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MULTIPOINT HERMITE–PADÉ APPROXIMANTS

FOR THREE BETA FUNCTIONS

V. N. SOROKIN

Abstract. This paper is concerned with joint multipoint rational approximants with
a common denominator for three beta functions. The limit distributions of the zeros
of the denominators are obtained in terms of equilibrium logarithmic potentials and
in terms of meromorphic functions on Riemann surfaces.

1. Introduction

Let r be a fixed natural number, and let α1, . . . , αr be complex numbers pairwise
incongruent modulo 1 and distinct from integers. Consider the family of functions

(1.1) fj(z) = B(z, αj) =
Γ(z)Γ(αj)

Γ(z + αj)
, j = 1, . . . , r,

where B is the beta function and Γ is the gamma function. These functions are mero-
morphic functions with simple poles at the points z = −m, where m ∈ Z+.

Let β be a fixed complex number. Given the functions (1.1), we pose the following
multipoint Hermite–Padé approximation problem.

Problem 1.1. Given a nonnegative integer number n, find a nonzero polynomial Qn of
degree no greater than rn and polynomials Pn,1, . . . , Pn,r of degree no greater than rn
such that the following interpolation conditions are satisfied:

Rn,j(z) = Qn(z)fj(z)− Pn,j(z) = 0, z = β, β + 1, . . . , β + rn+ n, j = 1, . . . , r.

Problem 1.1 can be reduced to a system of r(rn+n+1) homogeneous linear equations
in (r+1)(rn+1) unknown coefficients of polynomials, and this problem has a nontrivial
solution. Problem 1.1 was studied for r = 1 in [1] and for r = 2 in [2]. From the arguments
in these papers it follows that Problem 1.1 has a unique solution (up to normalization).

The papers [1] and [2] were mainly concerned with finding the limit measure for the
distributions of the zeros of the polynomials Qn after scaling. Namely, let

Q∗
n(z) = CnQn(nz), n ∈ Z+,

where Cn is a normalizing constant such that the leading coefficient of the polynomial
Q∗

n is 1. We let Zn denote the zero set of the polynomial Q∗
n and denote by λn the

counting measure for these zeros; that is,

λn =
1

n

∑
ζ∈Zn

δζ ,
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where δζ is the unit measure at the point ζ.
In [1], [2] it was shown that the zero counting measures converge in the weak-∗ topol-

ogy,

(1.2) λn � λ.

The limit measures λ were characterized in terms of equilibrium problems of logarithmic
potential theory (see [3] and [4]). Recall that the logarithmic potential of a positive
finite Borel measure μ with support S(μ) in the complex plane is defined as the Lebesgue
integral

V μ(x) =

∫
log

1

|x− t| dμ(t), x ∈ C,

which can assume the value +∞. In our setting, (1.2) is equivalent to the asymptotic
formula (

− 1

n

)
log |Q∗

n(x)| −→ V λ(x) as n → ∞,

in which the convergence is uniform on compact subsets inside the domain C \ S(λ).
The above results were proved using classical asymptotic methods. In both cases,

new effects were discovered. For r = 1, Problem 1.1 can be reduced to orthogonality
relations with variable weight with respect to a discrete measure with unbounded sup-
port. The measure λ, which satisfies an equilibrium condition in an external field and
with a constraint, is supported on an infinite interval of the real line. For r = 2, the
functions f1 and f2 form a Nikishin system (under certain restrictions on the param-
eters). Both measures involved in the definition of a Nikishin system are discrete and
have unbounded support. This seems to be the first example of this type. Apart from
the measure λ, the equilibrium problem involves the limit measure of the distribution
of additional interpolation points. Both these measures have noncompact support and
satisfy the constraints.

The purpose of this paper is to examine the solutions to Problem 1.1 for r = 3.
This setting is not a mere generalization— in the case under consideration the functions
f1, f2, f3 no longer form a Nikishin system. This is a new effect, which we first discovered
in [5]. It turns out that a part of the additional interpolation points escapes from the
real line into the complex plane and the structure of the equilibrium problem changes.

To conclude this section, we give the solution to Problem 1.1 in an explicit form. We
set

ωn(x) = (x− β) . . . (x− (β + rn+ n)),

ω∗
n(x) = (x− (β + rn)) . . . (x− (β + rn+ n)),

gα(x) =
Γ(1− α− x)

Γ(1− x)
,

and consider the difference operator (Δf)(x) = f(x+ 1)− f(x).

Proposition 1.1. The following analogue of Rodrigues’s formula holds:

(1.3)
Qn(x)

ωn(x)
=

( r∏
j=1

D(n)
αj

)
1

ω∗
n(x)

, n ∈ Z+,

where

(1.4) D(n)
α =

1

gα(x)

1

n!
Δngα−n(x).

Moreover, the operators in formula (1.3) commute.
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The proof of Proposition 1.1 for arbitrary r paraphrases the proof given in [2] for r = 2
and is omitted.

2. Main results

Fix a number x∗ > 0 and a pair of complex conjugates ζ+ and ζ− and connect the
point x∗ with the points ζ+ and ζ− by simple analytic arcs γ+ and γ− lying in the
open upper and lower half-planes, respectively (apart from their common point x∗), and
which are symmetric with respect to the real line. Set γ = γ+ ∪ γ−. The class of all such
curves γ will be denoted by .ג It is worth pointing out that in the definition of this class
both the point x∗ and the points ζ± are parameters that can vary.

