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QUANTUM q-LANGLANDS CORRESPONDENCE
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Dedicated to Ernest Vinberg
on the occasion of his 80th birthday

Abstract. We conjecture, and prove for all simply-laced Lie algebras, an identifica-
tion between the spaces of q-deformed conformal blocks for the deformed W-algebra
Wq,t(g) and quantum affine algebras of L̂g, where Lg is the Langlands dual Lie al-
gebra to g. We argue that this identification may be viewed as a manifestation of
a q-deformation of the quantum Langlands correspondence. Our proof relies on ex-
pressing the q-deformed conformal blocks for both algebras in terms of the quantum
K-theory of the Nakajima quiver varieties. The physical origin of the isomorphism
between them lies in the 6d little string theory. The quantum Langlands corre-
spondence emerges in the limit in which the 6d little string theory becomes the 6d
conformal field theory with (2, 0) supersymmetry.
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1. Introduction

1.1. Overview. In the 50 years of its existence, the Langlands program and the Lang-
lands philosophy have grown to encompass many objects of central importance to both
mathematics and mathematical physics.

In particular, the geometric Langlands correspondence starts with a complex pro-
jective algebraic curve C with the goal, as it is usually understood today, to prove an
equivalence between certain categories associated to a pair G, LG of Langlands dual
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connected reductive complex Lie groups. These are certain categories of sheaves (of D-
modules and O-modules, respectively) on the moduli stack BunLG of LG-bundles on C
and the moduli stack LocG of flat G-bundles on C.1 Kapustin and Witten have shown
[65] that this equivalence is closely related to S-duality of maximally supersymmetric 4d
gauge theories with gauge groups being the compact forms of G and LG.

Beilinson and Drinfeld have constructed in [17] an important part of the geometric
Langlands correspondence using the isomorphism [36] between the center of the (chiral)

affine Kac–Moody algebra L̂g at the critical level Lk = −Lh∨ and the classical W-
algebra W∞(g). Their construction is closely connected to the 2d conformal field theory
and the theory of chiral (or vertex) algebras (see [44] for a survey; and also [122] in
which an analogy between 2d CFT and the theory of automorphic representations was
first observed and investigated).

Since the level of L̂g may be deformed away from the critical value, and at the same
time W∞(g) may be deformed to the quantum W-algebra Wβ(g), one is naturally led to
look for a quantum deformation of the geometric Langlands correspondence.

Many interesting structures have emerged in the studies under the umbrella of “quan-
tum geometric Langlands” (from the point of view of 2d CFT [41, 42, 55, 56, 104, 110,
112, 118]; in the framework of 4d gauge theory [47, 64, 65]; and, in the abelian case, as a
deformation of the Fourier–Mukai transform [98]).

1.1.1. For us, the main feature of the quantum geometric Langlands correspondence is
an isomorphism between the spaces of conformal blocks of certain representations of two
chiral algebras:

(1.1) L̂gLk ←→ Wβ(g),

the affine Kac–Moody algebra of Lg at level Lk and the W-algebra Wβ(g). The algebra
Wβ(g) is obtained by the quantum Drinfeld–Sokolov reduction [19, 35, 36] of the affine
algebra ĝ at level k, where β = m(k + h∨) in the notation of [50].2

We will establish this isomorphism and prove a stronger result in the case of simply-
laced g and genus zero curve C: an identification of conformal blocks of the two algebras
if the parameters are generic and related by the formula

(1.2) β −m =
1

L(k + h∨)
.

The relation between the corresponding chiral algebras may be viewed as a strong/weak
coupling transformation. Indeed, if we define τ = β/m and Lτ = −L(k + h∨), then (1.2)
says that

(1.3) τ − 1 = −1/(mLτ ),

and so Lτ near zero corresponds to large values of τ . The parameters τ and Lτ are
related to the complexified coupling constants of the two S-dual 4d Yang-Mills theories.
Note the shift τ �→ τ − 1, as compared to the W-algebra duality formula of [36] (see
Section 6 for more details). This is a shift of the theta angle from the 4d gauge theory
perspective (see Section 9).

1The existence of such an equivalence, which may be viewed as a categorical non-abelian Fourier
transform, was originally proposed by Beilinson and Drinfeld; later, a precise conjecture was formulated
in [12]. We note that some of our notation bucks the usual conventions. In particular, the roles of G
and LG are exchanged.

2Thus, what we denote here by Wβ(g) is Wk(g) of [44, 46], where β = m(k + h∨). In our present

notation, the classical W-algebra associated to g is W∞(g). See Section 6 for more details.
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Here by identification of the spaces of conformal blocks we mean a canonical isomor-
phism between them. However, this canonical isomorphism arises only after we introduce
one more parameter and perform one more deformation.

1.1.2. We consider a two-parameter deformation of the geometric Langlands correspon-
dence: the q-deformation together with the deformation away from the critical level.
This turns out to be a productive point of view.

Namely, we replace the above chiral algebras with their deformed counterparts: the

quantum affine algebra U�(L̂g), which is an �-deformation of the universal enveloping

algebra of L̂g introduced by Drinfeld and Jimbo [31, 63], and the deformed W-algebra
Wq,t(g) introduced in [50] (see also [13, 38, 108] for g = sln), which is a deformation of
Wβ(g). We will refer to both of these as “q-deformations”, both for brevity and because
q will appear as a step in difference equations that are of principal importance to us. (In

our notation, the quantum affine algebra U�(L̂g) becomes the enveloping algebra of L̂g

in the limit � → 1; this agrees with the notation used in [93]. For a fixed non-critical
value of Lk, this limit is the same as the limit q → 1.)

We focus on the case that the curve C is an infinite cylinder,

C ∼= C× ∼= infinite cylinder.

It should be noted that integrable deformations away from the conformal point are un-
likely to exist unless C is flat. The torus case should follow from the case of the cylinder,
by imposing periodic identifications.3 The case when C is a plane can be obtained from
ours, by taking the radius of the cylinder to infinity.

We conjecture (and prove in the simply-laced case) a correspondence between q-

deformed conformal blocks of the quantum affine algebra U�(L̂g) and the deformed W-
algebra

(1.4) U�(L̂g) ←→ Wq,t(g),

where the parameters

(1.5) q = �−
L(k+h∨), t = qβ,

are generic and related by the formula

(1.6) t = qm/�

which yields (1.3).
It is this identification of the deformed conformal blocks that we refer to as a “quantum

q-Langlands correspondence” in the title of the present paper.
The physical setting for the correspondence is a 6d string theory, called the “(2, 0)

little string theory”. The little string theory [76, 107] is a one-parameter deformation
of the ubiquitous 6d (2, 0) superconformal theory (see, e.g., [125]). The deformation
corresponds to giving strings a non-zero characteristic size, and “converts” the relevant
chiral algebras, such as ĝ and Wβ(g), into the corresponding deformed algebras.

1.1.3. Some preliminary remarks about deformed conformal blocks are in order. In the
case of an affine Kac–Moody algebra and a cylinder C, the space of conformal blocks
is isomorphic to the space of solutions of the Kniznik-Zamolodchikov (KZ) equations,
which behave well as the insertion points are taken to infinity. The space of q-deformed
conformal blocks for quantum affine algebras can be similarly defined, following [51],
as the space of solutions of the quantum Kniznik-Zamolodchikov (qKZ) equations. In

3To get the deformed conformal blocks on a torus C = C×/pZ, one would study with blocks on
C = C×, but with insertions that are invariant under the action of pZ.
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either case, there is a particular fundamental solution of the equations which comes from
sewing chiral vertex operators. This solution is given by (1.7) in the case of deformed

conformal blocks of U�(L̂g).
To the best of our knowledge, the definition of the space of deformed conformal blocks

for the deformed W-algebra Wq,t(g) was not available in the literature until now. The
blocks formally equal correlation functions of free field vertex operators of the deformed
Wq,t(g) algebra in (1.9), constructed in [50], however the definition is not complete. One
has yet to specify the space of allowed contours of integration for screening charges.
Further, the analogues of the qKZ equations were previously unknown for the deformed
W-algebras Wq,t(g), as far as we know.

One of the results in this paper is a definition of the space of deformed Wq,t(g) algebra
conformal blocks, and a characterization of the difference equations they satisfy. The
key new insight is the geometric interpretation of these objects in terms of (quantum)
K-theory of a Nakajima quiver variety X [93], whose quiver diagram is based on the
Dynkin diagram of g.

1.2. Statement of the correspondence. Let x be a coordinate on C ∼= C×. Fix a
finite collection of distinct points on C, with coordinates ai. We propose, and prove in
the simply-laced case, a correspondence between the following two types of q-conformal
blocks on C.

1.2.1. On the electric side, we consider the quantum affine algebra U�(L̂g) blocks [51]

(1.7) 〈λ′|
∏
i

ΦLρi
(ai) |λ〉

where ΦLρ(x) is a chiral vertex operator corresponding to a finite-dimensional U�(L̂g)-

module Lρ. The state |λ〉 is the highest weight vector in a level Lk Verma module. Its

weight λ ∈ Lh
∗
is an element of the dual of the Cartan subalgebra for Lg. This is

illustrated in Figure 1.

Lρ1

Lρ2

Figure 1. The cylinder C with the insertions of vertex operators corre-

sponding to finite-dimensional U�(L̂g)-modules Lρi at the points ai ∈ C.
Boundary conditions at infinity are the highest weight vectors 〈λ′| and
|λ〉.

It suffices to focus on vertex operators corresponding to the fundamental representa-
tions because all others may be generated from these, by fusion. The highest weight of a
fundamental representation is one of the fundamental weights Lwa of Lg. The conformal
block (1.7) takes values in a weight subspace of⊗

i

(Lρi) =
⊗
a

(Lρa)
⊗ma ,
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namely, it has

(1.8) weight = λ′ − λ =
∑
a

ma
Lwa −

∑
a

da
Lea , da ≥ 0 .

In (1.8), we write the weight as the difference of the highest weights and simple positive
roots Lea of Lg. The index a runs here from 1 to rk(g).

1.2.2. On the magnetic side, we consider q-correlators of the Wq,t(g) algebra of the form

(1.9) 〈μ′|
∏
i

V ∨
i (ai)

∏
a

(
Q∨

a

)da

|μ〉.

V ∨
a (x) and Q∨

a are the vertex and the screening charge operators defined by E. Frenkel
and N. Reshetikhin in [50]. They are labeled by coroots and coweights of g, respectively.
Recall that Langlands duality maps coweights and coroots of g to weights and roots of
Lg, respectively. The screening charge operators are defined as integrals of screening
current vertex operators Q∨

a =
∫
dx S∨

a (x), so (1.9) is implicitly an integral formula for
Wq,t(g) algebra blocks.

The coweights of g labeling V ∨
a (x) are the highest weights of the fundamental repre-

sentations of Lg. The operator V ∨
i (ai), inserted at a point on C with the coordinate ai,

is associated to the same representation of Lg as the corresponding vertex operator in
(1.7). The state |μ〉, labeled by an element μ ∈ h of the Cartan subalgebra of g, generates
an irreducible Fock representation of the Wq,t(g) algebra [50]. The (co)weights μ and μ′

are determined by λ and λ′ (the exact formula depends on the chosen normalization).

1.2.3. The key result of the paper is the following theorem.

Theorem 1. Let g be a simply-laced Lie algebra. The deformed conformal blocks of

U�(L̂g) in (1.7) and the deformed conformal blocks of Wq,t(g) in (1.9) are identified by
the

(1.10) specific covector× U�(L̂g) conformal block = Wq,t(g) algebra block,

provided that the parameters of the two algebras are generic and related by equation (1.5).

The covector in (1.10), as well as other ingredients of Theorem 1 are best explained
in geometric terms, namely, in terms of the (quantum) K-theory of a Nakajima quiver
variety X; see below. Specifically, the covector in question corresponds to the insertion
of the identity OX ∈ KT(X) (more precisely, to no insertion) in a certain enumerative
problem. In geometric representation theory literature, it is customary to characterize
OX by a certain Whittaker property under the action of lowering operators; see, e.g.,
[79] for a discussion in cohomology. While we did not pursue such characterization in
the present paper, there is little doubt that it can be given.

We will also explain, following the predictions of string theory, what is the natural
setting for the non-simply-laced cases, see Subsection (1.6). As certain crucial geometric
representation theory ingredients are missing in this case, we propose the non-simply-
laced analog of Theorem 1 as a conjecture.

1.3. Geometry behind the correspondence. The central ingredient of our proof is
that for Lie algebras of simply-laced-type, when

L
g = g,

we can realize the q-conformal blocks (1.7) and (1.9) as vertex functions in equivariant
quantum K-theory of a certain holomorphic symplectic variety X. The variety X is the
Nakajima quiver variety with

quiver Q = Dynkin diagram of g .
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1.3.1. A Nakajima quiver variety X is a hyper-Kähler quotient (or a holomorphic sym-
plectic reduction)

(1.11) X = T ∗RepQ////GQ ,

where

(1.12) RepQ =
⊕
a→b

Hom(Va, Vb)
⊕
a

Hom(Va,Wa)

and

(1.13) GQ =
∏
a

GL(Va), GW =
∏
a

GL(Wa) .

The arrows in (1.12) are the arrows of the quiver. The dimensions of the vector spaces
Va and Wa correspond as follows:

dimVa = da , dimWa = ma,

to the weight space data in (1.8).

1.3.2. The quotient in (1.11) involves a geometric invariant theory (GIT) quotient, which
depends on a choice of stability conditions. As a result, vertex functions also depend on
a stability condition. This stability condition makes them analytic in a certain region
of the Kähler moduli space of X. The transition matrix between vertex functions and
q-conformal blocks will similarly depend on the stability condition. This dependence will
be understood in what follows.

1.3.3. The majority of variables in (1.7) and (1.9) become equivariant variables in their
geometric interpretation. We have

GW × C×
�
⊂ Aut(X)

where C×
�

rescales the cotangent directions in (1.11) with weight �−1. This gives the

symplectic form on X weight � under C×
�
. We fix a maximal torus A ⊂ GW and denote

T = A× C×
�
.

The coordinates ai of A are the positions at which the vertex operators are inserted in

(1.7) and (1.9), while � is the quantum group deformation parameter in U�(L̂g).
A multiplicative group C×

q acts on quasimaps P1 ��� X by automorphisms of the

domain P1. The coordinate q ∈ C×
q is the q-difference parameter from the title of the

paper.

1.3.4. In [81], Nakajima identified KT (X) with a space of weight (1.8) in a U�(L̂g)-
module. This is an important result in geometric representation theory which generated
a lot of further research. In [79] the authors suggested a somewhat different approach
to constructing geometric actions of quantum groups. One of its advantages is its trans-
parent connection with quantum cohomology and K-theory of X; see [79, 93].

By quantum cohomology and K-theory we mean enumerative theories of curves in X.
The precise flavor of such computations depends on the exact setup of the enumerative
problem, including the choice of the moduli spaces in question. Givental and collabo-
rators developed a very general K-theoretic analog of quantum cohomology using the
moduli spaces of stable rational maps; see e.g. [58]. This is not the theory that will be
used here. The following features of the quantum K-theory used here will be important:

— it deals with quasimaps to a GIT quotient as in [27],
— the quotient (1.11) is a holomorphic symplectic reduction of a cotangent bundle;

see [93] for an introduction.
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1.3.5. The basic object of the theory of [93] is the vertex function V. The vertex function
is an equivariant K-theoretic count of quasimaps from C to X of all possible degrees.
It is an analog of Givental’s I-function. The variables z in this generating function are
called Kähler parameters. They are related to the choice of the Fock vacuum |λ〉 in (1.7)
and |μ〉 in (1.9). Its definition and basic properties will be reviewed in Section 3.2 below.

1.3.6. A key geometric property of vertex functions are the q-difference equations that
they satisfy, as functions of both equivariant and Kähler variables (see [93, Section 8], for
an introduction). In particular, the q-difference equations in the variables ai were iden-
tified in Section 10 of [93] with the quantum Knizhnik-Zamolodchikov (qKZ) equations
of I. Frenkel and N. Reshetikhin [51]. In [51], these were introduced as the q-difference

equations that determine the q-deformations of conformal blocks corresponding to L̂g in
(1.7).

More precisely, the fundamental solutions of qKZ are vertex functions counting maps
from C× to X together with relative insertions at 0 ∈ C [93]. The relative insertions may
be traded for descendent insertions [6, 109].

In this introductory discussion, we will call quasimap counts with a relative insertion
at 0 ∈ C the vector vertex functions. This is to distinguish them from the normal vertex
functions counting quasimaps from C to X.

1.4. Key points of the proof. Theorem 1 follows from connections between (1.7),
(1.9), and the vertex functions which, in broad strokes, go as follows.

1.4.1. Vector vertex functions vs. U�(L̂g)-conformal blocks. On the electric, that is,

U�(L̂g)-algebra side, we have a characterization of deformed conformal blocks in (1.7) by
the quantum Knizhnik-Zamolodchikov equations that they satisfy. Vector vertex func-
tions provide a different basis of solutions of the same qKZ equation. The difference
manifests itself through difference analytic dependence on the equivariant variables ai
and the Kähler variables z.

As correlation functions of chiral operators, conformal blocks are analytic in a region
of schematic form

(1.14) |a5| � |a1| � |a3| � . . . ,

corresponding to time ordering of operators. This is the ordering in which we sew together
the chiral vertex operators on C to get the conformal block, and this basic analyticity is
unaffected by q-deformation.

By contrast, vector vertex functions are born as convergent power series in the Kähler
variables z, and they have poles in any region of the form (1.14). The variable z in which
they are holomorphic enter as parameters in the qKZ equation, namely as an element of

the Cartan torus for L̂g.
The dichotomy between the two kinds of solutions may be axiomatized as in [5]. We

have a flat q-difference connection on a product of two toric varieties (with coordinates a
and z), which is regular in each group of variables separately, but is not regular jointly.
Regions of the form (1.14) and z → 0 are punctured neighborhoods of fixed points in
the two toric varieties. The solutions analytic there are called the a- and z-solutions,
respectively. With this terminology, we can say that

(1.15) vector vertex functions = z-solutions to U�(L̂g) qKZ equation .
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1.4.2. Elliptic stable envelopes. Like any two bases of meromorphic solutions to the same

difference equations, the vector vertex functions and the U�(L̂g)-conformal blocks are
connected by a q-periodic transition matrix. This q-periodic transition matrix may be
called the pole subtraction matrix, because it literally cancels unwanted poles in one set
of variables at the expense of introducing poles in another set of variables; see [5] for a
detailed discussion.

This pole subtraction matrix was identified geometrically in [5] as the elliptic cohomol-
ogy version of stable envelopes of the Nakajima variety X. In equivariant cohomology,
stable envelopes were introduced in [79]. They are the main geometric input in the con-
struction of quantum group actions suggested there; see Section 9 of [93] for an overview.
This notion has a natural lift to equivariant K-theory, derived categories of coherent
sheaves, and, as shown in [5], also to the equivariant elliptic cohomology.

Parallel to cohomology and K-theory, elliptic stable envelopes produce an action of
a quantum group, namely an elliptic quantum group. The analysis of [5] equates the
monodromy of qKZ with the braiding for this elliptic quantum group. First steps towards
such identification were taken already in [51], with many subsequent developments, as
discussed in [5].

In the enumerative problem, elliptic stable envelopes are inserted via the evaluation
map at infinity of C×, away from the point 0 where the relative conditions have been
inserted. Later, when we discuss integral representation of the solutions, they will appear
as elliptic functions multiplying the measure of integration as in Section 2.2.6. In either

interpretation, they map vector vertex functions to U�(L̂g)-conformal blocks.

1.4.3. Vertex function and W-algebra correlators. On the magnetic, that is, W-algebra
side we prove in Theorem 3.1 in Section 3 that the vertex functions V of X, counting
quasimaps

(1.16) C ��� X,

equal the integrals (1.9) for a specific choice of contours of integration.4 The integral
formulas for vertex functions of X arise as follows.

