070/IM2010v074n03ABEH002494
- Igor Moiseevich Krichever, Algebraic curves and commuting matrix differential operators, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 75–76 (Russian). MR 0413179
- I. M. Gel′fand and L. A. Dikiĭ, Fractional powers of operators, and Hamiltonian systems, Funkcional. Anal. i Priložen. 10 (1976), no. 4, 13–29 (Russian). MR 0433508
- L. A. Dickey, Soliton equations and Hamiltonian systems, 2nd ed., Advanced Series in Mathematical Physics, vol. 26, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. MR 1964513, DOI 10.1142/5108
- B. A. Dubrovin, Igor Moiseevich Krichever, and S. P. Novikov, Integrable systems. I, Current problems in mathematics. Fundamental directions, Vol. 4, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, pp. 179–284, 291 (Russian). MR 842910
- Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, Mathematical Surveys and Monographs, vol. 28, American Mathematical Society, Providence, RI, 1988. MR 954382, DOI 10.1090/surv/028
- Ju. I. Manin, Algebraic aspects of nonlinear differential equations, Current problems in mathematics, Vol. 11 (Russian), Akad. Nauk SSSR Vsesojuz. Inst. Naučn. i Tehn. Informacii, Moscow, 1978, pp. 5–152. (errata insert) (Russian). MR 0501136
- F. Gesztesy, D. Race, K. Unterkofler, and R. Weikard, On Gel′fand-Dickey and Drinfel′d-Sokolov systems, Rev. Math. Phys. 6 (1994), no. 2, 227–276. MR 1269299, DOI 10.1142/S0129055X94000122
- Igor Moiseevich Krichever, Integration of nonlinear equations by the methods of algebraic geometry, Funkcional. Anal. i Priložen. 11 (1977), no. 1, 15–31, 96 (Russian). MR 0494262
- S. P. Novikov, A periodic problem for the Korteweg-de Vries equation. I, Funkcional. Anal. i Priložen. 8 (1974), no. 3, 54–66 (Russian). MR 0382878
- D. H. Sattinger and J. S. Szmigielski, Factorization and the dressing method for the Gel′fand-Dikiĭ hierarchy, Phys. D 64 (1993), no. 1-3, 1–34. MR 1214545, DOI 10.1016/0167-2789(93)90247-X
- A. V. Domrin, The Riemann problem and matrix-valued potentials with a converging Baker-Akhiezer function, Teoret. Mat. Fiz. 144 (2005), no. 3, 453–471 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 144 (2005), no. 3, 1264–1278. MR 2191841, DOI 10.1007/s11232-005-0158-y
- R. Weikard, On commuting differential operators, Electron. J. Differential Equations (2000), No. 19, 11. MR 1744086
- E. L. Ince, Ordinary differential equations, Longmans, Green & Co, London, 1927.
- A. P. Veselov and A. B. Shabat, A dressing chain and the spectral theory of the Schrödinger operator, Funktsional. Anal. i Prilozhen. 27 (1993), no. 2, 1–21, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 27 (1993), no. 2, 81–96. MR 1251164, DOI 10.1007/BF01085979
- G. Pólya and G. Szegő, Problems and theorems in analysis. Vol. II, Revised and enlarged translation by C. E. Billigheimer of the fourth German edition, Die Grundlehren der mathematischen Wissenschaften, Band 216, Springer-Verlag, New York-Heidelberg, 1976. Theory of functions, zeros, polynomials, determinants, number theory, geometry. MR 0396134
- A. V. Domrin, Remarks on a local version of the method of the inverse scattering problem, Tr. Mat. Inst. Steklova 253 (2006), no. Kompleks. Anal. i Prilozh., 46–60 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 2(253) (2006), 37–50. MR 2338686, DOI 10.1134/s0081543806020040
- A. V. Domrin, The local holomorphic Cauchy problem for soliton equations of parabolic type, Dokl. Akad. Nauk 420 (2008), no. 1, 14–17 (Russian); English transl., Dokl. Math. 77 (2008), no. 3, 332–335. MR 2462096, DOI 10.1134/S1064562408030034
- A. A. Bolibrukh, Inverse monodromy problems in analytic theory of differential equations, MTsMNO, Moscow, 2009. (Russian)
- G. S. Salehov and V. R. Fridlender, On a problem inverse to the Cauchy-Kovalevskaya problem, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 5(51), 169–192 (Russian). MR 0057430
- Otto Forster, Riemannsche Flächen, Heidelberger Taschenbücher, Band 184, Springer-Verlag, Berlin-New York, 1977 (German). MR 0447557
- L. A. Takhtadzhyan and L. D. Faddeev, Gamil′tonov podkhod v teorii solitonov, “Nauka”, Moscow, 1986 (Russian). MR 889051
Bibliographic Information
- A. V. Domrin
- Affiliation: Faculty of Mechanics and Mathematics, Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russian Federation
- Email: domrin@mi.ras.ru
- Published electronically: March 21, 2013
- Additional Notes: Supported by RFBR grants nos. 11-01-12033-ofi-m, 11-01-00495-a-2011, and 10-01-00178-a
- © Copyright 2013 American Mathematical Society
- Journal: Trans. Moscow Math. Soc. 2012, 193-206
- MSC (2010): Primary 35Q53; Secondary 30B40
- DOI: https://doi.org/10.1090/S0077-1554-2013-00206-X
- MathSciNet review: 3184975