Fix a curve γ ∈ ג and a number t ∈ (0, 1). We pose the following equilibrium problem
in logarithmic potential theory.

Problem 2.1. Find four positive Borel measures λΔ, λF , λΓ, λT such that
(1) the supports of these measures satisfy the conditions

S(λΔ) ⊂ Δ = (−∞, 0], S(λF ) ⊂ F = [0,+∞),

S(λΓ) ⊂ γ∗ = γ ∪ [0, x∗], S(λT ) ⊂ Δ;

(2) the total variations of these measures are such that

‖λΔ‖ = 3, ‖λF ‖ = 1 + t, ‖λΓ‖ = 1− t, ‖λT ‖ = t;

(3) the following constraints are satisfied

λΔ � χΔ, λP

∣∣
F
� 2χF , λP = λF + λΓ,

where χΔ and χF are the classical Lebesgue measures on the intervals Δ and F , respec-
tively;

(4) the following equilibrium conditions are satisfied for some constants wΔ, wF , wΓ,
wT :

1◦ on the interval Δ:

WΔ = 2V λΔ − V λP − V λω

{
� wΔ | S(λΔ),

� wΔ | Δ \ ZΔ,

where

ZΔ = S(λΔ) \ S(χΔ − λΔ)

is the saturation region of the measure λΔ and where the logarithmic potential of the
classical Lebesgue measure λω on the interval [0, 4] plays the role of the external field
φ = −V λω ;

2◦ on the interval F :

WF = −V λΔ + 2V λF + V λΓ − V λT

{
� wF | S(λF ),

� wF | F∗ \ ZF ,

where F∗ = [x∗,+∞), x∗ = min{x∗, inf S(λF )}, and ZF is the saturation region of the
measure λF , that is,

ZF = S(λF ) \ S(2χF − λP

∣∣
F
);

3◦ on the set γ∗:

WΓ = −V λΔ + V λF + 2V λΓ + V λT

{
� wΓ | S(λΓ),

� wΓ | γ∗ \ ZΓ,

where ZΓ is the saturation region of the measure λΓ, that is,

ZΓ = S(λΓ) \ S(2χF − λP

∣∣
F
);
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4◦ on the support of the measure λT :

WT = −V λF + V λΓ + 2V λT

{
� wT | S(λT ),

� wT | Δ.

Gonchar and Rakhmanov [6]–[9] studied equilibrium problems like Problem 2.1, but
for measures with compact support. In [6]–[9], it was first shown that the solution of these
problems exists and is unique. This result was then applied to study the asymptotics
of various extremal polynomials. There are no such general results for measures with
noncompact support. However, in what follows we exploit the opposite approach. We
first use classical asymptotic methods to find the asymptotic behaviour of the polynomials
and then show that the resulting limit measures are solutions to Problem 2.1. Below we
will not look at the question of whether the solution of this problem is unique.

Proposition 2.1. Problem 2.1 has a solution.

Definition. A curve Γ ∈ ג will be called extremal if
(1) S(λΓ) = Γ∗,
(2) ZΓ = [0, x∗],
(3) the curve Γ has the S-property; that is,

∂WΓ

∂�n+
=

∂WΓ

∂�n−

on the curve Γ, where �n± are the unit normal vectors to two edges of this curve.

Proposition 2.2. In the class ג there exists a unique extremal curve Γ together with the
corresponding value of the parameter t.

We skip the proof of the uniqueness of an extremal curve, simply referring the reader
to [10] and [11].

Recall that we are dealing with the polynomials Qn, which solve Problem 1.1 for r = 3.
The next theorem is one of the main results in this paper.

Theorem 2.1. The measure λΔ, involved in the solution of Problem 2.1 for the extremal
curve Γ, is the limit measure for the distribution of the zeros of the scaled polynomials
Q∗

n.

We write out the limit measure in an explicit form. Consider the polynomial

(2.1) Q(x) = 28 · 33x3 + 32 · 7 · 53x2 − 24 · 5 · 19x+ 25 · 32.
This polynomial has one negative root and two complex conjugate roots, namely

x0 = −0.815 . . . , x± = 0.166 . . .± i · 0.153 . . . .

Proposition 2.3. The end-points ζ± of the extremal curve Γ are the points x±.

We denote the open upper and lower half-planes by C+ and C−, respectively. The
four-sheeted Riemann surface R is constructed by gluing the following sheets:

RΔ = C \ (−∞, x0],

RP = C \ ((−∞, x0] ∪ Γ ∪ [x∗,+∞)),

RF = C+ ∪ C−,

RT = C \ ((−∞, x∗] ∪ Γ).

The sheets RΔ and RP are glued along the cut (−∞, x0], the sheets RP and RF along
the cut [x∗,+∞), the sheets RF and RT along the cut (−∞, x∗], and the sheets RT and
RP along the cut Γ. The surface R has genus zero.
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On the Riemann surface R consider the meromorphic function

θ : R −→ C̄.

This surface is uniquely defined by its divisor and the normalization condition. The
function θ has a third-order zero at the point x = 0 on the sheet RP and a first-order
zero at the point x = 4 on the sheet RΔ. It also has a second-order pole at the point
x = 0 on the sheet RΔ and first-order poles at the point x = 0 on the sheets RF and
RT . The normalization condition is as follows: θ = 1 at the point x = ∞.

The next theorem is the second main result in the paper.