It is well-known (and reviewed in the appendix) that K-theoretic computations on a
GIT-quotient by a reductive group Gmay be expressed as G-invariants in a G-equivariant
computation on the prequotient. The projection onto G-invariants may be recast, by the
Weyl integration formula, as an integral over a suitable cycle in a maximal torus in G.
Generalizing this, it is not difficult to show, see Section 3.4, that for K-theoretic compu-
tations on the moduli spaces of quasimaps to a GIT-quotient, there are similar integral
formulas. (In fact, such integral formulas are used routinely in supersymmetric gauge
theory literature. There, they connect two different ways to compute the supersymmetric
index of the 3d gauge theory on C× S1, starting from either the Higgs or the Coulomb
branch. Coulomb branches of 3d N = 4 gauge theories are studied in [22, 23, 82].)

To complete the match, it suffices to recognize in these formulas the integral formulas
of [50] for the free field correlators of Wq,t(g).

The same dichotomy arises in the discussion of the magnetic conformal blocks. Vertex
functions are analytic as z → 0, while the natural requirement for the Wq,t(g)-conformal
blocks is to be analytic in regions of the forms (1.14). Very importantly, the very same
elliptic stable envelopes transform the z-series into functions with the right analyticity

4Formal integral solutions of differential or q-difference equations use only the covariance of
∫
dx

with respect to affine linear transformations. For q-difference equations,
∫
dx is indistinguishable from∫

g(x)dx, where g(x) is any elliptic function. So, by a choice of a contour of integration we really mean
a choice of both g(x) and γ in

∫
γ dx g(x) . . . , where γ has to be constrained by the poles of both the

integrand and of g(x); see the discussion in Section 2.2.6.
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in the a-variables. The geometry of the correspondence is tautologically the same, as the
insertion of the elliptic stable envelope happens at infinity, away from the point 0 which
distinguishes vertex functions from their vector analogs. In integral formulas, stable
envelopes appear as elliptic functions multiplying the measure of integration.

1.4.4. The match of conformal blocks. It must be intuitively clear that vertex functions
are a special case of the vector vertex functions, namely the one corresponding to no
insertion at 0. Since the moduli spaces in question are not really identical, the correct
technical way to see this is via the degeneration formula as in Section 4.1. In particular,
it expresses vertex functions as vector vertex functions paired with a specific covector;
see formula (4.8). Applying elliptic stable envelopes to both sides gives the statement of
Theorem 1.

The above identification is a special case of a more general important problem in
enumerative geometry — to match relative counts with the so-called descendent counts.
By definition, the insertions in the descendent counts are pulled back via the evaluation
map to the quotient stack, while the evaluation map from the relative moduli spaces
goes to the Nakajima variety X. While, by the degeneration formula, the two kinds of
counts formally contain the same enumerative information, it is very important to be
able to control this equivalence explicitly. A very powerful result in this direction has
been obtained by Smirnov in [109], and we use this result here. An alternative, and more
convenient for our purposes, result has been obtained by two of the present authors in
[6] after the present work had been completed.

1.5. First applications and some further directions.

1.5.1. Difference equations for Wq,t(g)-conformal blocks. The match of the q-conformal
blocks can be used to transfer valuable information in both directions.

On the one hand, the equation (1.10) implies that the Wq,t(g)-algebra conformal block
solves an explicit scalar q-difference equation gauge equivalent to the qKZ equations. The
existence of such equations is not clear from the first principles of deformed W-algebras
as they exist today and their further investigation is surely a very interesting direction
of research.

Note, in particular, that the monodromy of these difference equations is the same
as the monodromy of the qKZ equations. The stable envelope analysis of [5] shows
abstractly that it is given by the R-matrices of the corresponding elliptic quantum group,
as predicted in [51].

1.5.2. Integral solutions of qKZ. In a different direction, any vertex with descendants
has an integral representation and the match between descendant and relative counts
gives an integral solutions to qKZ. Finding such solutions has been an area of very active
research. The formulas of [6] give a uniform general answer that specializes to the results
of [77, 78, 102, 114–116,120] for g = sln.

1.5.3. General quivers. The geometric steps outlined above work for a Nakajima variety
associated to a completely general quiver Q, which may have loops at vertices, parallel
edges,5 etc. For any such quiver, there is a quantum loop group [79, 93, 94], and the
corresponding qKZ equations, which form a part of the quantum difference equations.

5Note that the meaning of parallel edges is different in Nakajima theory and in the usual notation
for Dynkin diagrams. In Nakajima theory

Cartan matrix = 2−Q−QT ,

where Q is the adjacency matrix of Q. In particular, the Cartan matrix is always symmetric, and so the
Lie algebra is always simply-laced, in this sense.
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Our argument gives an integral solution to these difference equations in a form that may
be interpreted as a W-algebra conformal block.

A representation-theoretic study of these conformal blocks may be an interesting di-
rection for further research. Note that W-algebras associated to quivers appear in the
work of Kimura and Pestun [67] in connection with Nekrasov’s theory of qq-character
constraints in quiver gauge theories [85–87].

1.6. Non-simply-laced groups and folding. Let g be a finite-dimensional simple Lie
algebra which is not simply-laced, that is,

Lg �= g .

The Dynkin diagram of g is a quotient of the Dynkin diagram of a simply-laced Lie
algebra g0 by an abelian group H of diagram automorphisms as tabulated in (7.3). This
well-known procedure is called folding.

1.6.1. Let the quiver Q0 be the Dynkin diagram of g0 and let X0 be the corresponding
Nakajima quiver variety, as before. We require the dimension vectors to be invariant
under H. Such data is labeled by representations of Lg, the Langlands dual Lie algebra
of g; see Section 7.

1.6.2. We consider H-invariant quasimaps to X0, where H acts simultaneously on the
target and the source P1 of the quasimaps. As usual, the H-invariant part of the ob-
struction theory defines a perfect obstruction theory for the moduli space QM(X0)

H of
H-invariant quasimaps. Thus we can define the folded vertex functions which we denote
VH .

These folded vertex functions have an integral formula, just like the unfolded ones. By
inspection, these match the integral formulas for the Wq,t(g) deformed conformal blocks.

1.6.3. We conjecture that the steps from Sections 1.4.1 and 1.4.2 generalize. This requires
the development of elliptic stable envelopes (and, as a consequence, K-theoretic stable
envelopes) in the folded setting. If true, this would prove our conjectural correspondence
in full generality.

1.7. String theory origin. The q-conformal blocks of U�(L̂g) and Wq,t(g) algebras are
the partition functions of the 6d “little” string theory with (2, 0) supersymmetry.

Little string theory has a conformal limit, in which it becomes a point particle theory,
the 6d (2, 0) superconformal field theory. This theory is sometimes denoted as theory
X (g); it has been related to quantum Langlands correspondence in [92, 125], following
[64, 65].

The conformal limit of little string turns out to coincide with the conformal limit of
the algebras, when q-deformations go away.

1.7.1. For g a simply-laced Lie algebra, one takes the g-type little string theory on a
six-manifold

(1.17) M6 = C × C× C.

Here C is the Riemann surface on which the chiral algebras live. The parameters q
and t−1 are related to equivariant rotations of the two complex planes in (1.17); � is
associated with an R-symmetry twist, and (1.6) is required to preserve supersymmetry.

The vertex operator insertions in (1.7) and (1.9) correspond to introducing codimen-
sion four defects of the little string theory, supported at points of C and the complex
plane in (1.17) rotated by q. This is illustrated in Figure 2.
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Y

C �2

Figure 2. The 10d spacetime of the IIB string is the product of an
ADE surface Y , the cylinder C, and C2. The defects we consider are
located at C ⊂ C2 that is rotated by q, at points in C, and at middle-
dimensional cycles in Y . Compact cycles in Y , shown in gray, give rise to
the screening operators, while the dual non-compact cycles H2(Y, ∂Y,Z)
produce vertex operators in fundamental representations.

1.7.2. The g-type little string on (1.17) arises in a limit of IIB string theory on Y ×M6

where Y is an ADE surface of type g. The defects of little string theory on C in M6 lift to
D3 branes of IIB string. In Y , the D3 branes are supported on 2-cycles whose homology
class in H2(Y, ∂Y,Z) is identified with the weight in (1.8) using the identification of
H2(Y, ∂Y,Z) with the weight lattice of g.

1.7.3. The partition function of the 6d little string theory on M6 in (1.17) with the defect
D3 branes turns out to localize, due to supersymmetry, to the partition function of the
theory on the defects themselves. The theory on defects is [30] a 3d quiver gauge theory
with quiver Q whose Higgs branch is the Nakajima variety X in (1.11) (the theory has
N = 4 supersymmetry). The 3d gauge theory is supported on

(1.18) C× S1,

where C is identified with the complex plane in M6 supporting the defects. The fact
that a defect on C in M6 supports a 3d gauge theory is due to a stringy effect. Given
a D3 brane at a point on C, there are winding modes of strings which begin and end on
the brane, and wind around the circle in C ∼= C×. These winding modes are mapped to
momentum modes on the (T-)dual circle, corresponding to the S1 in (1.18).

The partition functions of the 3d gauge theory are the vertex functions ofX, computed
by quantum K-theory of [93]. They give either the electric or magnetic blocks, depending
on the boundary conditions at infinity in C.

Many other examples of relations between partition functions of supersymmetric gauge
and string theories and (q−)conformal blocks (called BPS/CFT correspondence [83])
appeared in physics literature over the years; [1, 8, 88] are a few. One should note that
the relation between the 6d (2, 0) theory and gauge theories we use here is different from
that in [8]. We use supersymmetry to localize the 6d theory to the theory on its defects
– and observe, following [2], that in little string theory, the theory on the defects is a
Nakajima quiver gauge theory, for any g, and all possible defects.

1.7.4. To get non-simply-laced theories, we start with the little string corresponding to
a simply-laced Lie algebra g0 compactified on M6 in (1.17), and add an H-twist. The
H-action is represented by a simultaneous rotation around the origin of the C-plane
supporting the defects, and permutation of the modes of the theory induced from the
action by generator h of H on the Dynkin diagram of g0.

The theory on the D3 brane defects is described by starting with an H-invariant quiver
gauge theory based on Q0, compactified on S1 × C. The H-twist restricts the fields of
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the theory on the defects to be those invariant under the simultaneous rotation of C and
h-action on the quiver.

1.7.5. All of our discussion so far corresponds to the unramified case of the geometric
Langlands correspondence. An important generalization is to include ramifications at a
number of points on C.

From the string theory perspective, this is straightforward: ramifications correspond
to another class of defects in little string theory onM6 supported at points on C and filling
C × C. These defects were studied in [2]. They originate from D5 branes supported on
2-cycles in Y in IIB on Y ×M6. Their effect on the D3 brane gauge theory is to introduce
an additional sector, coming from D3-D5 strings, which breaks supersymmetry to N = 2
in 3d. The partition function of this theory on C × S1 is a Wq,t(g) algebra conformal
block with vertex operators which are q-deformations of W(g) algebra primaries. The
mathematical implication of this is a precise statement of what the variety X becomes
in the ramified case (the Higgs branch of the 3d N = 2 quiver gauge theory); and a
conjecture for ramified quantum q-Langlands correspondence. On the left hand side in

(1.4), one considers q-conformal blocks of U�(L̂g) with vertex operators labeled by the
Verma module representations of U�(

Lg) inserted at ramification points; on the right, we
get the Wq,t(g) algebra blocks from [2].

1.7.6. Little string theory of g0 on M6/H is related to both of the 4d Yang-Mills theories
with gauge groups based on Lie algebras g and Lg. S-duality relating the 4d gauge
theories is a consequence of T-duality in string theory. One viewsM6/H as a T 2 fibration
over C × B. The two gauge theories arise by T-duality on one or the other cycle of the
T 2, after one takes the limit in which the characteristic size of the string and the size of
the torus go to zero.

In the limit, the partition function of little string theory on the one hand computes

conformal blocks of L̂g and Wβ(g) algebras; and on the other it computes the partition
functions of the 4d gauge theories based on Lg and g, respectively. We also derive
from this the identification of the parameters of the two 2d CFT’s with the parameters
τ = m(β − 1) and Lτ =L (k + h∨) of the two gauge theories. (See Section 9.)

We hope that our work will help provide a unified framework for the quantum geo-
metric Langlands correspondence relating the 2d conformal field theory and the 4d gauge
theory approaches of [41, 42, 55, 56, 104, 110, 112, 118] and [47, 60, 64, 65].

1.8. Plan of the paper. The paper is organized as follows. In Section 2 we review

relevant aspects of the U�(L̂g) and Wq,t(g) algebras. In Sections 3 and 4, we specialize
to the case of simply-laced g. In Section 3 we first review relevant aspects of quantum
K-theory and of vertex functions. Then, we develop an integral representation of vertex
functions and relate them to free field correlators of the Wq,t(g) algebra in (1.9). In
Section 4, we review the results of [93] relating vertex functions to solutions of a qKZ

equation corresponding to U�(L̂g), and the role of elliptic stable envelopes of [5]. This
completes the proof of the quantum Langlands correspondence for simply-laced g. The
g = A1 example is worked out in detail in Section 5. It should help the reader connect the
results of the present paper to earlier work. In Section 6 we discuss various approaches
to the quantum geometric Langlands correspondence and explain why the existence of

isomorphisms between conformal blocks of the affine Kac–Moody algebra L̂g and the
W-algebra Wβ(g) may be viewed as its manifestation. We relate this to a conjectural

equivalence of two braided tensor categories associated to L̂g and Wβ(g). We also discuss
the identification between these conformal blocks using the integral (free field) represen-
tation, and give explicit examples of what our results in the q-deformed case imply in
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the conformal limit. In Sections 7 and 8 we explain the relation to physics of 3d gauge
theories, and to their string theory embedding. This leads us to the conjecture for the
non-simply-laced cases. In Section 9 we explain the relation of little string theory to 4d
gauge theories that were related to Langlands correspondence in [65]. The last section is
the appendix which reviews the theory of GIT quotients in K-theory.

2. q-deformed conformal blocks

2.1. Electric side.

2.1.1. Let C ∼= C× be the Riemann surface from Section 1.2. For any simple Lie algebra
Lg, I. Frenkel and N. Reshetikhin in [51] described the �-deformation of the L̂gLk WZW

model conformal blocks on C based on the quantum affine algebra U�(L̂g). We briefly
recall some of their results here. Throughout this subsection, the normalization of the
bilinear form (, )Lg on the Lie algebra is chosen so the longest root has length squared
equal to 2; these are the usual conventions for affine Lie algebras.

2.1.2. The deformed conformal blocks are correlators of chiral vertex operators:

(2.1) Ψ(a1, . . . , a�, . . . , an) = 〈λ′|Φ1(a1) . . .Φ�(a�) . . .Φn(an)|λ〉.

State |λ〉 is a highest weight vector of a Verma module ρλ,Lk for U�(L̂g) at level Lk.

These are �-deformations of Verma modules of L̂g.

2.1.3. A chiral vertex operator Φ�(a) is labeled by a finite-dimensional representation ρ�

of U�(L̂g) and acts as an intertwiner

(2.2) Φ�(a) : ρλi,Lk → ρλj ,k ⊗ ρ�(a) a
h(λi)−h(λj),

where ρλi,j ,Lk are Verma modules of U�(L̂g) and

ρ�(a) = the representation ρ�

precomposed by the action of x ∈ C×

by a loop rotation automorphism of U�(L̂g)

is an analog of an evaluation representation for U�(L̂g).
Above, h(λ) is the same factor as for the affine Lie algebra, given by the conformal

weight of the state |λ〉. The space of intertwiners with this data is

H
λj ,ρ�

λi
= HomU�(Lg)(ρλi

, ρλj
⊗ ρ�),

where U�(
Lg) is the finite quantum group, and ρ’s are the corresponding modules — a

direct generalization of the WZW statement.

2.1.4. The deformed conformal block Ψ(a) takes values in a weight subspace

(2.3) Ψ(a1, . . . , a�, . . . , an) ∈ (ρ1 ⊗ . . . ρ� ⊗ . . .⊗ ρn)λ′−λ,

the weight λ′ − λ.
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2.1.5. As a deformation of the Knizhnik-Zamolodchikov equations [68], I. Frenkel and
N. Reshetikhin obtain a holonomic system of q-difference equations for the conformal
block (2.1). It is called the quantum Knizhnik-Zamolodchikov equation and is the most
powerful description of (2.1). It has the form:

(2.4)
Ψ(a1, . . . , qa�, . . . , an) =R��−1(qa�/a�−1) · · ·R�1(qa�/a�−1)(�

ρ)�

×R�n(a�/an) . . .R��+1(a�/a�+1)Ψ(a1, . . . , a�, . . . , an)

where

q = �−
L(k+h∨),

and

Rij(x) ⊂ End(ρi ⊗ ρj)

is the U�(L̂g) R-matrix corresponding to a pair ρi, ρj finite-dimensional U�(L̂g) mod-
ules. Furthermore, (�μ)� acts on the �th component of the tensor, corresponding to
representation ρ�. Its action on a vector vw of weight w is

�μ(vw) = �(μ,w)vw.

The vector ρ is the Weyl vector, equal to half the sum of positive roots of Lg. Once we
fix a specific ordering of vertex operators in (2.1) or, equivalently, a region of the form

|a5| > |a2| > |a7| > . . . ,

the qKZ equation determines the q-conformal blocks completely. The solutions in each
region are labeled by elements of⊕

λ1,...,λn−1

Hλ0,ρ1

λ1
⊗ . . .⊗H

λ�−1,ρ�

λ�
⊗ . . .⊗H

λn−1,ρn

λ∞

where λ1, . . . , λn−1 are the highest weights of Verma modules in intermediate channels.
Note that the dimension of this space equals the dimension of (2.3).

2.1.6. The notation here differs from that of I. Frenkel and N. Reshetikhin in [51] by:

(2.5) (q) here = (p)FR, (�) here = (q2)FR,

and (p = q−2L(k+h))FR.

2.1.7. In the conformal limit, when

(2.6) �, q −→ 1

with L(k + h) fixed, the qKZ equation reduces to the KZ equation

(2.7) L(k + h) a�
∂

∂a�
Ψ =

⎛⎝∑
j �=�

r�i(a�/aj) + r�0 + r�∞

⎞⎠ Ψ,

derived in [68]. The matrix

rij(ai/aj) =
rijai + rjiaj

ai − aj

with

r =
1

2

∑
a

ha ⊗ ha +
∑
α>0

eα ⊗ e−α

in the standard Lie theory notation, is the classical R-matrix of WZW on C = C×. This is
referred to as the trigonometric R-matrix, as opposed to the rational one, corresponding
to the case C = C.
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2.2. Magnetic side.

2.2.1. Let C and g be as before. The deformed Wq,t(g) algebra, and certain classes of
vertex and screening operators, were constructed by E. Frenkel and N. Reshetikhin in
[50] in terms of free fields, as a q-deformation of a Wβ(g) algebra, where t = qβ. (See also
[13, 38, 108] for g = sln.) The free field realization implies that the q-conformal blocks
on C of the form

(2.8) 〈μ′|V ∨
1 (a1) . . . V

∨
n (an)

∏
a

(Q∨
a )

da |μ〉

have a direct description in terms of certain contour integrals.

2.2.2. Let g be a simple Lie algebra, and let Cab be its Cartan matrix, defined as

(2.9) Cab = 2(ea, eb)/(ea, ea) = (e∨a , eb),

in terms of simple positive roots ea, the coroots e
∨
a , and the invariant inner product (, ) on

the Lie algebra. Let m be the lacing number, the maximum number of arrows connecting
a pair of nodes in the Dynkin diagram. Unless m = 1 and the theory is simply-laced,
the Cartan matrix is not symmetric. Instead, the symmetric matrix is

(2.10) Bab = maCab = m(ea, eb),

where we defined

ma = m(ea, ea)/2.