Theorem 2.2. The Markov function

hλΔ
(x) =

∫
dλΔ(s)

x− s
, x ∈ C \ S(λΔ),

of the limit measure λΔ can be written the form

(2.2) hλΔ
(x) = log

{
θΔ(x) ·

x

x− 4

}
.

This function is holomorphic in the domain C\Δ. The branch of the logarithm is chosen
so as to have

hλΔ
(x) ∼ 3

x
as x → ∞.

The support of the measure λΔis the whole of the interval Δ. Its saturation region is the
interval [x0, 0].

Proposition 2.4. The algebraic function θ satisfies the equation

(2.3) x(p+ 1)4 + p(6p2 + 4p+ 1) = 0, p = x(θ − 1).

The proofs of the main results of the paper will be given in the next sections.

3. The first auxiliary problem

In accordance with Rodrigues’s formula (1.3), we shall first examine the polynomials

Q̃n(η) defined by the formula

(3.1)
Q̃n(η)

ω̃n(η)
= D(n)

α1

1

ω∗
n(η)

, n ∈ Z+,

where

(3.2)
ω∗
n(η) = (η − (β + 3n)) . . . (η − (β + 4n)),

ω̃n(η) = (η − (β + 2n)) . . . (η − (β + 4n)).

These polynomials solve the following problem.

Problem 3.1. Given a nonnegative integer number n, find a nonzero polynomial Q̃n

of degree at most n and a polynomial P̃n of degree at most n such that the following
interpolation conditions are satisfied:

(3.3) R̃n(η) = Q̃n(η)fα1
(η)− P̃n(η) = 0, η = β + 2n, . . . , β + 4n.

Let β > 0, and let 0 < α1 < 1. (From the analysis that follows it will be clear
that the final result is independent of the choice of these parameters.) The interpolation
conditions (3.3) are equivalent to the orthogonality conditions with variable weight∫ 0

−∞
Q̃n(ξ) ξ

l dμ
α1(ξ)

ω̃n(ξ)
= 0, l = 0, . . . , n− 1,
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where μα1 is a discrete measure with masses

(3.4) μα1
m =

(1− α1)m
m!

at the points (−m), m ∈ Z+. Here

(p)m = p(p+ 1) . . . (p+m− 1)

is the Pochhammer symbol.
We set

Q̃∗
n(η) = C̃nQ̃n(nη), n ∈ Z+,

where C̃n is a normalizing constant such that the leading coefficient of the polynomial

Q̃∗
n is 1. We denote the zero counting measure of this polynomial by λ̃n. We pose the

following equilibrium problem.

Problem 3.2. Find a positive measure λ̃ such that
(1) the support of λ̃ lies on the interval Δ = (−∞, 0]; that is, S(λ̃) ⊂ Δ;

(2) the total variation of the measure λ̃ is 1; that is, ‖λ̃‖ = 1;

(3) the measure λ̃ satisfies the constraint

(3.5) λ̃ � χΔ,

where χΔ is the classical Lebesgue measure on the interval Δ;
(4) the logarithmic potential of the measure λ̃ satisfies the equilibrium conditions

(3.6) W̃ = 2V λ̃ − V λω̃

{
� w̃

∣∣ S(λ̃),

� w̃
∣∣ Δ \ (S(λ̃) \ S(χΔ − λ̃)),

where w̃ is some equilibrium constant and the logarithmic potential (−V λω̃ ) of the clas-
sical Lebesgue measure λω̃ on the interval [2, 4] plays the role of the external field.

The constraint appears as a result of scaling and passing to the limit in the separation
theorem of Chebyshev–Markov–Stieltjes, and the external field arises from the variable
weight.

We have the following results similar to those in [1].

Proposition 3.1. Problem 3.2 has a solution.

Proposition 3.2. The limit λ̃n � λ̃ exists.

Proposition 3.3. The density of the measure λ̃ can be calculated by the formula

(3.7) λ̃′(η) =

⎧⎪⎪⎨⎪⎪⎩
1, − 1

12
< η < 0,

1

π
arccos

2η2 − 6η − 1

2|η|
√
(2− η)(4− η)

, −∞ < η < − 1

12
.

Proof. Using Cauchy’s formula, we rewrite (3.1) as

(3.8)
Q̃n(η)

ω̃n(η)
gα1

(η) =
1

2πi

∫
l

gα1−n(ξ)

ω∗
n(ξ)

· dξ

κn(ξ − η)
,

where

κn(z) = z(z − 1) . . . (z − n).

For definiteness, we assume that a point η lies in the upper half-plane. Then l is a closed
contour lying in the upper half-plane and containing the points

η, η + 1, . . . , η + n.
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Scaling η 
→ nη and changing the variable ξ 
→ nξ in formula (3.8), we obtain

(3.9)
Q̃n(nη)

ω̃n(nη)
gα1

(nη) =
1

2πi

∫
l∗

gα1−n(nξ)

ω∗
n(nξ)

ndξ

κn(n(ξ − η))
.

The contour l∗ lies in the upper half-plane and encircles the interval [η, η + 1].
Letting n → ∞, this gives(

− 1

n

)
log

|ω̃n(nη)|
n2n+1

−→ V λω̃ (η), η ∈ C \ [2, 4],(
− 1

n

)
log

|ω∗
n(nξ)|
nn+1

−→ V λω∗ (ξ), ξ ∈ C \ [3, 4],(
− 1

n

)
log

|κn(nz)|
nn+1

−→ V λκ(z), z ∈ C \ [0, 1].