We choose the normalization of the inner product (, )g so that ma = m for long roots
and ma = 1 for short roots.

2.2.3. To define the deformed Wq,t(g), one starts [50] with the q-deformed Heisenberg
algebra Hq,t(g) in terms of “root”-type generators ea[k], for k ∈ Z where a labels the
simple positive root of g. The generators satisfy commutation relations

[ea[k], eb[�]] =
1

k
(q

k
2 − q−

k
2 )(t

k
2 − t−

k
2 )Bab(q

k, tk)δk,−�.

Here, Bab(q, t) is a q-deformation6 of (2.10),

Bab(q, t) = [ma]q Cab(q, t),

where Cab(q, t) is the q-deformed Cartan matrix

Cab(q, t) = q
ma
2 t−

1
2 + q−

ma
2 t

1
2 − [Iab]q,

and Iab is the classical incidence number, Iab = 2δab − Cab.

2.2.4. We get a Fock representation of the Heisenberg algebra, denoted by πμ, by starting
with the state |μ〉, such that

ea[k]|μ〉 = 0, k > 0, ea[0]|μ〉 = (μ, ea)|μ〉,

and acting by the algebra generators.

6The quantum number n is defined as [n]q = qn/2−q−n/2

q1/2−q−1/2 .
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2.2.5. One defines the magnetic and the electric screening currents following [50]:

(2.11) S∨
a (x) = [. . .]x−ea[0]/ma : exp

(∑
k �=0

ea[k]

q
kma

2 − q−
kma

2

xk
)
:

and

(2.12) Sa(x) = [. . .]xea[0]/β : exp
(
−
∑
k �=0

ea[k]

t
k
2 − t−

k
2

xk
)
: .

The terms denoted by [. . .] above are operators responsible, in part, for shifts of momenta
μ in πμ in (2.14). If g is simply-laced, there is a symmetry exchanging S∨

a and Sa and
swapping q and t.

The algebra Wq,t(g) is defined as the associative algebra generated by the (Fourier
coefficients of) operators T (x) which commute with the screening charges S∨

a (x) and
Sa(x) up to a total difference, e.g.,

(2.13) [T (x), S∨
a (x

′)] = Dx′,qf(x, x
′), Dx,qf(x) =

f(x)− f(qx)

x(1− q)
.

2.2.6. For the corresponding screening charges

(2.14)

Q∨
a =

∫
S∨
a (x) : π0 → π−eaβ/ma

,

Qa =

∫
Sa(x) : π0 → πea ,

equation (2.13) implies [
T (x),

∫
S∨
a (x

′)

]
= 0 .

Here f(x) �→
∫
f(x) is any linear functional such that∫

f(x)

x
=

∫
f(qx)

x
.

For example, we can take ∫
f(x) =

∫
γ

f(x) dx

for any path γ such that

q · γ − γ = 0 ∈ H1(C
× \ singularities of the integrand) .

More flexibly, we can take,

(2.15)

∫
f(x) =

∫
γ

f(x) g(x) dx , g(qx) = g(x) ,

with the same assumption on the integration cycle γ.
As we will see below, the insertion of the right elliptic function g(x) under the integral

as in (2.15) corresponds geometrically to the insertion of an elliptic stable envelope in
quasimap enumeration. These elliptic stable envelopes transform the z-solutions that ap-
pear naturally in the enumerative problem into a-solutions that correspond to conformal
blocks.

For Sa(x), the analysis is the same, except q-shifts are replaced by t-shifts.
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2.2.7. The weight-type generators wa[k] are associated with fundamental weights of g.
They are defined by

ea[k] =
∑
b

Cab(q
k, tk)wb[k]

which satisfy

[ea[k], wb[�]] =
1

k
(q

kma
2 − q−

kma
2 )(t

k
2 − t−

k
2 )δabδk,−�.

2.2.8. Similarly, there are magnetic V ∨
a and electric Va degenerate vertex operators,

associated with fundamental coweights and weights (as defined in Section 9 of [50], with
some slight relabeling):

(2.16) V ∨
a (x) = xwa[0]/ma : exp

(
−
∑
k �=0

wa[k]

q
kma

2 − q−
kma

2

xk
)
:

and

(2.17) Va(x) = x−wa[0]/β : exp
(∑

k �=0

wa[k]

t
k
2 − t−

k
2

xk
)
:

for the electric vertex operators. The insertion at infinity is determined by charge con-
servation.

2.2.9. We denote

(2.18) ϕq(s) =

∞∏
n=0

(1− qns) .

In the taxonomy of special function, the function (2.18) is best described as the reciprocal
of the q-analog of the Γ-function. It is also known under many other names.

The infinite product (2.18) is a half of the odd genus one theta-function

(2.19) θq(s) = ϕq(s)ϕq(q/s) ,

which is vanishing at s = 1 and normalized to be a single-valued function of s.
For simply-laced g we will often drop the subscripts and then ϕ(s) = ϕq(s), etc.

2.2.10. Collecting the definitions above, the Wq,t(g) correlator in (2.8)

(2.20) 〈μ′|V ∨
1 (a1) . . . V

∨
n (an)

∏
a

(Q∨
a )

da |μ〉

is the integral

(2.21)

∫
dHaarxx

μ Φ(x, a),

where we defined

xμ =
∏
a,α

x(μ,ea)
a,α

and dHaarx =
∏

a,α dxa,α/xa,α. The integrand Φ(x, a) is a product of three terms, which

come from normal (re)ordering of the operators in (2.20): The first comes from the
screening currents associated to node a:

(2.22)
∏
α<α′

〈S∨
a (xα,a)S

∨
a (xα′,a)〉 =

∏
α�=α′

ϕqa(xα,a/xα′,a)

ϕqa(t xα,a/xα′,a)

∏
α<α′

θqa(txα,a/xα′,a)

θqa( xα,a/xα′,a)
.
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Here and below, 〈〉 stands for expectation values computed in state |0〉. The second
factor comes from screening charges associated to a pair of nodes a, b connected by a link
to the Dynkin diagram of g, and equals:

(2.23)
∏
α,β

〈S∨
a (xα,a)S

∨
b (xβ,b)〉 =

∏
α,β

ϕqab
(tvab xα,a/xβ,b)

ϕqab
(vab xα,a/xβ,b)

.

Above va, vab are defined as follows: va =
√
qa/t and vab =

√
qab/t, where qa = qma and

qab = qmin(ma,mb). (If either of the nodes a, b corresponds to a short root, then qab = q,
and, if both of the nodes are long, then qab = qm.) The third, and final factor comes
from a normal ordering of the vertex operators V ∨

a (ai)’s with the screening currents S∨
a

coming from the same node:

(2.24)
∏
α,a

〈S∨
a (xα,a)V

∨
a (ai)〉 =

∏
a,α

ϕqa(tva ai/xα,a)

ϕqa(va ai/xα,a)
.

The μ dependent factor in (2.21) accounts for the fact that the incoming stat in (2.20)
is |μ〉, and not the trivial vacuum |0〉.

2.2.11. In writing (2.22) we assume the argument x of ϕq(x) is less than one, |x| < 1.
Otherwise ϕq(x) gets replaced by 1/ϕq(q/x) = ϕq(x)/θq(x). This is a feature of deformed
chiral algebras, as defined in [49].

2.3. Conformal limit. The conformal limit, in which one recovers the ordinary (con-
formal) W-algebra Wβ(g),

Wq,t(g) → Wβ(g)

corresponds to taking

(2.25) q, t = qβ → 1,

keeping β fixed, as in [50]. The conformal W-algebra Wβ(g) with β = m(k + h∨) is
obtained from ĝ of level k via the quantum Drinfeld–Sokolov reduction (see [36, 46] and
Section 6 below for details).

2.3.1. The limit (2.25) requires rescaling of the generators of the algebra. The gener-
ators of the algebra that stay finite in the limit are e′a[k] = ea[k]/ log(q) and w′

a[k] =
wa[k]/ log(q). In the limit, we get

(2.26) 〈S∨
a (x)S

∨
b (x

′)〉 = (x− x′)
β
m (e∨a ,e∨b ), 〈S∨

a (x)V
∨
b (x′)〉 = (x− x′)−

β
m (e∨a ,w∨

b ),

and

(2.27) 〈Sa(x)Sb(x
′)〉 = (x− x′)

m
β (ea,eb), 〈Sa(x)Vb(x

′)〉 = (x− x′)−
m
β (ea,wb),

where e∨a , w
∨
a are the coroots, and the fundamental coweights, respectively.7 The formulas

reflect the fact that for a pair of Langlands dual Lie algebras, g and Lg, there is an
isomorphism of the corresponding W-algebras [36]:

Wβ(g) = WLβ(
Lg), β Lβ = m,

(see Section 6 for details). One recalls that, under exchanging g and Lg, roots and coroots
get exchanged, as well as the weights and coweights, and the inner product gets rescaled,
(, )g = m(, )Lg.

7The fundamental coweights are defined by (ea, w∨
b ) = δa,b.
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3. Integral representation of vertex functions

3.1. Quasimaps to Nakajima varieties.

3.1.1. Let X be a Nakajima variety as in Section 1.3

(3.1) X = T ∗RepQ////GQ = μ−1(0) � GQ ,

where μ is the complex moment map for the action of GQ. From (3.1), it is a GIT
quotient of an affine algebraic variety by an action of a reductive group.

For such quotients, Ciocan-Fontanine, Kim, and Maulik define in [27] a notion of
quasimap

(3.2) f : C ��� X .

These are maps toX with certain singularities. Informally, a stable quasimap f is allowed
to take a GIT-unstable value at finitely many points of C. In what follows, all quasimaps
are assumed stable.

Analogous notions are known in both supersymmetric gauge theory and mathematics
literature. The precise definition of [27] is best suited for our goals here. An introductory
discussion of quasimaps of [27] may be found in [93].

3.1.2. The vector spaces Va in the quiver description of X descend to vector bundles on
X. These are called tautological.

The data of a quasimap includes vector bundles Va on the domain C; they coincide
with the pullbacks f∗Va of the tautological bundles for regular maps f : C → X and
are part of the definition in general. Similarly, we have the trivial bundles Wa on C
corresponding to the trivial bundles Wa on X. We denote by

(3.3) M =
⊕
a→b

Hom(Va,Vb)
⊕
a

Hom(Va,Wa)

the bundle corresponding to (1.12).
By definition, a quasimap is a collection of bundles {Va,Wa} together with a stable

section

f ∈ H0(C,M ⊕ �−1 ⊗ M ∗)

satisfying the moment map equation

μ(f) = 0 ∈ H0(C,
⊕
a

End(Va)) .

Stability of f means it evaluates to a GIT-stable point at all but finitely many points of
C. This data is considered up to isomorphisms fixing C pointwise. In other words, we
consider quasimaps from parametrized domains.

3.1.3. Let QM(X) be the moduli space of quasimaps from C ∼= P1 to X. On the domain
C, we fix marked points

p1 = 0 , p2 = ∞ ,

and denote

C×
q = Aut(C, p1, p2) .

Here the subscript is to distinguish this torus from other tori present; an element of C×
q

will be denoted q. We take Tp1
C as the defining (i.e., weight one) representation of C×

q .

3.1.4. The degree of a quasimap is defined as follows:

deg f = (degV1, degV2, . . . ) ∈ H2(X,Z)effective ;

see the discussion in Section 7.2 of [93]. This is a locally constant function on QM(X).
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3.1.5. By definition, vertex functions forX are computed using C×
q -equivariant K-theoretic

localization on the open set

QMnon-sing ∞ ⊂ QM

formed by quasimaps non-singular at p2 = ∞. It is therefore important to understand

the structure of the fixed locus
(
QMnon-sing ∞

)C×
q . It is discussed, in particular, in Section

7.2 of [93].

3.1.6. The analysis of the fixed loci may be summarized as follows. We define

Va =
⊕
k∈Z

Va[k] = H0(Va

∣∣
C\{p2}

) ,

where Va[k] is the subspace of weight k with respect to C×
q . By invariance, all quiver

maps preserve this weight decomposition. We define the framing spaces W[k] in the same
way and obtain

(3.4) Wa[k] =

{
Wa , k ≤ 0 ,

0 , k > 0 ,

because the bundles Wa are trivial.
Multiplication by the coordinate induces an embedding

(3.5) Va[k] ↪→ Va[k − 1] ↪→ · · · ↪→ Va[−∞] = Va ,

compatible with quiver maps, where Va is the quiver data for the point f(∞) ∈ X. A
C×

q -fixed stable quasimap f takes a constant stable value on C \ {0,∞} and, since f is
additionally assumed non-singular at infinity, f(∞) is that generic value of f .

We conclude

(3.6)
(
QMnon-sing ∞

)C×
q =

⎧⎨⎩a stable quiver representation
+ a flag of subrepresentations

satisfying (3.4)

⎫⎬⎭
/∏

GL(Va) .

3.2. Vertex functions.

3.2.1. Vertex functions are defined as generating functions of equivariant counts of quasimaps
of all degrees. Concretely, consider the evaluation map

ev : QMnon-sing ∞(X) → X

that records the value f(∞) of a quasimap f . We introduce a weighting by zdeg f , where
z are the variables in the generating function, and define

(3.7) Vertex = ev∗
(
Ôvir z

deg f
)
∈ KT×C

×
q
(X)localized ⊗Q[[z]] ,

where the symmetrized virtual structure sheaf Ôvir will be discussed below and Q[[z]]
denotes formal power series in z with exponents supported in the effective cone.

3.2.2. The push-forward in (3.7) is defined using C×
q -equivariant localization. (It is clear

from the above description of the C×
q -fixed quasimaps that the evaluation map is proper

on these fixed loci.) Because of this, vertex functions are series in z with coefficients in
localized equivariant cohomology. Their denominators are the source of their richness and
complexity; analogous functions without denominators (called the cap in the professional
lingo; see below) lose this complexity.
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3.2.3. The symmetrized virtual structure sheaf is defined by [93]

(3.8) Ôvir = Ovir ⊗
(

Kvir

detT 1/2
∣∣
∞

detT 1/2
∣∣
0

)1/2

,

where Ovir is the virtual structure sheaf constructed in the standard way from the perfect
obstruction theory of quasimaps, see [16,26,34], Kvir is the virtual canonical bundle, that
is, the determinant of the virtual cotangent bundle, and the remaining term involves a
choice of polarization of X and is mainly needed to avoid square roots of q.

3.2.4. The virtual tangent bundle to QM(X) may be described as follows:

(3.9) TvirQM(X) = Def −Obs = H
•
(C,T ) ,

where
T = M ⊕ �−1 ⊗ M ∗ − (1 + �−1)⊕a End(Va)

is the virtual bundle on C corresponding to the tangent bundle TX of our Nakajima
variety.

3.2.5. By definition, a polarization T 1/2 ∈ KT(X) is a choice of a half of the tangent
bundle, that is, a choice of the solution of the equation

T 1/2X + �−1 ⊗
(
T 1/2X

)∨
= TX

inKT(X), where vee denotes dual. Natural polarization of Nakajima varieties correspond
to choosing one out of every pair of quiver arrows. A polarization T 1/2 induces a virtual
vector bundle T 1/2 on the domain C of the quasimap such that

(3.10) T = T 1/2 + �−1 ⊗
(
T 1/2

)∨
.

The fibers of the line bundle detT 1/2 enter (3.8). The square root in (3.8) exists,
perhaps after introducing �1/2. For quasimaps, it can be given explicitly in terms of a
polarization. See Section 6.1 of [93] and also [89] for general results in this direction.
Vertex functions defined using a different choice of polarization differ by a q-shift of the
variables z only.

3.3. Localization contributions.

3.3.1. Recall that the push-forward in (3.7) is defined using C×
q -equivariant localization.

A general shape of virtual localization formulas, see [26, 59], is the following. Restricted
to the fixed locus, the obstruction theory splits

(3.11) Tvir

∣∣
QM(X)C

×
q
= Tvir,fixed ⊕ Tvir,moving

into trivial and non-trivial C×
q -eigenspaces. The fixed part of the obstruction theory

produces a perfect obstruction theory for the fixed locus, from which its own virtual
structure sheaf and the symmetrized virtual structure sheaf are derived. The moving
parts of the obstruction theory enter the localization formula as a K-theoretic analog of

the Euler class or, more precisely, â-genus (3.20) for the virtual localization of Ôvir.

3.3.2. Our plan for the analysis of the localization contributions is the following:

— first, we show (3.6) is a GIT quotient. This makes the techniques reviewed in
the appendix applicable to these fixed loci.

— We identify the fixed part of the quasimap obstruction theory with the natural
obstruction theory of (3.6).

— We include the moving contributions to derive an integral representation for the
vertex functions.
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3.3.3. In order to show (3.6) is a GIT quotient, one may analyze GIT-stability on the
ambient space

(3.12)
(
QMnon-sing ∞

)C×
q ⊂

{
a stable quiver representation
+ flags of subspaces in Va

}/∏
GL(Va) ,

where the flags of subspaces need not form a flag of subrepresentations. The required
ample line bundles will be obtained by restriction from the ambient space in (3.12).

The ambient space in (3.12) is not a Nakajima quiver variety, but it may be presented
as a quiver variety in which the data for X is extended by chains

(3.13) Va ← V ′
a ← V ′′

a ← . . .

attached to every Va. The spaces in (3.13) correspond to subspaces in (3.5), excluding
repetitions. This extended quiver data is taken modulo G×G′ where

G =
∏

GL(Va) , G′ =
∏

GL(V ′
a)×GL(V ′′

a )× · · · .

As a GIT-stability parameter, we need to specify a character χ̄ of G×G′. We take

χ̄ = χm χ′ , m � 0,

where χ is the stability parameter for X and χ′ is the character of G′ that forces the
maps (3.13) to be injective.

Lemma 1. The quotient in (3.12) is the GIT quotient of the extended quiver data with
the stability parameter χ̄.

Proof. We use King’s reformulation of the GIT-stability of quiver representations in
terms of slope stability; see for example the exposition in Section 2.3 of [57]. Namely, a
representation R is semistable if and only if

slopeχ̄(S) ≤ slopeχ̄(R)

for every non-zero subrepresentation S ⊂ R, where

(3.14) slopeχ̄(R) =
χ̄ · dimR

(1, . . . , 1) · dimR
.

In (3.14), we interpret χ̄ and dimR as dimension vectors for the extended quiver and take
the usual dot product of dimension vectors. To include framing spaces in this formalism,
one can replace them with arrows from an extra vertex V0

∼= C, as first suggested by
Crawley–Boevey. See for example the discussion in Section 3.1 of [57].

Since m � 0, the G × G′-semistability of the extended quiver data implies G-
semistability of the original data, and hence its stability because in X there are no
strictly semistable points. Because of this stability, any subrepresentation S passes the
slope test automatically except when it contains all or none of the spaces Va. In the
latter case, we use our choice of χ′ to conclude that the semistable representations of
the extended quiver are the stable representations of the original quiver with a choice of
injective maps (3.13). �

Corollary 1. The stable points in (3.6) are GIT semistable (=stable) points for L =
L0 ⊗ χm, m � 0, where L0 is any ample line bundle pulled back from the product of
partial flag varieties and χ is the character that gives the stability condition for X.
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3.3.4. The natural obstruction theory of quasimaps is constructed relative to the map

QM(X) → stack of bundles {Va}

to a smooth stack of bundles on the domain C. The terms in the relative obstruction
theory are given by the cohomology of the bundles giving the quiver data and the moment
map.

We have

(3.15)

{
flags of subspaces in Va

}∏
GL(Va)

=
stack of C×

q -equivariant bundles {Va}
with trivial C×

q -action on Va

∣∣
∞

.

The inclusion of Corollary 1

(3.16)
(
QMnonsing ∞

)C×
q ⊂

{
a quiver representation

+ flags of subspaces in Va

}//∏
GL(Va) ,

where the double slash denotes a GIT quotient, can be interpreted in quasimap terms as
follows.