Here, λω̃, λω∗ , λκ are the classical Lebesgue measures on the corresponding intervals.
The complex potentials of these measures are as follows:

Vλω̃(η) =

∫ 4

2

log
1

η − s
ds = (η − 4) log(η − 4)− (η − 2) log(η − 2) + 2,

Vλω∗ (ξ) =

∫ 4

3

log
1

ξ − s
ds = (ξ − 4) log(ξ − 4)− (ξ − 3) log(ξ − 3) + 1,

Vλκ(z) =

∫ 1

0

log
1

z − s
ds = (z − 1) log(z − 1)− z log z + 1.

By Stirling’s formula,(
− 1

n

)
log gα1−n(nξ)− (1− πi− log n) −→ (ξ − 1) log(ξ − 1)− ξ log ξ as n → ∞,

where the arguments of the numbers ξ and ξ − 1 are taken on the interval (0, π). The
weak limit of the left-hand side of (3.9) is equal to

(3.10) lim
n→∞

(
− 1

n

)
log

∣∣∣∫
l∗

exp
{
nS̃(ξ, η)

}
dξ

∣∣∣
(up to a normalizing constant), where

(3.11) S̃(ξ, η) = (ξ − 4) log(ξ − 4)− (ξ − 3) log(ξ − 3) + (ξ − η − 1) log(ξ − η − 1)

− (ξ − η) log(ξ − η)− (ξ − 1) log(ξ − 1) + ξ log ξ.

The limit in (3.10) will be found by the saddle-point method. To find the critical
points of the function (3.11), we have

∂

∂ξ
S̃(ξ, η) = log

(ξ − 4)(ξ − η − 1)ξ

(ξ − 3)(ξ − η)(ξ − 1)
= 0,

which is equivalent to the quadratic equation

ξ2 − ξ − 3η = 0.

The algebraic function ξ(η) has two second-order branch points, namely, η = −1/12 and
η = ∞. Outside the cut (−∞,−1/12] we consider the single-valued branch

ξ∗(η) =
1 +

√
1 + 12η

2
, where

√
1 + 12η > 0, η > − 1

12
.

The point ξ∗ gives the leading contribution to the asymptotic behavior of integral (3.10).
The corresponding critical value is as follows:

(3.12) S̃∗(η) = S̃(ξ∗(η), η).
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So, the limit measure λ̃ exists and its potential is

V λ̃ = V λω̃ − ReS̃∗ + const.

The Markov function

h̃(η) =

∫
dλ̃(s)

η − s

of the measure λ̃ is found by the formula

h̃ =
∂

∂η

(
ReS̃∗ − V λω̃

)
.

After some calculation we find that

(3.13) h̃(η) = log
{√

1 + 12η − 2η + 1√
1 + 12η − 2η − 1

· η − 2

η − 4

}
.

The function h̃(η) is holomorphic in the domain C\(−∞, 0]. The branch of the logarithm
is specified by the condition

h̃(η) ∼ 1

η
, η → ∞.

The points η = 2 and η = 4 are removable singular points of this function.
The density of the measure λ̃ is calculated by Sokhotskĭı’s formula

λ̃′(η) =
1

π
Im h̃(η − i · 0), −∞ < η < 0.

If −1/12 < η < 0, then the number under the logarithm sign in (3.13) is negative. In
view of the choice of the branch of the logarithm, the argument of this number is π.
Therefore,

λ̃′(η) = 1, −1/12 < η < 0.

In other words, the measure λ̃ attains constraint (3.5) on the interval [−1/12, 0]. If
−∞ < η < −1/12, then the number under the logarithm is complex. Evaluating the
argument of this number, we get formula (3.7).

We now verify the equilibrium conditions (3.6). To this end, we find the derivative of

the potential W̃ along the real line. We have

− d

dη
W̃ (η) = log

∣∣∣∣(√
1 + 12η − 2η + 1√
1 + 12η − 2η − 1

)2

· η − 2

η − 4

∣∣∣∣.
If −∞ < η < −1/12, then the expression under the logarithm is identically equal to 1;

in other words, W̃ ′(η) = 0. If −1/12 < η < 0, then W̃ ′(η) < 0, because this expression
is monotonic. An analysis of the behavior of the potentials at infinity shows that the
equilibrium constant w̃ is zero.

This completes the proofs of Propositions 3.1, 3.2, and 3.3. �

4. The second auxiliary problem

In this section, we shall be concerned with the polynomials Q̂n(t) defined by

(4.1)
Q̂n(t)

ω̂n(t)
= D(n)

α2

Q̃n(t)

ω̃n(t)
, n ∈ Z+,

where

(4.2) ω̂n(t) = (t− (β + n)) . . . (t− (β + 4n)),

the polynomials Q̃n and ω̃n are defined in (3.1) and (3.1), respectively, and the difference

operator D(n)
α2 in (1.4). These polynomials solve the following problem.
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Problem 4.1. Given a nonnegative integer n, find a nonzero polynomial Q̂n of degree

at most 2n and polynomials P̂n,1, P̂n,2 of degree at most 2n such that the following
interpolation conditions are satisfied:

R̂n,j(t) = Q̂n(t)fj(t)− P̂n,j(t) = 0, t = β + n, . . . , β + 4n, j = 1, 2.

Assume, for the time being, that the parameters satisfy the following conditions:

β > 0, 0 < α1 < α2 < 1.