3.3.5. Observe that

(3.17) H0(G (−∞))C
×
q = H1(G )C

×
q = 0

for any equivariant bundle G on P1 such that G
∣∣
∞ is a trivial C×

q -module. Here G (−∞)

denotes the twist by the divisor ∞ ∈ P1. Therefore, from the exact sequence

0 → G (−∞) → G → G |∞ → 0

we get

(3.18) 0 → χ(G )C
×
q = H0(G )C

×
q → G |∞ → H1(G (−∞))C

×
q → 0 .

In particular, (3.18) applies to the bundles

G = Hom(Va,Vb) , . . . ,

whose sections are the quiver maps. For them, the middle term in (3.18) gives the vector
space Hom(Va, Vb), while the zero locus of the map

Hom(Va, Vb) → H1(V ∨
a ⊗ Vb(−∞))C

×
q =

⊕
k

Hom(Va[k], Vb/Vb[k])

defines, together with the moment map equation, the inclusion (3.16). Here the sum-
mation is over all Va[k] excluding repetitions. The C×

q -fixed part of the moment map
equations is a section of

�−1 ⊗
⊕
a

Homflag(Va, Va) = �−1 ⊗
⊕
a

H
•
(V ∨

a ⊗ Va)
C

×
q ,

where the subscript in Homflag denotes maps that preserve the filtration by Va[k].
This completes 2/3 of the plan outlined in Section 3.3.2.

3.4. Integral formulas.

3.4.1. In the full vertex function, the (symmetrized) virtual structure sheaf of the fixed
locus enters simultaneously with the contributions of the moving parts of the quasimap
obstruction theory. This leads to the following formulas for the vertex functions. (The
necessary background information about K-theoretic computation on GIT quotients is
collected in the appendix.)
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3.4.2. Let S ⊂
∏

GL(Va) be a maximal torus. The S×T-fixed points on the prequotient
in (3.16) correspond to coordinate flags and zero quiver maps. Coordinate flags mean
that S appears as a group preserving a splitting

(3.19) Va =
⊕
α

La,α , La,α = O(da,α[0]) , da,α = degLa,α ,

into a direct sum of line bundles. We denote by sa,α the S-weight of La,α. These are
the coordinates in S and the equivariant Chern roots of the bundles Va over X. These
very same variables were denoted by sa,α = x−1

a,α, elsewhere in the paper. With our
conventions,

weight
(
La,α

∣∣
0

)
= qda,αsa,α , weight

(
La,α

∣∣
∞
)
= sa,α ,

where the weights are for the torus S× T× C×
q .

As we will see, integral formulas for the vertex will be more naturally written not
in terms of the variables sa,α but rather in terms of the weights of {Va} over the point
0 ∈ C.

3.4.3. The basic ingredient in the integration formulas is the function

(3.20) â(s) = s1/2 − s−1/2

extended to equivariant K-theory as a genus, that is, so that

(3.21) â(G1 + G2) = â(G1) â(G2) .

The importance of this function is clear from the equality

(3.22)
(
Ovir ⊗ K

1/2
vir

)
moving

= â (Tvir,moving)
−1

for the moving part of the virtual structure sheaf in localization formulas. Formula (3.22)
is an immediate consequence of the localization formula for Ovir; see [26, 59]. Here and
in what follows the moving terms are the terms of non-trivial weight with respect to
S× T× C×

q .
In particular, an algebraic consequence of the identification (3.15) is that

ΔWeyl

â(TFlags in (3.15))
= â(Lie

∏
Aut(Va)

C
×
q /S) .

Thus the integration measure in (A.13) in the specific setting of (3.16) naturally becomes
a part of the localization weight (3.22), namely the part that comes from C×

q -equivariant
automorphisms of {Va} other than those in S.

We conclude the following.

Proposition 1. For any F ∈ KT(X), we have

(3.23) χ(X,Vertex⊗ F ) =
1

|W |
∑

{da,α}
q−

1
2 deg T 1/2 ∏

a,α

zda,α
a

∫
γχ

F (s) dHaars

â (Tvir,moving)
,

where the summation is over all splittings (3.19), T 1/2 denotes the virtual bundle on
C induced by the chosen polarization, the cycle γχ corresponds to a choice of stability
parameter χ as in (A.12), and F (s) is the expression of F in the Chern roots of the
tautological bundles.

Note that by Lemma 4 in Section A.0.7 the integration
∫
γχ

in (3.23) is really an

iterated residue of the integrand.
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3.4.4. The summation over splittings in (3.23) can be treated in two complementary
ways.

On the one hand, one can sum over the whole lattice of splittings, and this will be
convenient for interpreting the eventual integral (3.32) as a linear functional invariant
under q-shifts.

On the other hand, for most splittings, there are no stable quasimaps and hence those
contribute zero to the sum in (3.23). We call splittings that correspond to stable C×

q -fixed
quasimaps effective. A necessary condition for a splitting to be effective is discussed in
Section 7.2 of [93].

3.4.5. Formulas (3.9) and (3.10) show that the following lemma applies to the denomi-
nator in (3.23).

Lemma 2. For any bundle G on P1 we have

(3.24) q− deg G/2 â
(
G |∞ + �−1G ∨|∞

)
â (H• (G + �−1G ∨))

=
(
−�1/2

)− deg G ϕ (�G |∞)ϕ (qG |0)
ϕ (qG |∞)ϕ (�G |0)

,

where ϕ is the function (2.18) extended multiplicatively as in (3.21).

Proof. It is enough to prove (3.24) for a line bundle, in which case it reduces to an
elementary identity. �

Note that for G = T 1/2 the prefactor in the LHS of (3.24) coincides with the power
of q in (3.23), while the numerator in the LHS of (3.24) is nothing but â(TX). As in
Section 8.3 of [93], we incorporate the prefactor in the RHS of (3.24) into a shift z# of
the variable z so that

zdeg f
# =

(
−�1/2

)− deg T 1/2 ∏
a,α

zda,α
a .

With this notation, (3.23) may be restated as follows:

(3.25) χ(X,Vertex⊗ F )

=
1

|W |
∑

{da,α}
zdeg f
#

∫
γχ

⎛⎝F (s) dHaars

â (T )

ϕ
(
�T 1/2

)
ϕ
(
qT

1/2
0

)
ϕ
(
qT 1/2

)
ϕ
(
�T

1/2
0

)
⎞⎠∼

moving

,

where T
1/2
0 denotes the fiber of T 1/2 over 0 ∈ C, tilde refers to the computation on the

prequotient, and only moving terms are retained from the product of â- and ϕ-functions.

3.4.6. From the point of view of difference equations, a better normalization of the vertex
functions is the following:

(3.26) V = e(z#)ϕ((q − �)T 1/2)Vertex ;

see Section 8.3 in [93] and also Section 6.1 in [5] (V here was denoted by Ṽ, in those
papers). It solves certain q-difference equations in both the equivariant variables and the
Kähler variables z. Here

(3.27) e(z) = exp

(
λ(ln z, ln t)

ln q

)
,

where

λ : H2(X,C)⊗ LieT → EndK(XT)⊗ C

extends by linearity the map that takes a line bundle L ∈ Pic(X) to the logarithm of the
operator L ⊗—; see the discussion in Section 8.2 of [93]. This function has an elementary
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description in terms of the prequotient. Indeed, the line bundle detVa associated to the
variable za has weight

∏
α sa,α, whence

(3.28) λ =
∑
a,α

ln(za) ln(sa,α) .

A certain care is required in working with (3.26) because φ(�T 1/2) may contain non-
equivariant non-invertible factors (since these singular terms involve neither equivariant
nor Kähler variables, they are irrelevant from the point of view of difference equations).
To avoid these complications, we define

(3.29) V =
â(T )

θ(T 1/2)
V = �−

1
4 dimX e(z#)

ϕ(qT∨)
Vertex ,

where θ(s) is the odd theta-function defined in (2.19). Note a slight difference with
the odd theta-function ϑ(s) = s1/2θ(s) used in [5]. We extend (2.19) multiplicatively as
before. Note that the division of the V-function by the theta-function of the polarization
T 1/2 is a part of the pole subtraction operator of [5]; see Section 6.3 there.

Substituting (3.29) in (3.25), we obtain

(3.30) χ(X,V⊗F )

=
1

|W |
∑

{da,α}
zdeg f
#

∫
γχ

exp

(
λ(z#, s)

ln q

)
F (s) dHaars

θ(T 1/2)

ϕ
(
qT

1/2
0

)
ϕ
(
�T

1/2
0

) ,

where the computation on the prequotient and the extraction of the moving parts is
understood.

3.4.7. Let

d = {da,α}
denote an effective splitting (3.19) and define

qds = {qda,αsa,α} .
These are the weights of the bundles Va over 0 ∈ C. Clearly,

ϕ
(
qT

1/2
0

)
ϕ
(
�T

1/2
0

) =
ϕ
(
qT 1/2

)
ϕ
(
�T 1/2

) ∣∣∣∣∣
s �→qds

.

Also, from (3.28), we have

zdeg f
# exp

(
λ(z#, s)

ln q

)
= exp

(
λ(z#, s)

ln q

)∣∣∣∣
s �→qds

.

Therefore, it is natural to change variables in the integral (3.30). So far, we made no
assumptions on insertion F (s). In (3.30), it can be an arbitrary element of KT(X) or,
more generally, an arbitrary analytic function on the spectrum of the ring KT(X)⊗ C .
We now assume it has the same automorphy as θ(T 1/2), that is, we assume

(3.31)
F (s)

θ(T 1/2)
is invariant under s �→ qds .

This means F is a section of a certain line bundle over the the scheme EllT(X), the
equivariant elliptic cohomology of X. In principle, this section is allowed to have singu-
larities away from the integration cycle. With this assumption, a change of variables in
(3.30) gives the following.
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Proposition 2. For any insertion F satisfying (3.31), we have

(3.32) χ(X,V⊗F ) =
1

|W |

∫
∑

qd·γχ

exp

(
λ(z#, s)

ln q

)
F (s) dHaars

φ(T∨
moving)

,

where the sum of residues is over all effective shifts of the cycle γχ.

Recall that the cycle γχ is, by construction, a sum of several cycles. For insertions F
supported on its particular components (such as the classes of torus-fixed loci in X), the
integration cycle will be correspondingly smaller.

3.4.8. As explained in Section 3.4.4, the integration contour in (3.32) may be extended
to all q-shifts of γχ as long as F (s) is non-singular on γχ. Obviously, the integration∫

∑
qd·γχ

dHaars where the sum is over the whole lattice of splittings, is invariant under

q-shifts.

3.4.9. For a simplest example, let us examine the statement of Proposition 2 for

X = T ∗Pn−1 .

We will follow the notation of Section 6.2 of [5] and of Section A.0.6 below. We take

T = C×
�
× A,

where A is as in (A.8) and the first factor scales the cotangent directions with weight
�−1. We denote the T-fixed points by

XT = {p1, . . . , pn} .

The elementary analysis of the quasimap spaces recalled in [5] shows

(3.33) χ(V⊗Opk
) =

�
1
4dimX

2πi

∫
γk

ds

s
e

ln z# ln s

ln q ϕ((q − �)T 1/2)moving ,

where

(3.34) T 1/2 = −1

�
+
∑
i

1

�ais
,

and the contour γk enclosed the poles

(3.35) x =
qd

ak
, d = 0, 1, 2, . . . .

In (3.33) we restored the power of � that comes from KX
∼= �

1
2 dimXOX .

Tautologically,

χ(V⊗Opk
) = χ

(
V⊗ Opk

â(T )
⊗ θ(T 1/2)

)
.

We have

(3.36)
Opk

â(T )

∣∣∣∣
pi

= �
1
4 dimXδki ,

which means that this insertion serves as a delta-function restricting the residues to the
sequence (3.35). Thus setting

F (s) = θ(T 1/2)⊗ F ′(s)
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where F ′(s) is q-periodic and non-singular at the points {a−1
i }, we get from (3.33)

χ
(
V⊗F (s)

)
=

∫
γ

ds

2πis
e

ln z# ln s

ln q F ′(s)ϕ((q − �)T 1/2)moving

=

∫
γ

ds

2πis
e

ln z# ln s

ln q F (s)

ϕ(T∨)moving
,

where γ =
∑n

k=1 γk. This is a specialization of the general formula (3.32).

3.4.10. Heuristically, it may be argued that (3.32) is an infinite-dimensional version of
the formula (A.5), in which

X̃ �→ QM(X̃)

G �→ gauge transformations .

Such or a similar viewpoint is implicit in many papers on supersymmetric gauge theories.
Here, we don’t try to turn this heuristic into precise mathematical statements. The
argument given above is technically much simpler and sufficient for our needs.

3.5. Vertex functions and Wq,t algebra correlators. In this section, we prove the
following.

Theorem 3.1. The vertex function

(3.37) χ(X,V⊗F ′) =
1

|W |

∫
γχ

exp

(
λ(z#, s)

ln q

)
F ′(s)φ((q − �)T 1/2) dHaars,

is a Wq,t(g) correlator

(3.38) 〈μ′|
∏
a,i

V ∨
a (aa,i)

∏
a

(Q∨
a )

da |μ〉,

where a choice insertion F ′ corresponds to a choice of F ′(s) contours of integration in
the definition of screening charge operators, and μ = z

ln q .

Proof. In Section 2.2.10, we gave an explicit integral form of the Wq,t(g) algebra corre-
lator in (3.38). We will now show that this exactly equals the integral in (3.37).

Consider the φ((q − �)T 1/2) in the integrand (3.37). Recall that for the Nakajima
variety X, with quiver Q

T 1/2X =
∑
a

Va ⊗W ∗
a +

∑
a,b

(Iab − δab)Va ⊗ V ∗
b ,

where Iab is the adjacency matrix of the Dynkin diagram, and we have identified the
vector space T 1/2X with its character under the action of the torus S × T . We can
choose coordinates on S so that

Va =
∑
α

xa,α �a/2, Wa =
∑
i

aa,i �
(a−1)/2,

where relative to conventions elsewhere in this section, xa,α = s−1
a,α, and the powers

of � are a convenient choice of coordinates. (Hopefully, the reader will distinguish the
subscript a labeling the node of Q and taking values from 1 to rk g.) With this, the
contributions to φ((q − �)T 1/2) are:
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— From Hom(Va,Wa), we get

(3.39)
∏
α,i

ϕ(q xα,a/�
1/2ai,a)

ϕ(�xα,a/�1/2ai,a)
.

This coincides with (2.24) if we recall that va = �1/2 and t = q/�. Then∏
α,i

〈S∨
a (xa,α)V

∨
a (aa,i)〉.

— From for every pair of nodes adjacent nodes a, b with Iab = 1, we get∏
α,β

ϕ(q�a/2xa,α/�
b/2xb,β)

ϕ(� �a/2xa,α/�b/2xb,β)

from the contributions of Hom(Va, Vb) to T 1/2X. This coincides with∏
α,β

〈S∨
a (xa,α)S

∨
b (xb,β)〉

in (2.23).
— From Hom(Va, Va), we get∏

α�=β

ϕ(�xa,α/xa,β)

ϕ(qxa,α/xa,β)

up to an overall constant. Recall that (2.22)∏
α<β

〈S∨
a (xa,α)S

∨
a (xa,β)〉 =

∏
α�=β

ϕ(xa,α/xa,β)

ϕ(t xa,α/xa,β)

∏
α<β

θ(txa,α/xa,β)

θ( xa,α/xa,β)
.

Using t = q/�, and the θ(x) = θ(q/x) = ϕ(x)ϕ(q/x) property of theta-function,
the above coincides with

(3.40)
∏
α<β

〈S∨
a (xa,α)S

∨
a (xa,β)〉 =

∏
α�=β

ϕ(�xa,α/xa,β)

ϕ(q xa,α/xa,β)

∏
α<β

θ(qxa,α/xa,β)

θ(�xa,α/xa,β)

up to the ratio of theta-functions.

In summary, we showed that the contribution of φ((q − �)T 1/2) to (3.37) coincides with
the contribution of Φ(x, a) to (3.38), up to the collection of theta-functions in (3.40).
The exponential terms in (3.37) correspond to the exponential xμ terms in (2.21), with
identification

za = q(μ,ea).

From the perspective of the difference equations the effect of the ratio of the theta-
functions in (3.40) is to produce a shift in the Kähler variables za = q(μ,ea) by a power
of �1/2. These shifts are collected in (3.37) in replacing z → z#. This proves the
theorem. �
3.5.1. Explicitly, for X = T ∗Pn−1, the right hand side of (3.38) becomes a q-conformal
block

〈μ′|V ∨(a1) . . . V
∨(an) Q

∨|μ〉
of the Wq,t(A1) algebra (the algebra is also known as the q-Virasoro algebra). The
algebra has a single family of generators e[k], k ∈ Z, satisfying

[e[k], e[�]] =
1

k
(q

k
2 − q−

k
2 )(t

k
2 − t−

k
2 )(q

k
2 t−

k
2 + q−

k
2 t

k
2 )δk,−�,

with Fock representation πμ defined as

e[k]|μ〉 = 0, for k > 0, and e[0]|μ〉 = (μ, e)|μ〉.
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The screening charge operator is

(3.41) Q∨ =

∫
dx S∨(x) : π0 → π−eβ,

where

(3.42) S∨(x) = [. . .]x−e[0] : exp
(∑
k �=0

e[k]

q
k
2 − q−

k
2

xk
)
: .

The [. . .] stands for operators responsible for the shift of μ in (2.14).The magnetic de-
generate vertex operator is

V ∨(x) = [..]xw[0] : exp
(
−
∑
k �=0

w[k]

q
k
2 − q−

k
2

xk
)
:,

where w[k] = e[k]/(q
k
2 t−

k
2 + q−

k
2 t

k
2 ), and the dots stand for the operator responsible for

shifting the Fock vacuum

V ∨(x) : π0 → πwβ.

From the definitions, one computes

〈μ′|V ∨(a1) . . . V
∨(an) Q

∨|μ〉 =
∫

dx x−(μ,e)−1Φ(x, a),

where

Φ(x, a) =

n∏
j=1

ϕ(tx/aj)

ϕ(x/aj)
,

t = q/�, and

μ′ = μ+ (nw − e)β.

By inspection, Φ(x, a) = ϕ((q − �)T 1/2), with z# = q(μ,e).

3.5.2. While the Wq,t(g) algebra has a nice conformal limit, the same is not true of quan-
tum K-theory. While we can formally take the limit (2.25) of the generating functions,
their contributions have no enumerative meaning. (There is a natural limit of the theory
where degenerate counts in K-theory to cohomology, but this is not the limit we need
here.)

4. Vertex functions and qKZ

4.1. Degeneration formula.

4.1.1. Recall that the domain C of the quasimaps (3.2) is a fixed, that is, parametrized
curve. We can let it degenerate to a union C0 of two rational curves, e.g., by taking a
trivial family C × C over C and blowing up a point (c, 0) ∈ C × C. We denote by ε the
parameter of the degeneration and write Cε to denote the base

π : C = Bl(c,0)C × Cε → Cε

of the degenerating family.
Clearly,

Cε = π−1(ε) ∼= C

canonically for ε �= 0, while the special fiber of the new family is the union

(4.1) C0 = C0,1 ∪ C0,2 , C0,1
∼= C,

of two rational curves joined at the point c ∈ C0,1. If c = 0, that is, if c is a fixed point
of C×

q other than ∞ ∈ C, then this degeneration is C×
q -equivariant.
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4.1.2. A key geometric question is to put a good central fiber into the family
QM(Cε → X) over Cε \ {0} and it is answered by a beautiful theory due principally
to Jun Li; see [72–74] and also, for example, [93] for an introductory discussion. The
central fiber, which we still denote QM(C0 → X), is the moduli space of quasimaps from
a nodal curve C0; however, an important geometric idea is hidden here in the definition
of a quasimap from a nodal source curve.

To keep the obstruction theory perfect, quasimaps need to be non-singular at the nodes
of the source curve. To satisfy this constraint and the usual properness requirements at
the same time, one has to say what to do with a one-parameter family of quasimaps
that develops a singularity at the node of a special fiber. It is treated by a version of
the familiar semistable reduction process, in which the offending node is being blown up
until the singularity at it goes away. In the process, the node becomes replaced by a
chain of rational curves, considered up to an isomorphism fixing the points at which it
is attached to the original nodal curve.

This motivates defining QM(C0 → X) as the moduli spaces of quasimaps of the form

(4.2) C ′
0

g

��

f ′
�������� X

C0

in which

— the map g collapses a chain of rational curves to the node of C0,
— f ′ is non-singular at the nodes of C ′

0,
— the automorphism group of f ′ is finite.

Here the source of automorphisms is the group

Aut(C ′
0, g) =

(
C×)# of new components

.

Pictorially, the domain C ′
0 may be represented as in Figure 3. As usual, one of the uses of

the finiteness of Aut(f ′) is to prevent unnecessary blowups in the course of the semistable
reduction.

Figure 3. A semistable curve C ′
0 whose stabilization is the nodal curve

C0. Components with C× automorphisms are indicated by springs; they
are often called accordions. The point ∞ ∈ C ∼= C0,1 at which the
quasimaps are required to be non-singular is indicated by a circle.

4.1.3. The family

(4.3) QM(Cε → X) → Cε

has a natural relative obstruction theory, given by the cohomology, that is, push-forward
along π, of quiver sheaves in question. Its restrictions to fibers of (4.3) is the obstruction
theory for the spaces QM(Cε → X) and hence the virtual structure sheaves and the
symmetrized virtual structure sheaves of these spaces fit into a flat family over Cε. This
means, one can count quasimaps from C in terms of quasimaps from C0.
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4.1.4. Quasimaps from C0 can, in turn, be glued out of pieces that correspond to the
pieces in the domain curve in Figure 3. Indeed, moduli of quasimaps from a fixed nodal
curve C ′

0 non-singular at the nodes are the product of moduli of quasimaps from the com-
ponents over the evaluation maps at the nodes. Because the number of the accordions,
that is, non-parametrized components of C ′

0 is dynamical, the correct decomposition to
take is the one depicted in Figure 4.

Figure 4. Three kinds of moduli spaces that appear as pieces in the
degeneration formula. In the first line, C0,2 is linked by a chain of
accordions to a marked point (bold circle), at which quasimaps must
be non-singular. In the second line, we have the same for C0,1 together
with the original evaluation point ∞ ∈ C ∼= C0,1. In the third line, the
domain is a chain of accordions joining two marked points.

4.1.5. The difference between the new marked points shown in bold and the original
evaluation point∞ ∈ C ∼= C0,1 is the following. While evaluation at ∞ requires explicitly
throwing out quasimaps with singularities there, singularities cannot get to the bold
points by the nature of moduli spaces. Any time a singularity tries to get to the point
•, a new accordion opens (by semistable reduction), and the point • gets away.

These new kinds of quasimaps are called quasimaps relative a point • of the domain.
The above informal discussion means formally that the evaluation maps

ev• : QM(C0,1)relative • → X

ev•,• : QM(accordions)relative •,• → X ×X(4.4)

are proper. Using them, we can define

(4.5) Cap = ev•,∗

(
Ôvir z

deg f
)
∈ KT×C

×
q
(X)⊗Q[[z]]

and

(4.6) Glue = ev•,•,∗

(
Ôvir z

deg f
)
∈ KT(X

2)⊗Q[[z]] ,

where localization is not required in contrast to (3.7). Note that (4.6) does not depend
on q since C×

q acts trivially on quasimaps from non-parametrized curves. The absence
of denominators makes these tensors much simpler objects than the vertex, or than its
analog

(4.7) J = ev•,◦,∗

(
Ôvir z

deg f
)
∈ KT×C

×
q
(X2)localized ⊗Q[[z]] .
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Here the quasimaps are from the domain shown in the middle line of Figure 4. The tensor
(4.7) is called the capping operator in [93] and denoted by J there. Here we use the same
notation. It would be nice to have a name for this operator which better reflects the role
it plays in the correspondence studied in the the present paper.

4.1.6. The correspondences (4.6) and (4.7) act on KT×C
×
q
(X) and the statement of the

degeneration formula may be written as follows:

(4.8) Vertex = CapGlue−1 J

where we compose the operators in the order in which we draw the component of C ′
0.

From definitions,

Glue = K
1/2
X +O(z)

where KX is the canonical bundle of X viewed as an operator of tensor multiplication,
and so the inverse Glue−1 is well-defined as a formal series in z.

The discovery that the operator Glue−1 enters the degeneration formula was originally
made by Givental in his study of K-theoretic analogs of Gromov-Witten counts; see
[58, 70]. The adaptation of this idea to K-theory of quasimap moduli spaces is straight-
forward; see, e.g., [93] for the details.

4.2. Difference equations.

4.2.1. The geometric construction of the operator (4.7) makes it easy to show that it is a
fundamental solution to a compatible system of difference equations in both Kähler and
equivariant variables; see Section 8 of [93].

Here by a fundamental solution we mean an operator that conjugates a difference
connection to a constant coefficient difference connection or to some other standard
form. Concretely, for q-shifts of equivariant variables discussed in Section 8.2 of [93],
that standard form is a difference equation solvable in ϕ-functions. This is the origin of
ϕ-prefactors in (3.26).

4.2.2. An algebraic identification of these q-difference equations requires a development of
geometric representation theory ideas in the present setting. In includes an identification

KT(X) = weight subspace in

a representation F of U�(ĝ) ,(4.9)

for a certain quantum group U�(ĝ). Such geometric realizations of quantum groups go
back to the pioneering work of Nakajima [81] and have been studied by many researchers
since. The particular point of view on (4.9) developed in [79] and further in [5, 93, 94]
will be important in what follows. It gives, among other things, a natural collection of
identifications

(4.10) F ⊗Q(T) ∼=
⊗
a∈I

dimWa⊗
α=1

Fa(aa,α)⊗Q(T)

indexed by all possible orderings of the coordinates of the maximal torus

A = {diag(aa,α)} ⊂
∏
a

GL(Wa) ⊂ Aut(X,ω) .
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In (4.10), we have

a = an element of the set I of vertices of the quiver ,

Fa = the corresponding fundamental representation of U�(ĝ)

a.k.a. Kirillov-Reshetikhin module ,

aa,α = equivariant parameter for GL(Wa) and

an evaluation parameter for Fa .

The identification (4.9) is in integral K-theory, and so a certain integral form of both the
quantum group and of its module appears in the right hand side. In (4.10) we tensor
with the field Q(T) of rational functions of T, which corresponds to localization in T-
equivariant K-theory. Correspondingly, R-matrices that intertwine the identifications
(4.10) for different ordering of the evaluation points act in localized K-theory.

Geometrically, it is the tensor structure, that is, the maps (4.10) that are constructed
first in the approach of [79]. They are a particular instance of certain very special maps
of the form

KT(X
A) → KT(X)

called stable envelopes ; see, e.g., Section 9 of [93] for an introduction. The structure of a
module over a quantum group is then reconstructed from this tensor structure.

4.2.3. On the right hand side of (4.10) we have a canonical q-difference connection in the
evaluation parameters aa,α, namely the quantum Knizhnik-Zamolodchikov connection of
I. Frenkel and N. Reshetikhin [51]. It takes as a parameter an element

z ∈
(
C×)I = eh , h ⊂ g ⊂ ĝ,

of the torus of group-like elements of U�(ĝ). It corresponds to the Cartan subalgebra
h ⊂ g of the Lie algebra g, the affinization of which is ĝ. This torus is naturally identified
with the Kähler torus from before.

A technical result of [93] identifies the geometric q-difference connection in variables
{aa,α} with the qKZ connection. See Section 10 in [93] and also [79] for a proof in the
setting of equivariant cohomology. Thus

(4.11) J = fundamental solution of qKZ ,

with the following very important detail that needs to be mentioned.

4.2.4. The difference connection in a and z solved by (4.7) is by construction flat. More-
over, it is regular in either a or z separately. However, it is not jointly regular in the
variables a and z. This simple, but important new phenomenon for difference equations
is discussed at length in [5]. It does not occur for differential equations by a deep theorem
of Deligne. As a result, one cannot find a fundamental solution which will be holomorphic
in both z and a in some asymptotic region of the torus of variables.

Recall that one usually looks for solutions of qKZ analytic in an asymptotic region of
the schematic form

|a2,5| � |a1,7| � |a3,3| � . . . ,

that is, in a certain neighborhood of a fixed point in a toric compactification of A. We
will call such solutions a-solutions. By the results of [51], q-deformed WZW conformal
blocks are a-solutions of the qKZ equations.

Instead, (4.7) is a series in z, which means it is holomorphic is a neighborhood of
a torus-fixed point of the Kähler moduli space. This Kähler moduli space is the toric
variety constructed from the fan of ample cones of flops of X in Pic(X). We call such
solutions z-solutions. A more precise version of (4.11) is thus the following.



36 M.AGANAGIC, E. FRENKEL, AND A.OKOUNKOV

Theorem 2 ([93]). The operator (4.7) is the fundamental z-solution of qKZ equations
in variables {aa,α} .
4.2.5. Meromorphic solutions to a q-difference equation form a vector space over q-
periodic meromorphic functions of dimension equal to the rank. Therefore, there exists a
uniquely defined matrix transforming z-solutions to a-solutions. Taking into account the
constant coefficient q-difference equations to which fundamental solutions conjugate the
original equation, this matrix is best seen as a meromorphic section of a certain vector
bundle on the elliptic curve

E = C×/qZ .

It is called the pole subtraction matrix in [5], as it quite literally removes the poles in
one set of variables at the expense of poles in another set of variables.

This matrix is linked to an elliptic analog of stable envelopes in [5]. Concretely, The-
orem 4 in [5] shows that elliptic stable envelopes transform z-solutions of the equations
satisfied by the vertex functions to the corresponding a-solutions.

4.2.6. Difference equations satisfied by the vertex functions follow from the following
qualitative.

Proposition 3 ([94, 109]). The cap (4.5) and the glue operator (4.6) are rational func-
tions of all variables, including the Kähler variables.

The statement about the glue operator follows from the results of [94] because the
glue operator may be obtained as a q → ∞ limit of operators of the Kähler q-difference
connection; see Section 8.1 of [93]. The statement about cap is shown in [109]. In both
cases, there is an explicit formula for these objects that makes rationality manifest.

Thus (4.8) gives an explicit gauge equivalence between the scalar difference equa-
tion of degree rkK(X) satisfied by the vertex functions and the quantum Knizhnik-
Zamolodchikov equations.

The results of [94] identify the operators of the Kähler q-difference connection with
the lattice in what can be called the dynamical quantum affine Weyl group of U�(ĝ). It
coincides with the object studied by Etingof and Varchenko in [33] for quivers of finite-
type and generalizes it to the case when ĝ is not generated by real root subspaces. From
this perspective, the glue operator generalizes the longest element in the finite quantum
dynamical Weyl group.

4.2.7. The cap with descendents mentioned above refers to the generalization of (4.5)
constructed as follows:

(4.12) Cap(λ) = ev•,∗
(
Ôvir z

deg f ⊗ λ(Vi|0)
)

where
λ ∈ KT×GL(V )(pt)

is a tensor functor in the fibers of the tautological bundles Vi over a C×
q -fixed point 0 in

the domain of the quasimap. We can identify KT×GL(V )(pt) = KT(R), where R is the
stack of quiver representations that contains X as the set of the stable points satisfying
the moment map equations. Using the surjectivity of [80], we get

KT×C
×
q
(R)[[z]]

Cap( · )−−−−−→ KT×C
×
q
(X)[[z]] → 0 ,(4.13)

λ �→ λ
∣∣
X
+O(z),

and Smirnov gives an explicit rational function formula for this map [109].
The degeneration formula (4.8) remains unmodified, giving

(4.14) Vertex(λ) = Cap(λ)Glue−1 J .
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In particular, one can choose the descendent insertions so that they precisely cancel the
glue matrix in (4.14), and this shows

(4.15) J ⊂ {Vertices with descendents} .

4.2.8. Let V(λ) denote the vertex with descendents normalized as in (3.29). The descen-
dents are expressed in terms of the Chern roots of the bundles Vi

∣∣
0
which are precisely the

integration variables in (3.32). Therefore, we have the following immediate generalization
of Proposition 2.

Proposition 4. For any insertion F satisfying (3.31), we have

(4.16) χ(X,V(λ)⊗ F ) =
1

|W |

∫
∑

qd·γχ

exp

(
λ(z#, s)

ln q

)
F (s)λ(s) dHaars

φ(T∨
moving)

,

where the sum of residues is over all effective shifts of the cycle γχ.

Smirnov’s formula lets one construct collections {λk} such that the matrix of the cor-
responding descendent vertices is the fundamental z-solution of qKZ. Theorem 4 of [5]
applies equally well to both ordinary and descendent vertices, therefore, elliptic stable
envelopes provide a connection matrix between this fundamental solution and the fun-
damental a-solutions. In particular, for quivers of finite-type, these a-solutions are the
q-deformed WZW conformal blocks.

This can be summarized as follows.

Theorem 3. There exists a linear map

(4.17) KT (X) � α �→ λα ∈ KT (R)⊗Q(z, q)

such that

λα|X,z=0 = α

and such that the corresponding vertex functions (4.16) form a fundamental z-solution
of qKZ. With the insertions of the elliptic stable envelopes, these become the fundamen-
tal a-solutions of qKZ, that is, a basis of the q-conformal blocks for U�(ĝ). The entry
corresponding to the identity function λ = 1 is the corresponding W-algebra q-conformal
block.

A remarkably simple formula for an equivalent version of (4.17) is obtained in [6].

5. g = A1 example

To illustrate the results, it may be helpful to work out one example in its completeness.
Take g = sl2 with finite-dimensional representations ρi of highest weights wi attached to
points

x = ai, i = 1, . . . , n,

of the Riemann surface.

5.1. qKZ equation and its z-solutions. The q-conformal block of U�(ĝ) with this
data is a chiral correlation function from (2.1)

(5.1) Ψ(a1, . . . , a�, . . . an) ∈ (
⊗
i

ρi)λ−λ′ ,

and where λ0,∞ are the weights |λ0,∞〉, the highest weight vectors of Verma module
representations which enter (2.1).

As [51] explained, (5.1) solves the qKZ equation of (2.4) where the R matrices take
the following explicit form.
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5.1.1. Let vi be the highest weight vector of representation ρi (with weight wi). Let f
be the lowering operator of g = sl2. The R matrix acts by

Rij(a)vi ⊗ vj = vi ⊗ vj ,(5.2)

Rij(a)fvi ⊗ vj =
a�mj − �mi

a− �mi+mj
fvi ⊗ vj +

1− �2mj

a− �mi+mj
vi ⊗ fvj ,(5.3)

Rij(a)vi ⊗ fvj =
a(1− �2mi)

a− �mi+mj
fvi ⊗ vj +

a�mi − �mj

a− �mi+mj
vi ⊗ fvj ,(5.4)

where

mi = (wi, e)/2,

and e is the positive root of sl2. Throughout, one should keep in mind the identifications
in (2.5). Furthermore, (�μ)� acts on the �th component of the tensor, corresponding to
representation ρ� of highest weight vector v� of highest weight w� by

�μ(v�) = �(μ,w�)v�, �μ(fv�) = �(μ,w�−e).

The Weyl vector ρ, which also enters (2.4), is equal to half the sum of positive roots,
ρ = e/2 in this case.

5.1.2. The solutions to the qKZ equation, in n-dimensional the subspace of weight

λ′ − λ = w1 + . . .+ wn − e,

can be written out explicitly, as follows [77]. Let

(5.5) Ψ(a1, . . . , an) =

n∑
i=1

ϕi(a1, . . . , an) v1 ⊗ . . .⊗ fvi ⊗ . . .⊗ vn.

Further, it is useful to define

(5.6) ϕi(a1, . . . , an) = q(βi+1+...+βn)/2 aβ1

1 . . . aβn
n Fi(q

β1/2a1, . . . , q
βn/2an)

where

qβi = �(wi,e), qη = �−(λ,e).

Then, [77] proves (5.5) is the solution of the qKZ equation for

(5.7) Fi(a) =

∫
γ

dx xη−1 Ki(x, a) ×
n∏

j=1

ϕ(x/aj)

ϕ(qβj x/aj)
,

where we defined

Ki(x, a) =

i−1∏
j=1

(1− qβj x/aj)

(1− x/aj)
× 1

1− x/ai
,

and ϕ(x) =
∏∞

n=0(1 − qnx), as before. The equation (5.5) gives solutions to qKZ for
any contour γ for which the integral8 is invariant under x → qx. One proves this by
explicitly studying difference equations satisfied by (5.7) with respect to operators that
take ai → qai.

8This implies that, from the perspective of difference equations, the integrand I(x) in (5.7) is equiv-

alent to I(qx):
∫

dx
x
I(x) =

∫
dx
x
I(qx).
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5.1.3. Our main example corresponds to ρi which is the two-dimensional representation
ρi = ρ for all i. Its highest weight is the fundamental weight wi = w of g = sl2, (w, e) = 1,
so that qβi = �. Up to redefinition of integration variable x, replacing it with �x, we
have

(5.8) Fi(a) =

∫
γ

dx xη−1Ki(x, a)×
n∏

j=1

ϕ(�−1x/aj)

ϕ(x/aj)
,

where we defined

Ki(x, a) =

i−1∏
j=1

(1− x/aj)

(1− �−1x/aj)
× 1

1− �−1x/ai
.

The equations (5.6) and (5.8) provide a solution to the qKZ equation, for any choice of
the contour C. The set of linearly independent solutions one gets by varying the contour
C has a geometric and representation theoretic interpretation.

5.2. Geometric interpretation in terms of X = T ∗Pn−1. The geometric interpreta-
tion is in terms of counts of quasimaps to

(5.9) X = T ∗Pn−1,

where z keeps track of the degree of the map. X is the Nakajima quiver variety (1.11)
corresponding to a g = A1 quiver Q a single node and a pair of vector spaces V = C and
W = Cn associated to it, acted on by

GQ = GL(1), GW = GL(n).

The dimension vectors of W and V are determined, respectively, by the highest weight
of the module ⊗

i

ρi =

n⊗
ρ,

and the weight of its subspace in which (5.1) takes values, as explained in Section 1.3.

5.2.1. The vertex function of X, counting quasimaps from C to X, has an integral
representation (3.33), as one recalls from Section 3.2:

(5.10) V =

∫
γ

dx xη−1Φ(x, a)

where, in terms of t = q/�,

Φ(x, a) =

n∏
j=1

ϕ(t x/aj)

ϕ(x/aj)
.

Using that, it is easy to recognize that the solutions to the qKZ equation in (5.8) can
be rewritten in terms of the geometric quantities of X:

(5.11) Fi =

∫
γ

dx xη−1StabKi (x, a)Φ(x, a),

where

(5.12) Stabi(x, a) =

i−1∏
j=1

(1− x/aj)×
n∏

j=i+1

(1− �−1x/ai)
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is a collection of classes in KT (X). The integrands in (5.11) and (5.8) are equal.
This shows that F , the fundamental z-solution to the qKZ equation in (5.8), is the

geometrically defined operator J in (4.11),

F = J,

and that the geometric corresponding of (5.11) is in terms of vertex functions, counting
quasimaps C ��� X, with descendant insertions at 0 ∈ X from (4.15). The basis of
insertions that leads to the qKZ equation with R matrices in the standard form is a
special one, as will be explained in [6]. The classes in (5.12) give the K-theoretic stable
basis of X, defined in [93]. For a suitable choice of a chamber, slope, and polarization
[93], (5.12) gives the basis element corresponding to a stable envelope of the ith T-fixed
point in X.