Then Problem 4.1 is equivalent to the orthogonality conditions∫ 0

−∞
Q̂n(t) t

l dμ
αj (t)

ω̂n(t)
= 0, l = 0, . . . , n− 1, j = 1, 2,

where the measures μαj are defined in (3.4). These measures form a Nikishin system [4],
[12]–[14]; that is, their ratio (the Radon–Nikodým derivative)

u(t) =
dμα2(t)

dμα1(t)
,

which is defined ab initio only at nonpositive integer points and which is equal to

u(t) =
Γ(1− α1)

Γ(1− α2)

Γ(1− t− α2)

Γ(1− t− α1)
,

is the Markov function of some measure. Namely,

u(t) =

∫ +∞

0

dνα1,α2(s)

s− t
,

where να1,α2 is a discrete measure with masses

να1,α2

k =
1

B(1− α2, α2 − α1)
· (1 + α1 − α2)k

k!

at the points

tk = 1− α2 + k, k ∈ Z+.

The corresponding equilibrium problem is a Nikishin problem.
We set

Q̂∗
n(t) = ĈnQ̂n(nt), n ∈ Z+,

where the normalizing constant Ĉn is chosen so that the leading coefficient of the polyno-

mial Q̂∗
n is equal to one. We denote the counting measure of the zeros of this polynomial

by λ̂n. Consider the following problem.

Problem 4.2. Find two positive measures λ̂Δ and λ̂F such that

(1) S(λ̂Δ) ⊂ Δ = (−∞, 0], S(λ̂F ) ⊂ F = [0,+∞);

(2) ‖λ̂Δ‖ = 2, ‖λ̂F ‖ = 1;
(3) the constraints

(4.3) λ̂Δ � χΔ, λ̂F � χF

are satisfied, where χΔ and χF are the classical Lebesgue measures on the intervals Δ
and F , respectively;

(4) the equilibrium conditions hold
(a) on the interval Δ,

(4.4) ŴΔ = 2V λ̂Δ − V λ̂F − V λω̂

{
� ŵΔ | S(λ̂Δ),

� ŵΔ | Δ \ (S(λ̂Δ) \ S(χΔ − λ̂Δ)),
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where ŵΔ is some equilibrium constant and the potential (−V λω̂ ) of the classical Lebesgue
measure on the interval [1, 4] plays the role of the external field;

(b) on the interval F ,

(4.5) ŴF = 2V λ̂F − V λ̂Δ

{
� ŵF | S(λ̂F ),

� ŵF | F \ (S(λ̂F ) \ S(χF − λ̂F )),

where ŵF is some equilibrium constant.

Proposition 4.1. Problem 4.2 has a solution.

Proposition 4.2. The limit λ̂n � λ̂Δ exists.

Note that the measure λ̂F is the limit measure of the distribution of scaled additional
interpolation points (in other words, the zeros of the function R̂n,1/ω̂n).

We write the measures λ̂Δ and λ̂F in an explicit form. We set

(4.6) t± =
1

243
(−29± 20

√
10).

We let K denote the Riemann surface obtained by gluing the following three sheets:

KΔ = C \ (−∞, t−],(4.7)

K∗ = C \ ((−∞, t−] ∪ [t+,+∞)),(4.8)

KF = C \ [t+,+∞).(4.9)

This is a surface of zero genus. On this surface we define the meromorphic function ϑ by
its divisor. Namely, this function has a first-order zero at the point t = 4 on the sheet
KΔ and a second-order zero at the point t = 0 on the sheet K∗. It also has simple poles
at the points t = 1 and t = 0 on the sheet KF . We normalize the function ϑ by the
condition ϑ(∞) = 1. We denote the restriction of the function ϑ to the sheet Kj by ϑj ,
where j = Δ, ∗, F . We set

ĥΔ(t) = log ϑΔ(t) + log
t− 1

t− 4
.

This function is holomorphic in the domain C \ Δ. The branches of the logarithm are
specified by the condition

(4.10) ĥΔ(t) ∼
2

t
, t → ∞.

We set

(4.11) ĥF (t) = − log ϑF (t).

This function is holomorphic in the domain C\F . The branch of the logarithm is specified
by the condition

(4.12) ĥF (t) ∼
1

t
, t → ∞.

Proposition 4.3. The functions ĥΔ and ĥF are Markov functions of the measures λ̂Δ

and λ̂F , respectively.

Proof. Arguing as in §3, we have to study the critical points of the function

Ŝ(η, t) = η log η − (η − 1) log(η − 1)

+ (η − t− 1) log(η − t− 1)− (η − t) log(η − t) + S̃∗(η),
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where the function S̃∗(η) is defined by (3.12). We have

∂

∂η
Ŝ(η, t) = log

{ η(η − t− 1)

(η − 1)(η − t)
·
√
1 + 12η + 1− 2η√
1 + 12η − 1− 2η

}
= 0,

which is equivalent to the cubic equation

η3 − 2η2 + (t+ 1)η − t(3t+ 1) = 0.

Its discriminant 243t2 + 58t − 13 has the roots t± (see (4.6)). These points are second-
order branch points of the algebraic function η(t). At infinity this function behaves
like

η ∼ 3
√
3t2 as t → ∞.

So, the point at infinity is a third-order branch point for the function η(t). We denote
the branch that assumes positive values as t → +∞ by ηΔ. This branch is holomorphic
in the domain (4.7). We denote the branch that assumes positive values as t → −∞ by
ηF . This branch is holomorphic in (4.9). We denote the third branch by η∗. This branch
is holomorphic in (4.8). So, the Riemann surface of the function η can be constructed
by gluing the above three sheets.