5.2.2. We can also consider the stable envelope with slope s [93]

(5.13) StabKi,(s)(x, a) ≡ xs StabKi (x, a).

The role of the slope s is to change the weight λ in (2.1), and leads to a family of solutions
to qKZ, differing by the choice of the highest weight vector |λ〉 in (2.1).

5.3. q-Virasoro conformal blocks. The vertex function in (5.10) as we saw in Section
3.2, coincides with a q-conformal block of the Wq,t(g) algebra for g = A1; the algebra
which is the q deformation of Virasoro algebra. Its q-conformal blocks are

(5.14) 〈μ′|V ∨(a1) . . . V
∨(an) Q

∨|μ〉 =
∫
γ

dx x−(μ,e)−1Φ(x, a).

To completely define the q-conformal block in (5.14) we need to specify the contour γ.
As in Section 3.5.1, we will define the Wq,t(g) algebra blocks to be the components of
the vertex function of X = T ∗Pn−1,

V = 〈μ′|V ∨(a1) . . . V
∨(an) Q

∨|μ〉,
where the Kähler variable z equals z = q(μ,e), up to unimportant shift. The component
of the vertex function V� where the point at infinity in C maps to the fixed point p� in
X corresponds to

V� = χ(X,V⊗Op�
)

as in Section 3.4.7. The insertion of Op�
amounts to picking the contour γ� which picks

up the poles at

(5.15) γ� : x = q−n a�, n = 0, 1, . . . .

Computing the integral by residues, we find

V� = (a�)
η ϕ(t)

ϕ(q)

∏
i �=�

ϕ(ta�/ai)

ϕ(a�/ai)
F

[
�a1/a�, �a2/a�, . . .
qa1/a�, qa2/a�, . . .

∣∣∣∣ z/�n](5.16)

and

F

[
�ai/a�
qai/a�

∣∣∣∣ z/�n] =∑
d≥0

(z/�n)d
∏
i

(�ai/a�)d
(qai/a�)d

= Vertex�

is the q-hypergeometric function. It is also the Vertex function of X, in its canonical
normalization. The function V differs from it by contributions of constant, zero degree
maps (see (3.26)).
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5.3.1. The V function (a vector) can be written as the covector W contracted with the
operator F = J. Then

(5.17)

n∑
i=1

Wi F i
� = V�

which is the content of (4.14), in the present example.
The coefficients Wi can be found as follows: The K-theoretic stable envelopes of fixed

slope provide a basis of K(X)-theory of X, so in particular, the trivial insertion 1 at 0
in X written in the stable basis from (5.12) as:

(5.18) 1 =

n∑
i=1

Wi Stab
K
i (x, a),

whereWi are the coefficients in (5.17). The stable basis is upper triangular, as StabKi (x, a)
vanishes at x = aj/�, for i < j. This lets us find Wi solving (5.18) recursively, solving
for Wi in terms of Wi+1, . . . ,Wn.

5.4. Elliptic stable envelope and z- and a-solutions. Fi’s generate a space of so-
lutions of qKZ equation, by varying the contours γ. The solutions to qKZ obtained in
(5.8) or (5.11) are not q-conformal blocks of U�(ĝ) since they are not a-solutions of qKZ,
which are solutions jointly analytic in a chamber of A-parameter space.9 Instead, they
are the z-solutions, analytic functions of the Kähler variable z. The map between the z
solutions and the a-solutions is provided by elliptic stable envelopes of X.

5.4.1. Pick an a-chamber

C : |aj | < |ai| for j < i.

Starting with the vertex function V =
∫
dx xη−1 Φ(x), we obtain a new vertex function

VC, which solves the same set of difference equations as V and which is analytic in
chamber C, as follows. We take

(5.19) VC =

∮
dx xη−1 Φ(x) PC(x)

with

(5.20) PC,�(x, a) = UC,�

∏
i<�

θ(ai/x) θ(z
−1�� a�/x)

∏
�<i

θ(� ai/x)

θ(z−1��)
∏

i θ(� ai/x)
e(z, x)−1.

The contour of integration is spelled out below equation (5.25). V and VC solve the
same set of difference equations, since PC,�(x) are pseudo-constants satisfying

(5.21)

PC,�(x, a1, . . . , ai, . . . , an; z) = PC,�(qx, a1, . . . , ai, . . . , an; z)

= PC,�(x, a1, . . . , qai, . . . , an; z)

= PC,�(x, a1, . . . , ai, . . . , an; qz).

The function in (5.20) is, up to normalizations, the elliptic stable envelope of a fixed point
p� in X in the chamber C

StabellC,�(x, a) =

∏
i<�

θ(ai/x) θ(z
−1�� a�/x)

∏
�<i

θ(� ai/x)

θ(z−1��)

9For example, V
∣∣
�=1

is analytic for |a1| < |a2|, |a3|, . . ., but V
∣∣
�=2

is analytic for |a2| < |a1|, |a3|, . . ..
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defined geometrically in [5]. The normalizations involve

(5.22) e(z, x)−1 = exp
log(x) log(z)

log(q)

and

(5.23) UC,� = exp

(
log(a�) log(z

−1��)−
∑

i≤� log(ai) log(�)
)

log(q)
,

which help ensure that PC,�(x) satisfies (5.21).

5.4.2. The contour of integration in (5.19) is defined to separate the poles of the inte-
grand, located at

x = q−n ai, � ≤ i , n = 0, 1, . . . ,(5.24)

x = qn ai � , i ≤ � , n = 0, 1, . . . .(5.25)

For |q| < 1, the poles in (5.24) accumulate to x = ∞ while the poles in (5.25) accumulate
to x = 0.

For z < 1 we can deform the contour to enclose all poles of the form (5.24), to obtain

(5.26) VC,� =
∑
�′

V�′ P
�′

C,�

where
P

�′

C,� = PC,�(a�′).

The linear change of basis in (5.26), determined by elliptic stable envelopes, is the pole
subtraction matrix for chamber C. The name reflects the fact that VC is pole-free in a
neighborhood of 0C, the origin of the chamber C. Note the pole subtraction matrix is
triangular,

P
�′

C,� = 0, �′ < �,

since the numerators in (5.21) eliminate poles from (5.24) for i = �′ < �.

5.4.3. A contour integral becomes singular when the poles of the integrand, located on
opposite sides of the contour, coalesce. By studying poles of the integrand in (5.19), it
follows that VC is pole-free in a neighborhood of 0C. This motivates the name we gave
to the matrix PC in (5.26).

The contour of the integration in (5.19) per definition separates the poles in (5.24)
accumulate to x = ∞ while the poles in (5.25) accumulate to x = 0. This means that
the contour integral in (5.19) has singularities at

ai
aj

= qn� ,

with j ≤ � ≤ i and n ≥ 0. This is the complement of the chamber C in which |aj/ai| < 1
for j < i.

5.4.4. More generally, replacing Fi in (5.19) with

(5.27) (FC)i� =

∮
dx xη−1 StabKi (x) Φ(x) PC,�(x)

for each fixed �, we get a solution of qKZ of the form (5.5)–(5.6) which is analytic

in chamber C. This is a q-conformal block of U�(L̂g). Both the K-theoretic and the
elliptic stable envelopes enter (5.27), but their roles are different. The K-theoretic stable
envelope produces vector-valued solutions of U�(ĝ) qKZ from scalar q-conformal blocks
of Wq,t(g) algebra. To get analytic solutions of qKZ in chamber C requires knowing the
elliptic stable envelope, which enters the definition of PC,�(x, a).
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5.5. X = T ∗P1 example. Let’s make this fully explicit for n = 2, when X = T ∗P1. The
vertex functions associated to the two fixed points in X, corresponding to the north and
the south poles of the P1 are:

V1 = aη1
ϕ(t)

ϕ(q)

ϕ(ta1/a2)

ϕ(a1/a2)
F

[
� �a2

a1

q q a2

a1

∣∣∣∣ tz′] ,
= a

η#

1

θ(ta1/a2)

θ(a1/a2)

ϕ(t)

ϕ(q)

ϕ(�z′)

ϕ(z′)
F

[
t tz′

q qz′

∣∣∣∣ �a2a1
]
,

V2 = aη2
ϕ(t)

ϕ(q)

ϕ(ta2/a1)

ϕ(a2/a1)
F

[
� �a1

a2

q q a1

a2

∣∣∣∣ tz′]
= a

η#

2

θ(ta2/a1)

θ(a2/a1)

ϕ(t)

ϕ(q)

ϕ(�z′)

ϕ(z′)
F

[
� �z′

q qz′

∣∣∣∣ �a2a1
]
,

where we defined z′ = tz. The right hand side of the equations follows using standard
identities for q-hypergeometric functions. Clearly the vertex function V = (V1,V2) has
no nice analyticity properties as functions of a’s, but they are analytic for |z| < 1.

5.5.1. The elliptic stable envelopes provide a change of basis to solutions which are
(quasi)-analytic in a’s. In the chamber C where |a1| < |a2|, we have

(5.28) PC = UC

(
1

θ(�) 0
θ(�a1/za2)

θ(�a1/a2)θ(�/z)
θ(a1/a2)

θ(�a1/a2)θ(�)

)
e−1

where the ��′ entry of the matrix in (5.28) corresponds to P�′

C,� in (5.26). The matrices

e, UC are both diagonal, with eigenvalues, and can be read off from (5.23), (5.22).
Explicitly, using various q-hypergeometric function identities, we find:

VC,1 =
1

θ(t)
a
η#

1

ϕ(t)

ϕ(q)

ϕ(�z′)

ϕ(z′)
F

[
t t/z′

q q/z′

∣∣∣∣ �a1a2
]
,

VC,2 =
1

θ(t)
a
η#

2

ϕ(t)

ϕ(q)

ϕ(�/z′)

ϕ(1/z′)
F

[
t tz′

q qz′

∣∣∣∣ �a1a2
]
.

The vertex function in the stable basis VC = (VC,1,VC,2) is now clearly analytic in the
chamber C, corresponding to |a1| < |a2|. The map to conformal blocks can be read off
from the elliptic stable envelope, and goes as follows:

(5.29)
VC,1 −→ Hρ1

λ0,λ0−w ⊗Hρ2

λ0−w,λ0
,

VC,2 −→ Hρ1

λ0,λ0+w ⊗Hρ2

λ0+w,λ0
.

5.6. Conformal limit. In the conformal limit, q → 1 limit, one gets the familiar ex-
pressions for the integral solutions of the KZ equation, and the corresponding Virasoro
conformal blocks. We will review these in detail in Section 6, for now simply note that
the Virasoro block, given by (5.14) still has the same form, with

(5.30) 〈μ′|V ∨(a1) . . . V
∨(an) Q

∨|μ〉 =
∫
γ

dx x−(μ,e)−1Φ(x, a)

with

(5.31) Φ(x, a) −→
n∏

j=1

(1− x/ai)
−β.
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Now consider the limit of the z-solutions of qKZ equations, as obtained from the J
operator of X, geometrically. becomes

(5.32) Fi =

∫
γ

dx x−(μ,e)−1 StabKi (x, a) Φ(x, a),

which leads to the [32] integral form of solutions of the KZ equation, which we review in
Section 6. Namely, the limit of stable envelopes is

StabKi (x, a) −→
n∏

j �=i

j=1

(1− x/aj)

and taking (5.31) and (5.32) together, we get

(5.33) Fi(a) =

∫
γ

dx x(μ,e)−1 1

1− x/ai
×

n∏
j=1

(1− x/aj)
−β+1

.

Recalling (1.2),

β − 1 = θ = 1/L(k + h∨),

we recognize in (5.32) the integral form of solutions of the KZ equation in the weight
n− 1 subspace.

5.6.1. Recall that PC,�(x, a) is a pseudo-constant with respect to q-shifts of all the vari-
ables; see (5.21). Thus, when q goes to 1 it becomes a constant, depending only on

q′ = e−2πi ln �

ln q = e
2πi

L(k+h∨) ,

but not on any continuous variables. It follows

PC,�
�′ → (q′)#C,�,�′

where #C,�,�′ is a number depending only on � and C.

6. Isomorphism of conformal blocks and the geometric

Langlands correspondence

In the previous sections, we have established an isomorphism of q-deformed conformal
blocks of the deformed W-algebra associated to a simple Lie algebra g and the quantum
affine algebra associated to the Langlands dual Lie algebra Lg. It is natural to ask
whether the appearance of dual Lie algebras here is in some ways related to the geometric
Langlands correspondence and its one-parameter deformation known as the quantum
geometric Langlands.

The way the Langlands dual Lie algebra manifests here is all the more striking because
deformed W-algebras do not exhibit the duality known to exist in the conformal limit
q → 1. Indeed, recall that in the conformal case, we have an isomorphism between the
W-algebras associated to g and Lg, after a change of the parameter [36] (it is recalled
in Theorem 6.1 below). But after the q-deformation, no such isomorphism is available.
In other words, there is no longer an isomorphism between the deformed W-algebras
associated to g and Lg (unless of course Lg = g). This brings the difference between the

above two algebras, Wq,t(g) and U�(L̂g), into a sharper focus.
We stress that it is quite common in representation theory that introducing an ad-

ditional parameter enables one to see a particular phenomenon more clearly, and notice
aspects of it that hitherto could be more easily missed or ignored. Often, this results in
revisiting the original phenomenon (before the deformation) and adjusting one’s point of
view.
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For instance, consider the Harish-Chandra isomorphism c : Z(g)
∼−→ Fun(h∗)W be-

tween the center of the universal enveloping algebra U(g) of a simple Lie algebra g and
the algebra of Weyl-invariant polynomial functions on the dual space to the Cartan sub-
algebra h of g. There is a strange aspect of this formula that is easy to ignore: c maps
Z(g) to Fun(h∗)W rather than Fun(h)W . But actually this is significant: the Harish-
Chandra isomorphism already contains a germ of the Langlands duality. The point is
that we have a canonical isomorphism between h∗ and the Cartan subalgebra Lh of Lg. It
is more insightful to express this isomorphism as Z(g) � Fun(Lh)W , but it is difficult to
convince oneself that this is how we should view it if we remain squarely within the finite-
dimensional context because h and Lh are so close to each other (they are canonically
isomorphic up to an overall scalar).

However, this phenomenon becomes much more clear after affinization (which we can
think of as introducing an additional parameter into the picture). Indeed, the affine
analogue of the Harish-Chandra isomorphism is the isomorphism of [36,43] between the
center Zcrit(ĝ) of the enveloping algebra of ĝ at the critical level and the classical W-
algebra W∞(Lg), viewed as a subalgebra of the algebra Fun(ConnLh) of functions on the

space of connections on a certain LH-bundle on the punctured disc. As explained in [43],
the algebra Fun(ConnLh) can be viewed as an affine analogue of Fun(Lh)W . Furthermore,

W∞(Lg), and hence Zcrit(ĝ), can be described as the subalgebra of Fun(ConnLh) consist-
ing of elements invariant under the classical limits of the screening operators (which
can be viewed here as affine analogues of the simple reflections from W ). The essential
point is that, unlike in the finite-dimensional case, W∞(Lg) and W∞(g) are no longer
isomorphic to each other (as Poisson algebras) if Lg �= g. Therefore the phenomenon
of Langlands duality becomes much more transparent, and in retrospect, it forces us to
look at the original Harish-Chandra isomorphism in a new light.

This is what we hope our results on the q-deformed conformal blocks can bring us
as well: a sharper manifestation of certain phenomena that would be difficult to see or
appreciate in the context of the undeformed quantum geometric Langlands, at q = 1 (the
same way as the appearance of Lh in the Harish-Chandra isomorphism would be difficult
to appreciate). Understanding such phenomena for q �= 1 could then shine a new light on
what was considered as well-known or well-understood in quantum geometric Langlands.

While we do not claim that we fully understand it yet, we consider the canonical
isomorphism of q-deformed conformal blocks conjectured in this paper (and proved in
the simply-laced case) as a significant phenomenon in the framework of a conjectural q-
deformed quantum Langlands correspondence. We believe that it deserves further study.
As far as we know, this is the first attempt to make a precise statement about q-deformed
quantum Langlands correspondence (even though its existence had been anticipated; see,
e.g., the end of [42]). We hope that more information will come to light in the future
that will enable one to formulate the q-deformed quantum Langlands more precisely.

In this section, we give a brief overview of some aspects of the geometric Langlands
correspondence and its quantum deformation, and then explain in what sense our isomor-
phism of q-deformed conformal blocks could be seen as a manifestation of a q-deformation
of the quantum geometric Langlands correspondence.

6.1. Overview. As we mentioned in the introduction, the geometric Langlands cor-
respondence is usually understood today as a conjectural equivalence between certain
categories of sheaves on two moduli stacks related to a smooth projective algebraic curve
C and a pair of connected Langlands dual complex reductive Lie groups G and LG. One
is the derived category of D-modules on the moduli stack BunLG of LG-bundles on C and
the other is a certain modification of the derived category of O-modules on the moduli
stack LocG of flat G-bundles on C (see [12] for a precise formulation; in the abelian case
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this equivalence is a version of the Fourier–Mukai transform that has been proved in
[71, 103]).10

In [65], Kapustin and Witten have connected this equivalence to the homological
mirror symmetry of sigma models with the Hitchin moduli spaces of G and LG as target
manifolds and to the S-duality of maximally supersymmetric 4d gauge theories with the
gauge groups being the compact forms of G and LG.

This equivalence is expected to satisfy various properties; in particular, the compati-
bility with certain functors acting on the two categories: the Hecke functors on the LG
side and the “Wilson functors” on the G side (they are connected to the ’t Hooft and
Wilson line operators of the 4d gauge theory [65]).

In [17], Beilinson and Drinfeld constructed an important part of the geometric Lang-
lands correspondence in which on the G-side one takes the subcategory of O-modules
supported on a substack of G-opers in LocG. In the case that G is a simple Lie group of
adjoint-type (i.e., with the trivial center), to which we restrict ourselves in this subsec-
tion, OpG is an affine space that is isomorphic to the space of all flat connections on a
specific G-bundle on C [17].

In their construction, Beilinson and Drinfeld used the description of the center of the

vertex algebra of L̂g at the critical level given in [36]. Namely, it was proved in [36] (see

also [43] for a survey) that the center of the completed enveloping algebra of L̂g at the
critical level Lk = −Lh∨ is isomorphic (as a Poisson algebra) to the classical W-algebra
associated to g. The latter is, by definition, the algebra of functions on the space of G-
opers on the punctured disc, and the Poisson structure on it is obtained via the (classical)
Drinfeld–Sokolov reduction. Equivalently, the center of the vertex (or chiral) algebra of
L̂g at the critical level is isomorphic to the commutative (Poisson) vertex algebra W∞(g).

This isomorphism enabled Beilinson and Drinfeld to construct a family of critically
twisted D-modules on BunLG parametrized by those conformal blocks of W∞(g) on X
that are algebra homomorphisms. Furthermore, the Beilinson–Drinfeld construction can
be placed in the framework of 2d CFT, even though the Kac–Moody chiral algebra at the
critical level is quite unusual (it is missing the stress tensor T (z) because the quadratic
Sugawara current becomes central in this case). See Section 9 of [44] for more details.

6.2. Global quantum Langlands correspondence. As soon as it became clear that
there is a link between the Beilinson–Drinfeld construction of the geometric Langlands
correspondence and 2d CFT at the critical level, a natural question arose: is it possible
to deform the geometric Langlands correspondence away from the critical level? The first
conjectural formulation was proposed by Beilinson and Drinfeld themselves (see [110]):
the global quantum geometric Langlands correspondence should be an equivalence of
suitably modified derived categories of twisted D-modules on BunG and BunLG, provided
that the corresponding twist parameters, which can be identified with the levels Lk and
k, satisfy the relation (6.4) below. There is a precise sense in which the k-twisted D-
modules can be identified with O-modules on LocG in the limit k → ∞ (see, e.g., Section
6.3 of [44]), and it is in this sense that the k → ∞ limit of this equivalence is expected
to yield the categorical Langlands correspondence of the previous subsection (that is, for
Lk = −Lh∨). A closely related equivalence (of certain categories of A-branes) was also
suggested in the framework of the 4d gauge theory picture in [64, 65].

On the other hand, it is natural to try to develop “quantum geometric Langlands”
within the framework of 2d CFT, as a deformation of the Beilinson–Drinfeld construction
at the critical level.

10Note that our notation for G and LG is opposite to the standard one.
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One immediate complication for doing this is that while the chiral algebra V−Lh∨(L̂g)

of L̂g of level −Lh∨ deforms to the chiral algebra VLk(L̂g) of L̂g of level Lk, only the part of

the center of V−Lh∨(L̂g) generated by the quadratic Sugawara operators can be deformed.

The center itself cannot be deformed inside VLk(L̂g) if g �= sl2. Luckily, there is another
definition of the center that can be deformed: namely, the definition via the quantum
Drinfeld–Sokolov reduction.

The quantum Drinfeld–Sokolov reduction [36] (see [19, 35] for earlier works and [46,
Ch. 15] for a survey) is defined by introducing a BRST complex which is the tensor

product of VLk(L̂g) and the free fermion vertex algebra built on the Clifford algebra
generated by Ln((z)) ⊕ Ln∗((z))dz. Mathematically, it is the complex of Feigin’s semi-

infinite cohomology of the Lie algebra Ln((z)) with coefficients in VLk(L̂g) tensored with a
non-degenerate (Whittaker-like) character. It turns out that this cohomology is non-zero
only in cohomological degree 0, and the cohomological degree 0 part is a vertex algebra
called the (quantum) W-algebra associated to Lg and level Lk (see [36,46]). (This is one
of two known definitions of this W-algebra; the other definition, as the intersection of
kernels of the screening operators, is equivalent to it, as explained in [36, 46].)

The notation used for this algebra in [36, 46] is WLk(
Lg), but here we will use the

notation WLβ(
Lg), where Lβ = m ·L(k+h∨) (m being the lacing number of Lg and g). In

particular, in our notation W∞(Lg) is the classical W-algebra associated to Lg (viewed
as a commutative vertex Poisson algebra).

It turns out that if Lk = −Lh∨, then the correspondingW-algebraW0(
Lg) also becomes

commutative and is in fact isomorphic to the center of V−Lh∨(L̂g). More precisely, the
natural embedding of the center (placed in cohomological degree 0) into the above BRST
complex induces an isomorphism of the cohomologies. This is proved in [36] (see also
[46, Ch. 15]). Thus, we obtain an alternative description of the center at the critical
level as the (commutative) vertex algebra W0(

Lg). This description makes it clear how
to deform this vertex algebra: we simply take WLβ(

Lg).

Now recall the isomorphism of [36] between the center of V−Lh∨(L̂g) and the classical
W-algebra associated to g. In our current notation, it takes the form

(6.1) W0(
Lg) � W∞(g).

It turns out that this isomorphism has a one-parameter deformation [36] as follows:

Theorem 6.1. For arbitrary complex parameters β and Lβ satisfying the relation

(6.2) β =
m
Lβ

,

there is an isomorphism of vertex algebra

(6.3) WLβ(
L
g) � Wβ(g),

whose limit as β → ∞ is the isomorphism (6.1).

Proof. In [36, Proposition 5], the isomorphism (6.3) was proved for generic values of β
and Lβ satisfying (6.2). Note that relation (6.2) is equivalent to

(6.4) m(k + h∨) =
1

L(k + h∨)
.

Furthermore, in [36] the precise definition of the limit β → ∞ was given so that (6.3)
becomes (6.1) in this limit.
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The isomorphism for arbitrary β and Lβ satisfying (6.2) follows easily from the results
of [37]. Namely, according to Theorem 4.6.9 of [37],11 both Wβ(g) and WLβ(

Lg), with

the parameters β, Lβ satisfying (6.2), can be embedded as vertex subalgebras of the
Heisenberg vertex algebra associated to the Cartan subalgebra h of g, so that their
graded characters are independent of β. Since the two images coincide for generic β,
they coincide for all β. �

In the next subsection, as a small aside, we express Theorem 6.1 in a slightly more sat-
isfying way, as an isomorphism over the ring of Laurent polynomials C[β±1] = C[(Lβ)±1].

6.3. Oneness. One possible point of view on the isomorphism of Theorem 6.1 is that
there are two families of W-algebras: for g and for Lg, and there is an isomorphism
between them if we reverse the parameter: β �→ m/β. However, a more fruitful point of
view might be that there is only one W-algebra, but we can look at it from two different
points of view: as being associated to g or to Lg. Accordingly, this quantum W-algebra
has two classical limits corresponding to these two points of view. In other words, there
is one quantum W-algebra, but it can be perceived as the quantization of two different
vertex Poisson algebras.

This can be made more precise by exhibiting this “unified” W-algebra as a free C[β±1]-
module which contains inside a C[β−1]-lattice and a C[β]-lattice, the former “hailing”
from g and the latter from Lg (in other words, β−1 is the quantization parameter from
the point of view of g, and β is the quantization parameter from the point of view of Lg).

According to Theorem 4.6.9 of [37], Wβ(g) is freely generated by � = rank(g) genera-
tors W1, . . . ,W�(z) such that the degree (or conformal dimension) of Wi is di +1, where
di is the ith exponent of g. For non-zero β, the first of these generators, W1, generates
the Virasoro algebra, and each of the remaining generators Wi, i = 2, . . . , �, can be chosen
so that it is a highest weight vector of this Virasoro algebra.

The Heisenberg vertex algebra is, as a vector space, the Fock representation π0 of the
Heisenberg Lie algebra with the generators bin, i = 1, . . . , �;n ∈ Z, which we normalize
by the requirement that they satisfy the relations

[bin, b
j
m] = β−1(αi, αj)nδn,−m.

Consider π0 as a free C[β
−1]-module with the basis of monomials in bin, i = 1, . . . , �;n < 0,

applied to the vacuum vector. This is a vertex algebra over C[β−1]. It follows from the
proof of Theorem 4.6.9 of [37] that each Wi can be normalized in such a way that

Wi = W (0) + β−1(. . .), where W
(0)
i is a polynomial in bi−1, i = 1, . . . , �, invariant under

the action of the Weyl group. Furthermore, W
(0)
i , i = 1, . . . , �, is a set of generators of the

ring of Weyl group invariant polynomials in bi−1 (in fact, using the conformal dimension

Z-grading on π0, we find also that W
(0)
i is the symbol of Wi with respect to the standard

PBW filtration on π0; note also that the numbers di + 1 are precisely the degrees of the
generators of the ring of Weyl group invariant polynomials).

According to Theorem 4.6.9 of [37], the lexicographically ordered monomials in the
creation operators corresponding to the Wi, i = 1, . . . , �, applied to the vacuum vector in
π0, span a free C[β−1]-submodule and a vertex subalgebra of π0. This is Wβ(g), viewed
as a vertex algebra over C[β−1].

On the other hand, let LWi = β(di+1)Wi. Then, applying the same argument, but
from the point of view of Lg and (Lβ)−1 = β/m and using the LWi’s, we construct a free

11To avoid confusion, we note that the parameter β we use here is equal to m/β2
FF, where βFF is the

parameter denoted by β in [37].
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C[β]-submodule of π0

⊗
C[β−1]

C[β±1]. This is Wm/β(
Lg), viewed as a vertex algebra over

C[β].
Finally, tensoring both of these vertex algebras with C[β±1], we obtain the promised

“unified” W-algebra (of g and Lg), which contains Wβ(g) and Wm/β(
Lg) as a C[β−1]-

and a C[β]-lattice, respectively. The two classical limits, W∞(g) and W∞(Lg), are de-
fined using these two lattices (as quotients by the maximal ideal in C[β−1] and C[β],
respectively). They are commutative vertex Poisson algebras.

6.4. Conformal blocks and quantum geometric Langlands. These results offer
a particular interpretation of the quantum geometric Langlands correspondence in the
language of 2d CFT. Recall from [44] (see also the discussion at the end of Subsection
6.1) that the fibers of the D-modules BunLG constructed by Beilinson and Drinfeld [17]

can be identified with the duals of the spaces of conformal blocks of V−Lh∨(L̂g), which can
in turn be described in terms of certain conformal blocks of the (commutative) classical
W-algebra W∞(g) (namely, those conformal blocks that are algebra homomorphisms
W∞(g) → C).

Motivated by this observation, we propose that one of the manifestations of quantum
Langlands correspondence is an isomorphism between conformal blocks of representations
from certain categories of representations of the two vertex (or chiral) algebras: the affine

Kac–Moody vertex algebra VLk(L̂g) and the W-algebra Wβ(g), provided that β and Lk are
generic or rational with β < 0 and satisfy the relation equivalent to (6.2) and (6.4):

(6.5) β =
1

L(k + h∨)
.

We stress that this is not the only manifestation of the quantum Langlands correspon-
dence, but it is one that fits well with the isomorphism of q-deformed conformal blocks
established in this paper (see Subsection 6.6 for a brief discussion of the links with other
approaches).

Here, and in what follows, “generic” means a complex number that is not rational.
However, we expect that most of our results and conjectures below also hold for those
rational Lk that are less than −Lh∨ (which is equivalent to β < 0 under the relation
(6.5)). We will refer to such Lk as negative rational.

Let us define precisely the two categories of representations mentioned above. Rep-

resentations of the vertex algebra VLk(L̂g) are the same as representations of the affine

Lie algebra L̂g of level Lk satisfying a finiteness condition: every vector is annihilated by
the Lie subalgebra zN · Lg[[z]] for sufficiently large N . We denote the category of such

representations by L̂gLk-mod. Let L̂gLk-mod0 be the category of those representations

of L̂g of level Lk on which the action of the Lie subalgebra Lg[[z]] can be exponentiated
to the corresponding Lie group LG[[z]]. This is the same as a full subcategory of the

usual category O of L̂g of level Lk whose objects are the representations whose restric-
tion to the constant Lie subalgebra Lg decomposes as a direct sum of finite-dimensional
representations.

We will assume that Lk is generic or negative rational. Then simple objects of this
category are labeled by dominant integral weights λ ∈ LP+ of Lg. The simple object Lλ,Lk

corresponding to λ ∈ LP+ is the unique irreducible quotient of the Weyl module over L̂g

of level Lk induced from the irreducible representation of Lg with highest weight λ (note
that for any dominant integral weight, Lλ,Lk is the Weyl module itself if Lk is not a rational

number). The category L̂gLk-mod0 can be defined as the full subcategory of L̂gLk-mod
whose objects are representations with irreducible subquotients of this form. Imposing an
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additional property that representations have finitely many irreducible subquotients (i.e.,
have finite composition series), we obtain the category extensively studied by Kazhdan
and Lusztig, who in particular defined the structure of a braided tensor category on it;

see [66]. This will be our category of representations of the vertex algebra VLk(L̂g).

Note that if Lk is generic in the above sense, then the category L̂gLk-mod0 is a semi-
simple abelian category that is equivalent to the category of finite-dimensional represen-
tations of Lg.

Next, we define a subcategory of the category of representations of the W-algebra
Wβ(g). Recall that the quantum Drinfeld–Sokolov reduction yields a functor [36, 48]

from the category L̂gLk-mod to an analogous category of modules over WLβ(
Lg), which is

isomorphic Wβ(g) if β satisfies (6.5) [36]. We will henceforth denote the latter category

by Wβ(g)-mod and the Drinfeld–Sokolov reduction functor by H
L
g

DS. This functor sends a
L̂gLk-module M to the semi-infinite cohomology of Ln((z)) with coefficients in M tensored
with the same non-degenerate character that was used to define WLβ(

Lg). We denote it

by H
L
g

DS(M).

It follows from the results of Arakawa [9] that for generic k the functor H
L
g

DS is exact

on L̂gLk-mod0 (see also [99]).
Let now Wβ(g)-mod0 be the full subcategory of Wβ(g)-mod whose objects have finite

composition series with irreducible subquotients being the modulesH
L
g

DS(Lλ,Lk), λ ∈ LP+.
These modules are irreducible and non-zero, according to [10]. This will be our category
on the W-algebra side.

There is an alternative way to describe the simple objects of Wβ(g)-mod0, in terms

of the quantum Drinfeld–Sokolov reduction of ĝk rather than L̂gLk. Namely, instead

of applying the quantum Drinfeld–Sokolov reduction functor H
L
g

DS to Lλ,Lk, λ ∈ LP+,

we apply the quantum Drinfeld–Sokolov reduction Hg,λ
DS , with the standard character

twisted by the element λ(z) ∈ H((z)), to the vacuum module L0,k over ĝk. Using the
methods of [36], one can show12 that for generic k we have

(6.6) Hg,λ
DS (L0,k) � H

L
g

DS(Lλ,Lk),

Namely, using the free field realization of the W-algebras along the lines of [36], we can
construct the modules on the two sides of (6.6) as zeroth cohomologies of a finite BGG-
type resolution and use it to see that their characters coincide. We expect (6.6) to be
true for negative rational Lk as well.

From the point of view of Wβ(g), these simple modules correspond to the “magnetic”
vertex operators, while from the point of view of WLβ(

Lg) they correspond to the “elec-
tric” vertex operators (the duality of W-algebras exchanges electric and magnetic vertex

operators). We find it convenient to view quantum Drinfeld–Sokolov reduction H
L
g

DS as

a functor from the category L̂gLk-mod0 to the category Wβ(g)-mod0, which sends irre-
ducible modules to irreducible “magnetic” modules (the reason for this will become clear
in Subsection 6.5).

We conjecture that this functor is in fact an equivalence of braided tensor categories.
This agrees with the fact known in 2d CFT that magnetic vertex operators for the W-

algebra and vertex operators corresponding to the Weyl modules over L̂gLk braid as

representations of the quantum group Uq′(
Lg), where q′ = e2πi/

L(k+h∨).

12Note added in proof: This has been proved in T. Arakawa and E. Frenkel, Quantum Langlands
duality of representations of W-algebras. arXiv:1807.01536.
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The fusion tensor product of modules over a given vertex algebra has been defined by
Huang and Lepowsky (see [62] and the references therein). Although Wβ(g) does not
satisfy the conditions of [62], various results from 2d CFT suggest that the fusion tensor
product endows Wβ(g)-mod0 with the structure of a braided tensor category. This leads
us to the following.

Conjecture 6.2. The category Wβ(g)−mod0 is a braided tensor category (with respect

to the fusion tensor product) which is equivalent to the category L̂gLk−mod0 as a braided
tensor category if β and Lk satisfy equation (6.5) with β generic or negative rational.

A more precise statement is that this should be an equivalence of chiral categories (see
[100] for the definition).

We view Conjecture 6.2 as a purely algebraic manifestation of the quantum Langlands
correspondence. (A closely related Gaitsgory–Lurie conjecture discussed in Subsection

6.6 below has the algebraically defined category L̂gLk-mod0 on one side and a Whittaker
category, which is defined in geometric terms, on the other side; here the role of the
Whittaker category is played by an algebraically defined category Wβ(g)-mod0 as well.)
It is a local statement, but it implies non-trivial global statements: namely, isomorphisms

of the spaces of conformal blocks of representations from the categories L̂gLk-mod0 and
Wβ(g)-mod0.

Recall that for any vertex algebra V and a collection of V -modules M1, . . . ,Mn at-
tached to points p1, . . . , pn of a smooth projective algebraic curve C, one can define the
vector space of conformal blocks CV (C, (pi), (Mi)) (see [46, Section 10.1]). In the case of
the vertex algebra V = Vk(ĝ), this is the standard definition of the space of conformal
blocks for ĝ (see, e.g., [44]).

Suppose that C = CP1. If M1, . . . ,Mn are objects of a braided tensor category with
respect to a fusion tensor product ⊗, then the space CV (CP

1, (pi), (Mi)) can be expressed
as a Hom of this category:

CV (CP
1, (pi), (Mi)) � HomV (M1 ⊗ . . .⊗Mn−1,M

∨
n ).

Therefore Conjecture 6.2 implies (at least, for C = CP1, and this should be true for
all C if Conjecture 6.2 is true at the level of chiral categories) the following.

Conjecture 6.3. There are isomorphisms of the spaces of conformal blocks

(6.7) C
VLk(

L̂g)
(C, (pi), (Lλi,Lk)) � CWβ(g)(C, (pi), (HDS(Lλi,Lk)))

provided that the parameters satisfy the conditions of Conjecture 6.2.

In the case of C = CP1, then for generic Lk the isomorphisms (6.7) can indeed be
constructed using the integral representation of the spaces of conformal blocks, as we
discuss in Subsections 6.7 and 6.8. This gives us a concrete way to prove Conjectures
6.3, and 6.2, and more general Conjectures 6.5 and 6.4 below.

6.5. A q-deformation. At this point, it is natural to ask to what extent it is necessary
to invoke the dual Lie algebra in the above conjectures. Indeed, using the duality of
W-algebras [36] (see Theorem 6.1), we can replace Wβ(g) by WLβ(

Lg) with Lβ = m/β
in Conjectures 6.2, 6.3. So, at first glance it may appear that the above results and
conjectures can be accounted for by the Drinfeld–Sokolov reduction alone, and that there
is no need to invoke the Langlands dual Lie algebra (in the same way, one would tend to
dismiss the appearance of Lh in the Harish-Chandra homomorphism, as we explained at
the beginning of this section).

However, there are two reasons why Langlands duality is relevant here. First, as we
already explained at the beginning of this section, the isomorphism of conformal blocks
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Wβ(g) and L̂g can be q-deformed, and after the q-deformation the appearance of g can’t be
written off because there is no longer an isomorphism between the deformed W-algebras
associated to g and Lg (if Lg �= g). It is really Wq,t(g) that appears in our isomorphism
of q-deformed conformal blocks, and not Wt,q(

Lg) (unless g = Lg). Furthermore, our iso-
morphism involves the deformations of the magnetic vertex operators over the W-algebra
of g, and these are no longer equal to the deformations of the electric vertex operators
of the W-algebra of Lg. Thus, the appearance of the Langlands dual Lie algebras be-
comes more meaningful after the q-deformation (similarly to how the appearance of the
Langlands dual Lie algebra in the Harish-Chandra isomorphism becomes more meaning-
ful after affinization). This suggests that it is fruitful to view the isomorphism between
conformal blocks at q = 1, and the corresponding equivalences of categories, in the light
of Langlands duality as well.

The second reason is that actually Conjectures 6.2 and 6.3 are special cases of more
general conjectures corresponding to the generalized dualities TNS of the group PSL2(Z)
familiar from 4d gauge theory (the standard Langlands duality corresponds to S, i.e.,
N = 0). But to apply this duality we must first apply the duality S, exchanging g and
Lg, and then apply TN (which preserves g and Lg). Therefore, if we wish to look at the
dualities TNS with N �= 0, then using the dual Lie algebra is necessary already at q = 1.

In fact, and this is a crucial point, the isomorphism of conformal blocks obtained from
our canonical isomorphism of q-deformed conformal blocks in the limit q → 1 corresponds
not to the standard relation (6.5) but to the relation

(6.8) β =
1

L(k + h∨)
+m,

where m is the lacing number of g. Indeed, this is the relation we obtain when we take
the limit q → 1 in the relation (1.6) between the parameters of the algebras Wt,q(

Lg) and

U�(L̂g) using equation (1.5).
Formula (6.8) differs from formula (6.5) in the shift of β by m. This shift corresponds

to applying, in addition to the standard Langlands duality S, the quantum Langlands
duality T . Let us recall how the dualities T and S act on the parameters of 4d gauge
theory.

The duality S exchanges the gauge groups G and LG (and hence the corresponding
Lie algebras) and acts on the 4d gauge theory coupling constant τ as

S : τ �→ −1/mτ.

The duality T preserves the gauge group and acts on τ as

T : τ �→ τ + 1

(it is well-defined if G is simply-connected, which we will now assume to be the case;
in general, only certain powers of T are well-defined). These two dualities generate a
subgroup of PSL2(Z) (see [65]).