The leading contribution to the asymptotics comes from the critical point of ηΔ.
Setting

(4.13) ŜΔ(t) = Ŝ(ηΔ(t), t),

we have
V λ̂Δ = V λω̂ − ReŜΔ + const.

Next, let

ĥΔ =
∂

∂t
(ReŜΔ − V λω̂ ).

Then

(4.14) ĥΔ(t) = log
{ ηΔ(t)− t

ηΔ(t)− t− 1
· t− 1

t− 4

}
.

The function ĥΔ is holomorphic in the domain C \ Δ. The branch of the logarithm is
specified in accordance with formula (4.10).

We let ϑ denote the algebraic function

ϑ(t) =
η(t)− t

η(t)− t− 1
.

This function has the same Riemann surface as the function η(t). We denote its branches
by ϑΔ, ϑ∗, ϑF .

Rewriting (4.14) as

ĥΔ(t) = log ϑΔ(t) + log
t− 1

t− 4
,

we have

ĥΔ(t) =

∫
Δ

dλ̂Δ(s)

t− s
, t ∈ C \Δ.

The derivative λ̂′
Δ(t) can be found by Sokhotskĭı’s formula

λ̂′
Δ(t) =

1

π
Im ĥΔ(t− i · 0), −∞ < t < 0.

This function is positive on the entire negative half-axis. For t− < t < 0 the function
ϑΔ(t) is negative. Therefore,

λ̂′
Δ(t) = 1, t ∈ [t−, 0].
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So, λ̂Δ is a positive measure of total variation two on the interval Δ; this measure attains
the constraint (4.3) on the interval [t−, 0].

Consider the function ĥF defined by (4.11). This function is holomorphic in the
domain C \ F and

ĥF (t) =

∫
F

dλ̂F (s)

t− s
, t ∈ C \ F,

where

(4.15) λ̂′
F (t) =

1

π
Im ĥF (t− i · 0), 0 < t < +∞.

The function (4.15) is positive, and moreover,

λ̂′
F (t) = 1, 0 < t < t+.

So, λ̂F is a positive measure of total variation one on the interval F ; this measure attains
the constraint (4.3) on the interval [0, t+].

The function ϑ satisfies the equation

t2(t− 1)ϑ3 − 3t(t2 − 2t− 1)ϑ2 + (3t3 − 9t2 − 3t+ 1)ϑ− t2(t− 4) = 0.

This function has the above divisor, and ϑ(∞) = 1. By Viéte’s theorem,

ϑΔϑ∗ϑF =
t− 4

t− 1
.

The graph of the function ϑ on the real line is depicted in Figure 4.1 (the figure shows
only the topological behavior). At the origin the function behaves as follows:

ϑ∗(t) ∼ −4t2, ϑΔ(t) ∼
κ+

t
, ϑF (t) ∼

κ−
t
, where κ± =

3±
√
13

2
.

The derivative ϑ′ has the following divisor. It has first-order zeros at the point t = 0
on the sheet K∗ and at the point t = 104/243 on the sheet KΔ; it has a sixth-order zero at
the branch point at infinity. This function has second-order poles at t = 0 on the sheets
KΔ and KF , and at t = 1 on the sheet KΔ; it also has first-order poles at the branch
points t+ and t−.

We will verify the equilibrium conditions (4.4). To do this, we calculate the derivative

of the function ŴΔ along the real line. We have

− Ŵ ′
Δ = Re

{
2ĥΔ − ĥF + log

t− 4

t− 1

}
= log

∣∣∣ϑ2
ΔϑF

t− 1

t− 4

∣∣∣
= log

∣∣∣ϑ2
ΔϑFϑ∗
ϑ∗

· t− 1

t− 4

∣∣∣ = log
∣∣∣ϑΔ

ϑ∗

∣∣∣.
If −∞ < t < t−, then ϑΔ and ϑ∗ are complex conjugates, and hence, Ŵ ′

Δ = 0. So,

the function ŴΔ is constant on this interval. If t− < t < 0, then Ŵ ′
Δ < 0, because

the functions ϑΔ and ϑ∗ are monotonic on this interval. So, on the interval (t−, 0) the

function ŴΔ is decreasing.
Now we verify the equilibrium conditions (4.5). For the derivative, we have

−Ŵ ′
F = Re{2ĥF − ĥΔ} = − log

∣∣∣ϑ2
FϑΔϑ∗
ϑ∗

t− 1

t− 4

∣∣∣ = log
∣∣∣ ϑ∗
ϑF

∣∣∣.
As before, we see that the function ŴF is increasing on the interval (0, t+) and is constant
on the interval (t+,+∞). From the behavior of the potentials at infinity it follows that
the equilibrium constants ŵΔ and ŵF are both zero. �
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Figure 4.1

5. Proofs of the main results

In view of (1.3) we have

Qn

ωn
= D(n)

α3

Q̂n

ω̂n
,

where

ωn(x) = (x− β) . . . (x− (β + 4n)),

and the polynomials Q̂n and ω̂n are defined by (4.1) and (4.2), respectively; the difference

operator D(n)
α3 is defined by (1.4). A similar analysis to before leads us to study the critical

points of the function

S(t, x) = t log t−(t−1) log(t−1)+(t−x+1) log(t−x+1)−(t−x) log(t−x)+ ŜΔ(t),

where the function ŜΔ(t) is defined by (4.13). The equation ∂S
∂t = 0 is equivalent to the

fourth-order equation

(5.1) t4 − 3t3 + (x+ 3)t2 + (x2 − 2x− 1)t− x(3x2 + x− 1) = 0.

The algebraic function t(x) behaves at infinity as

t(x) ∼ 4
√
3x3, x → ∞.

Hence, the point at infinity is a fourth-order branch point. The discriminant of equation
(5.1) is (2.1). The roots x0 and x± of the discriminant are second-order branch points.
The Riemann surface R of the function t was constructed in §2. We denote the branch of
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the function t which is holomorphic on the sheet RΔ by tΔ. The corresponding critical
value is

SΔ(x) = S(tΔ(x), x).

Hence, the logarithmic potential of the limit measure for the distributions of the zeros
of the scaled polynomials Q∗

n is given by

V λΔ = V λω − ReSΔ + const.

That this limit measure exists follows from the saddle-point method. As a corollary, for
the Markov function of the limit measure we get formula (2.2), where

(5.2) θ(x) =
t(x)− x

t(x)− x− 1
.

Excluding the variable t from equations (5.1) and (5.2), we arrive at the algebraic equa-
tion satisfied by the function θ, namely,

(5.3) x4θ4 + (−4x4 + 4x3 + 6x2)θ3 + (6x4 − 12x3 − 12x2 + 4x)θ2+

+ (−4x4 + 12x3 + 6x2 − 4x+ 1)θ + x3(x− 4) = 0.

In (2.3) equation (5.3) is written in a compact form. The function θ has the same
Riemann surface as the function t.

The algebraic function θ behaves as follows at infinity:

(5.4) θ(x) = 1− 1

x
+

1

x
4

√
3

x
+O(x−3/2), x → ∞.

The point x = ∞ is a fourth-order branch point.
Next, we examine the behavior of the function θ at the origin. At x = 0 the branch

θP has a third-order zero, namely,

θP (x) ∼ 4x3, x → 0.

The branch θΔ has a second-order pole at the origin, namely,

θΔ(x) ∼ − 6

x2
, x → 0.

The two remaining branches θF and θT have first-order poles at the origin, namely,

θ(x) ∼ c±
x
, x → 0, where c± =

−2±
√
2i

6
.

The branch θΔ has a simple zero at the point x = 4,

θΔ(x) ∼
26

52 · 7 · (x− 4), x → 4.

Figure 5.1 shows the topological behavior of the section of the graph of the function θ
by the real plane.

We will describe in more detail how the single-valued branches θJ of the function θ
are singled out on the sheets RJ of the Riemann surface R, where J = Δ, P, F, T . By
ϕ = arg x we denote the branch of the argument for any of the branches of θJ which is
taken in formula (5.4) in evaluating the root 4

√
x.

By θΔ we denote the branch of the function θ for which ϕ = 0 as x → +∞. This
branch is a meromorphic function on the sheet RΔ. It has a simple zero at the point
x = 4 and a second-order pole at the point x = 0. We set

hΔ(x) = log
{
θΔ(x) ·

x

x− 4

}
.
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This function is holomorphic in the domain C\Δ. The branch of the logarithm is chosen
so as to have hΔ(∞) = 0. Then

hΔ(x) ∼
3

x
as x → ∞.

The function hΔ is a Markov function of some positive measure λΔ : hΔ = hλΔ
. The

support of this measure is the entire interval Δ. The total variation of the measure is
three. The measure λΔ is absolutely continuous with respect to the classical Lebesgue
measure χΔ on the interval Δ. Its density can be calculated by Sokhotskĭı’s formula

λ′
Δ(x) =

1

π
Im hΔ(x− i · 0), −∞ < x < 0.

If x0 < x < 0, then the number θΔ(x) · x
x−4 is negative, and in accordance with the

above choice of the branch of the logarithm, it has argument ∓π on the upper and lower
edges of the cut [x0, 0], respectively. Therefore, λ

′
Δ(x) = 1 for x0 < x < 0. The measure

λΔ satisfies constraint (3) of Problem 2.1, and the constraint is attained on the interval
[x0, 0], which means it is the saturation region of this measure.

Since, for the branch θΔ, the argument ϕ is ±π as x → −∞ on the upper and lower
edges of the cut (−∞, x0], respectively, the branch θP is specified by the condition ϕ = ∓π
as x → −∞. This branch is holomorphic on the sheet RP . It has a third-order zero at
the point x = 0. The sheets RΔ and RP are glued along the cut (−∞, x0].

We set

hP (x) = log θP (x).
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This is a piecewise analytic function which is holomorphic in the domains C+ \ Γ+ and
C− \ Γ−. The branches of the logarithms are chosen so as to have hP (∞) = 0. Hence

hP (x) ∼ − 1

x
, x → ∞.

The function hP is a Markov function of the difference of two positive measures,

hP = hλP
− hλΔ

.

The measure λΔ was already defined above. The support of the measure λP is the set
S(λP ) = F ∪ Γ. The total variation of this measure is two. Note that the measure λP

is positive on Γ whenever Γ is an extremal curve. In accordance with our choice of the
branches of the logarithms, the argument of this number is ∓2π. By Sokhotskĭı’s formula

λ′
P (x) = 2, 0 < x < x∗.

On the interval F the measure λP satisfies constraint (3). The constraint is attained on
the interval [0, x∗]. This interval is the saturation region of the measure λP .

Note that the generalized potentials WΔ,WF ,WΓ,WT are continuous on the entire
plane. Consider the function

(5.5) log
θΔ(x)

θP (x)
= − log

x

x− 4
+ 2hλΔ

(x)− hλP
(x).

We will calculate the derivative of the function WΔ along the real axis, taking it as
the real part of the complex derivative of the complexification of this function. In view
of (5.5), we have

W ′
Δ(x) = log

∣∣∣θP (x)
θΔ(x)

∣∣∣, −∞ < x < 0.

If −∞ < x < x0, then θP (x) and θΔ(x) are are complex conjugates, and∣∣∣∣ θP (x)θΔ(x)

∣∣∣∣ = 1.

Therefore, W ′
Δ(x) = 0. The function WΔ is constant on the interval (−∞, x0]. It is

easily shown that W ′
Δ < 0 on the interval (x0, 0); i.e., the function WΔ is decreasing

on this interval. This proves the equilibrium conditions (Δ) of Problem 2.1. We have
WΔ(∞) = 0, and hence the equilibrium constant wΔ is zero.

Since for the branch θP the argument ϕ is ∓2π as x → +∞, we specify the branch θF
by the condition ϕ = ±2π as x → +∞. This is a piecewise analytic function which is
holomorphic in the half-planes C±. This sheet RF is glued to the sheet RP along the
cut [x∗,+∞).

Consider the function
hF (x) = log θF (x).

It is a piecewise analytic function which is holomorphic in the half-planes C±. The
branches of the logarithm are chosen so as to have hF (∞) = 0. Then

hF (x) ∼ − 1

x
, x → ∞.

The function hF is a Markov function of the difference of two positive measures,

hF = hλT
− hλF

.

The densities of these measures can be found using Sokhotskĭı’s formula. The support of
the measure λF is the entire interval F , and the support of the measure λT is the interval
Δ. We denote the total variation of the measure λT by t = ‖λT ‖. Then ‖λF ‖ = 1 + t.
On the interval [x∗,+∞) the measures λF and λP are equal. We set

λΓ = λP − λF .
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Then λΓ is a positive measure with support

S(λΓ) = Γ∗ = Γ ∪ [0, x∗]

and total variation ‖λΓ‖ = 1− t.
As before, we have

W ′
F (x) = log

∣∣∣θF (x)
θP (x)

∣∣∣, x ∈ F.

If x∗ < x < +∞, then θF (x) and θP (x) are complex conjugates, and |θF /θP | = 1.
Therefore, W ′

F = 0; i.e., the function WF is constant on the interval [x∗,+∞). It is
easily shown that W ′

F > 0 on the interval (0, x∗); that is, the function WF is increasing
on this interval. This proves the equilibrium conditions (F). We have WF (∞) = 0, and
hence the equilibrium constant wF is zero.

For the branch θF , the argument ϕ is ±3π as x → −∞. Hence, we specify the branch
θT by the condition ϕ = ∓3π as x → −∞. This branch is holomorphic on the sheet RT .

We set
hT (x) = log θT (x).

This function is also holomorphic on the sheet RT . The branch of the logarithm is
specified by the condition hT (∞) = 0. Then

hT (x) ∼ − 1

x
, x → ∞.

The function hT is a Markov function of the sum of two negative measures

hT = −hλT
− hλΓ

.

The measures λT and λΓ were already defined above in terms of other branches of the
algebraic function θ.

We have

W ′
T (x) = log

∣∣∣θT (x)
θF (x)

∣∣∣, x ∈ Δ.

The numbers θT (x) and θF (x) are complex conjugates on the whole of Δ; furthermore,
|θT (x)/θF (x)| = 1. Therefore, W ′

T = 0 on Δ so that WT is constant on this interval. The
equilibrium conditions (T) are proved. We have WT (∞) = 0, and hence the equilibrium
constant wT is zero.

Let WΓ be the complexification of the generalized potential WΓ. Then

W ′
Γ = log

θT
θP

.

We let s denote the natural parameter of the curve Γ and τ , the unit tangent vector to
this curve. Then on this curve the derivative of the generalized potential WΓ along the
curve Γ looks like

d

ds
WΓ = Re

{
τ log

θT
θP

}
.

The following conditions are equivalent in view of the Cauchy–Riemann conditions:

1◦.
dWΓ

ds
= 0 Γ.

2◦. The measure λΓ is positive.
3◦. The curve Γ has the S-property (the curve is extremal).
4◦. The curve Γ lies in the set on which the moduli of two critical values of the function
expS are equal (the saddle-point method).

So, the equilibrium conditions (Γ) are proved. Moreover, the curve Γ is a trajectory
of the corresponding quadratic differential.

This completes the proof of the main results of the paper.
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Zametki, 87:2 (2010), 217-232; Math. Notes, 87:2 (2010), 204-217. MR2731473

[3] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., vol. 180, Springer-
Verlag, Berlin-Heidelberg-New York, 1972. MR0350027

[4] E.M. Nikishin, V.N. Sorokin, Rational Approximations and Orthogonality, Nauka, Moscow,
1988; Translation of Mathematic Monographs, Vol. 92, Amer. Math. Soc., Providence, RI, 1991.
MR1130396

[5] V.N. Sorokin, On multiple orthogonal polynomials for discrete Meixner measures, Mat. Sb., 201:10
(2010), 137–160; Sb. Math., 201:10 (2010), 1539-1561. MR2768827

[6] A.A. Gonchar, E.A. Rakhmanov, On the convergence of simultaneous Padé approximants for
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