The connection to our parameters is as follows:

τ = β/m, Lτ = −L(k + h∨).

Hence, formula (6.8) is equivalent to

(6.9) τ = −1/mLτ + 1 = TS(Lτ ).

In order to interpret the relation between conformal blocks corresponding to β and Lk
related via formula (6.8), we need a generalization of Conjectures 6.2 and 6.3 in which
we replace the relation (6.5) corresponding to the duality S with (6.8) corresponding to
TS.



QUANTUM q-LANGLANDS CORRESPONDENCE 53

We will consider an even more general relation corresponding to the duality TNS:

(6.10) β =
1

L(k + h∨)
+Nm, N ∈ Z,

and the following conjectures.

Conjecture 6.4. The categories Wβ(g)−mod0 and L̂gLk−mod0 are equivalent as braided
tensor categories (or chiral categories) if β and Lk satisfy equation (6.10) with β generic
or negative rational.

Conjecture 6.5. There are isomorphisms (6.7) of the spaces of conformal blocks pro-
vided that the parameters satisfy the conditions of Conjecture 6.4.

Now, the isomorphism (6.7) with β and Lk related by formula (6.8) is precisely the
q → 1 limit of the canonical isomorphism of q-deformed conformal blocks which we have
conjectured in this paper and established in the simply-laced case. It is in this sense
that we can view our isomorphism as a manifestation of a q-deformation of the quantum
geometric Langlands.

6.6. Connection with the Gaitsgory–Lurie conjecture. Conjecture 6.2 is related to
a conjecture of Gaitsgory and Lurie (proved by Gaitsgory in [55] for generic parameters;
see also [56]) stating an equivalence of two braided tensor categories (or chiral categories
in the terminology used in [55, 56, 100]). In our notation, one of them is the above

category L̂gLk-mod0 (which is denoted by KLč
Ǧ in [56]). The other is the “Whittaker

category” denoted by Whitc(GrG) in [56].
Combining Conjecture 6.2 with the theorem of [55] (the Gaitsgory–Lurie conjecture

for generic c), we obtain the following.

Conjecture 6.6. The categories Whitc(GrG) and Wc(g) -mod0 are equivalent as braided
tensor (or chiral) categories for generic and negative rational c.

We note that both categories have simple objects labeled by λ ∈ LP+, and they should
correspond to each other under this equivalence. There is also a natural functor from
Whitc(GrG) to Wc(g)-mod. Indeed, according to the definition given in [56], Whitc(GrG)
is Whit(Dk(GrG) -mod), the category of (n((z)), χ)-equivariant objects in the category
of twisted D-modules on the affine Grassmannian GrG [56] (here χ is the “Whittaker
functional” used in the quantum Drinfeld-Sokolov reduction, and the twisting parameter
should be, in our notation, the level k such that c = m(k + h∨)). The functor of global
sections on GrG then yields a functor from the latter category to Whit(ĝk -mod), which
is equivalent to the category Wc(g)-mod according to the results of [99].

Conjecture 4.5 of [56] links the statement of the Gaitsgory–Lurie conjecture to the
global quantum Langlands correspondence discussed in Section 6.2 above. Therefore,
Conjecture 6.6 provides a link between our Conjecture 6.2 and the global quantum Lang-
lands correspondence.

6.7. Integral representation of conformal blocks. Conjecture 6.3 in genus zero can
be tested using the integral formulas for the conformal blocks of affine Kac–Moody al-
gebras obtained by Schechtman and Varchenko [105] (as solutions of the KZ equations).

These formulas can also be obtained using the free field (Wakimoto) realization of L̂g;
see [14, 32, 39]. In this section we compare these formulas to the integral formulas for
conformal blocks of W-algebras. In gives us a concrete interpretation of the limit of our
isomorphism of q-deformed conformal blocks as q → 1.

Our notation for the conformal blocks will be similar to the notation we used for the q-
deformed conformal blocks. Namely, we have a vertex operator ΦLρi

(ai) corresponding to
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a finite-dimensional representation Lρi of
Lg of dominant integral highest weight λi ∈ LP+

inserted at the point ai ∈ CP1, for i = 1, . . . , n. Then conformal blocks may be viewed
as (multivalued) functions of the ai with values in a weight space in the tensor product⊗

i
Lρi. This weight is given by the same formula as (1.8) (here we use a slightly different

notation; in particular, we denote the simple roots of Lg by αi):

(6.11) γ =
n∑

i=1

λi −
r∑

j=1

αij .

In the integral representation, these functions are written as integrals, over a suitable
integration cycle Γ (discussed below), in the space

(C\{a1, . . . , an})r\ diag
with coordinates x1, . . . , xr, of a function that is a product of two factors:

(1) The first factor is the multivalued function, denoted by I(x, a), which is the product
of factors of three types:

(ai − aj)
(λi,λj)/

L(k+h∨),

(6.12) (ai − xj)
−(λi,αij

)/L(k+h∨), (xj − xp)
(αij

,αip )/
L(k+h∨)

(here we use the inner product normalized as in Section 2.1).

(2) The second factor is a rational function |xi1
1 . . . xir

r 〉 in the ai and xj with values
in
(⊗

i
Lρi
)
γ
; it can be realized as a conformal block of the bosonic βγ-system involved

in the free field realization of L̂g (see Theorem 4 of [39] as well as [14]).
The product of the factors appearing in equation (6.12) defines a rank one local system

L on (C\{a1, . . . , an})r\ diag. For the integral to be well-defined, the integration cycle Γ
should be viewed as an element of the rth homology group of

(C\{a1, . . . , an})r\ diag
with coefficients in the dual local system L∗.

It is known that for generic Lk the resulting integrals

(6.13)

∫
Γ

I(x, a) |xi1
1 . . . xir

r 〉 dx1 . . . dxr

(with varying Γ) span the subspace of highest weight vectors of the weight space
(⊗

i
Lρi
)
γ

with respect to the diagonal action of Lg. This may seem puzzling because if we only had
vertex operators ΦLρi

(ai), i = 1, . . . , n, in our set-up, then the space of conformal blocks

would have been isomorphic to the subspace of Lg-invariant vectors in
(⊗

i
Lρi
)
γ
. The

explanation is that we have “cheated” a bit because to make this calculation work we
actually need to insert a vertex operator at the point ∞ ∈ CP1 with the lowest weight −γ
(this is explained in [39]). When we take this into account, the corresponding space of
Lg-invariant vectors gets identified with the space of highest weight vectors in

(⊗
i
Lρi
)
γ
.

(Note that the measure in (6.13) is different from the rest of the paper because in this
section x is a coordinate on the complex plane rather than a cylinder. To connect the
formulas in this section to the formulas elsewhere, one should use the change of variables
xcyl = eRxplane and take R to zero.)

In fact, it follows from the results of Varchenko [121] that for generic Lk the above

homology space can be identified with the space of highest weight vectors in
(⊗

i
Lρq

′

i

)
γ

where ρq
′

i is the representation with the same highest weight λi but over the quantum

group Uq′(
Lg) with q′ = e2πi/

L(k+h∨). As explained in [121], these integral formulas may
therefore be thought of as providing a non-degenerate pairing between these spaces of
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highest weight vectors, one for the Lie algebra Lg and one for the quantum group Uq′(
Lg).

(As shown in [121], the fact that these are solutions of the KZ equations can be used to
derive the Kohno–Drinfeld theorem identifying the R-matrices of Uq′(

Lg) with the “half-
monodromies” of solutions of the KZ equations corresponding to exchanging the points
ai and aj . See also [106] and the closely related work by Bezrukavnikov, Finkelberg, and
Schechtman [20].)

It is possible to modify the construction slightly to obtain the entire weight space(⊗
i
Lρq

′

i

)
γ
(rather than its subspace of highest weight vectors). For that, we also insert

a vertex operator at the point 0 ∈ CP1 as well as a vertex operator at the point ∞ (we
assume that ai �= 0 for all i = 1, . . . , n). If the highest weight of the former is λ and the
lowest weight of the latter is −λ′ so that λ− λ′ = γ, then we can identify our conformal
blocks with the matrix elements

(6.14) 〈λ′|
n∏

i=1

ΦLρi
(ai) |λ〉

as in formula (1.7) (note that here we switch the points 0 and ∞ compared to Section
2.1; our λ, λ′ are therefore λ∞, λ0 of formula (1.7)).

The advantage is that we now get solutions that span the entire weight space
(⊗

i
Lρi
)
γ
.

Indeed, if λ is chosen to be generic, then the space of highest weight vectors in the tensor
product of the Verma module with the highest weight λ and

⊗
i
Lρi can be identified

with
⊗

i
Lρi. The disadvantage, however, is that we have to modify formula (6.13) by

inserting an additional factor, which is a product of powers of the xj – this factor comes
from the “interaction” of the vertex operator at the point 0 and the screening operators.
The resulting formula for the conformal blocks reads

(6.15)

∫
Γ

r∏
j=1

x
−(λ,αij

)/L(k+h∨)

j I(x, a) |xi1
1 . . . xir

r 〉 dx1 . . . dxr.

Accordingly, Γ is now a cycle in the rth homology of

(C\{0, a1, . . . , an})r\ diag

with coefficients in the dual local system of the rank one local system obtained by mod-
ifying L to include the monodromies around 0 specified by the extra factor in (6.15).
This homology space is, according the results of [121], isomorphic to the weight space(⊗

i
Lρq

′

i

)
γ
.

Now let us discuss conformal blocks of the W-algebra Wβ(g), where β is related to Lk
by formula (6.5). We now insert at the points ai vertex operators of Wβ(g) corresponding
to the representations HDS(Lλi,Lk). In the free field realization of Wβ(g), these vertex
operators are given by the standard bosonic vertex operators. However, in the same
way as in the Kac–Moody case, we can insert integrals of the screening currents which
commute with the W-algebra.

As in the case of the deformed W-algebra, there are two sets of screening currents:
the “electric” and “magnetic” ones (see Section 8.6 of [44]). They are the conformal
limits of the screening currents Sa(x) and S∨

a corresponding to the roots and coroots
of g, respectively (see Section 2.2). However, since we only consider the insertions of
the vertex operators corresponding to the representations HDS(Lλi,Lk), where each λi

is a dominant integral coweight of g (equivalently, weight of Lg), only the magnetic
screening currents corresponding to the coroots of g (equivalently, roots of Lg) appear in
the formulas for conformal blocks.
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The resulting formula for the conformal blocks, which are the q → 1 limits of the
deformed blocks given by (1.9), is

(6.16)

∫
Γ

I(x, a) dx1 . . . dxr

if we do not include a vertex operator at the point 0, and

(6.17)

∫
Γ

r∏
j=1

x
−(μ,αij

)

j I(x, a) dx1 . . . dxr

if we do. We include the W-algebra vertex operator at 0 with momentum μ. It is natural
to use the definition of the momentum corresponding to g rather than Lg; for this reason
μ does not get rescaled by β in (6.17). The powers of the xj are the same in (6.17) and
(6.15), if we let μ = λ/L(k + h∨).

The difference between formulas (6.13) and (6.15) on one side, and (6.16) and (6.17) is
that the former take values in

(⊗
i
Lρi
)
γ
whereas the latter are scalar-valued functions.

But what matters is that they are parametrized by the integration cycles Γ which belong
to the same homology space. In both case (with or without a vertex operator at 0) the

spaces of conformal blocks for L̂g and for Wβ(g) are therefore identified with the same
homology space.

This enables us to identify the two spaces of conformal blocks, in effect proving Con-
jecture 6.3 for C of genus zero and generic values of β and Lk satisfying the relation
(6.5).

However, it would be desirable to identify the integral formulas more directly. By that
we mean finding a linear functional (covector) 〈W | on

(⊗
i
Lρi
)
γ
so that pairing it with

the Kac–Moody conformal block (6.15) we would get the conformal block (6.17) of the
W-algebra. Morally, 〈W | should be a “Whittaker-like” functional (which makes sense
since the W-algebra is obtained from the affine Kac–Moody algebra via the quantum
Drinfeld-Sokolov reduction that uses a Whittaker functional).

However, by inspecting formulas (6.15) and (6.17) we can see that such a covector
〈W | does not exist. Indeed, for the formulas to match, we need to have

〈W |xi1
1 . . . xir

r 〉 = 1,

where |xi1
1 . . . xir

r 〉 is the vector appearing in formula (6.15), but 〈W | should not depend

on the integration variables xj . Explicit formula for |xi1
1 . . . xir

r 〉 (see, e.g., Theorem 4 of
[39]) shows that it goes to 0 if we take all of the xj to ∞. Therefore the covector 〈W |
satisfying the above formula does not exist.

The results of this paper show nonetheless that such a covector does exist for the
generic q-deformation of conformal blocks subject to the relation (1.6) (and it is indeed
something like a Whittaker functional as it represents the identity in the equivariant
K-theory of the corresponding quiver variety). However, the q → 1 limit of this relation
is not the standard relation (6.5) but rather the relation (6.8) in which β is shifted by m.
We have conjectured in Conjecture 6.5 that there is an isomorphism of conformal blocks
in this case, and even more general case of relation (6.10), in which β is shifted by Nm.

Let us discuss this shift in the framework of the above integral formulas. Recall that
the inner product (·, ·) on the dual space to the Cartan subalgebra of Lg is normalized in
such a way that the long roots have square norm 2, and so the short roots have square
norm 2/m (here m denotes the lacing number of g and Lg, as before). Given that all the
λi are dominant integral weights of Lg, we see that the rank one local system defined by
the multivalued function I appearing in the above integral formulas does not change if we



QUANTUM q-LANGLANDS CORRESPONDENCE 57

shift β by an integer multiple of m. Therefore we find that the corresponding homology
groups remain the same, in agreement with Conjecture 6.5.

However, the case N = 1 (relation (6.8)) turns out to be special. In this case, we
obtain a direct identification of the integral formulas for the conformal blocks using a
covector 〈W |.

In the next subsection, we will give some explicit examples of this covector.

6.8. Explicit identification of conformal blocks. Let us discuss a concrete example

of the identification of conformal blocks of L̂g and Wβ(g), with the parameters satisfying
the relation (6.8), in the case of Lg = sl2. To simplify our notation, we will denote Lk by
k in this subsection.

First, suppose there are two points on the complex plane, a1 and a2, and we insert

at each of them the vertex operator of ŝl2 corresponding to the two-dimensional repre-
sentation C2, in which we choose a basis {v, fv}, with v a highest weight vector and f
the standard generator of sl2. We also put a vertex operator at ∞, but for now we will
not put a vertex operator at the point 0. We will choose the one at ∞ to be of lowest
weight 0, so that the resulting conformal blocks take values in the subspace of weight 0
in C2 ⊗ C2. This subspace is two-dimensional, with a basis {v ⊗ fv, fv ⊗ v}.

Since we are not putting anything at 0, the space of conformal blocks is one-dimensional,
and can be identified with the space of highest weight vectors of C2 ⊗ C2 – but viewed
as a representation of Uq′(sl2) (with q′ = e2πi/(k+2)) rather than sl2.

As we discussed in the previous subsection, this is a general phenomenon: L̂g-conformal
blocks take values in the subspace of highest weight vectors in the tensor product of rep-
resentations of Lg, but the space of conformal blocks itself is isomorphic to the space of
the cycles of integration that can be identified [121] with the same subspace in the tensor
product of the finite-dimensional representations of the same highest weights, but taken
over the corresponding quantum group Uq′(

Lg).
In the case at hand, the integral solution (6.13) of the KZ equations is given by the

formula

(6.18) (a1 − a2)
θ/2

∫
Γ

(
fv ⊗ v

x− a1
+

v ⊗ fv

x− a2

)
(x− a1)

−θ(x− a2)
−θ dx,

where

θ =
1

k + 2
.

There are two things to note:
(1) This solution takes values in the subspace of the weight 0 subspace, spanned by

the vector

fv ⊗ v − v ⊗ vf,

which is precisely the subspace of highest weight vectors of weight 0 in C2 ⊗ C2, as
expected (see the discussion in the previous subsection). This follows from the formula∫

Γ

(
1

x− a1
+

1

x− a2

)
(x− a1)

−θ(x− a2)
−θ dx

= −1

θ

∫
Γ

d
(
(x− a1)

−θ(x− a2)
−θ
)
= 0.

(2) For generic k, the first twisted homology of (C\{a1, a2})2\ diag with coefficients
in the rank one local system appearing in formula (6.18) is one-dimensional. There is a
unique (up to a scalar) cycle of integration Γ, which generates this homology group.

Indeed, note that in this case the monodromies around a1 and a2 are the same: e−2πiθ.
The cycle Γ can be chosen as follows: starting at some point z and going counterclockwise



58 M.AGANAGIC, E. FRENKEL, AND A.OKOUNKOV

around a1, coming back to z and then going clockwise around a2 and returning to z.
When we apply the differential of the standard twisted homology complex to this contour,
the first of the two contours gives the point z multiplied by (1− e−2πiθ), and the second
one gives minus the same expression, so they cancel each other. As explained in [121]
in the general case, the action of the differential can be identified with the action of the
generator e of Uq′(sl2). In this case, it is the action on the weight 0 subspace of C2

q′ ⊗C2
q′ ,

where C2
q′ is the two-dimensional irreducible representation of Uq′(sl2) (and in general,

with the action of a sum of the generators ei of the quantum group, acting from the given
weight space to the weight spaces corresponding to the shift of the weight by αi). This
is why one can identify the homology group with the space of highest weight vectors.

Now, let’s see whether we can get a conformal block for the Virasoro algebra Wβ(g)
by pairing the above solution with a covector 〈W |. Set

〈W | = (a1 − a2)
−1/2((fv ⊗ v)∗ − (v ⊗ fv)∗).

Applying this functional to the conformal block (6.18) and using formula

1

x− a1
− 1

x− a2
=

a1 − a2
(x− a1)(x− a2)

,

we get

(a1 − a2)
1/2(θ+1)

∫
Γ

(x− a1)
−(θ+1)(x− a2)

−(θ+1) dx,

which is a conformal block of the Virasoro algebra with the parameter

β = θ + 1 =
1

k + 2
+ 1.

Here we recognize the shift of β by 1, as in formula (6.8).
Let us now insert a vertex operator at the point 0 with generic (non-integral) highest

weight λ while inserting a vertex operator with lowest weight −λ at ∞. Then we again
obtain conformal blocks with values in the weight 0 subspace of C2 ⊗ C2, but now the
highest weight condition is dropped. As the result, the formula for the conformal block
becomes

(a1 − a2)
θ/2

∫
Γ

x−λθ

(
v ⊗ fv

x− a2
+

fv ⊗ v

x− a1

)
(x− a1)

−θ(x− a2)
−θ dx.

As in the general formula (6.15), there is an extra factor x−λθ.
The cycle Γ is now in the first homology group of (C\{0, a1, a2})2\ diag which is

two-dimensional and can be identified with the weight 0 subspace of C2
q′ ⊗ C2

q′ . The

corresponding integrals span the two-dimensional weight 0 subspace of C2 ⊗ C2.
When we take the pairing with 〈W |, we obtain

(6.19) (a1 − a2)
(θ+1)/2

∫
Γ

x−λθ(x− a1)
−(θ+1)(x− a2)

−(θ+1) dx.

This as a conformal block of the Virasoro algebra with β = θ+1 and momentum μ = λθ
at the point 0.

Let us generalize the above example to the case of n points a1, . . . , an with the insertion
of the vertex operators corresponding to the two-dimensional representation C2. We will
focus on the case of weight 2n − 2 subspace, which corresponds to the case of a single
screening operator.

The analogue of formula (6.18) is

(6.20)
∏
i<j

(ai − aj)
θ/2

∫
Γ

n∑
i=1

v ⊗ . . .⊗ fv
i
⊗ . . .⊗ v

x− ai

n∏
i=1

(x− ai)
−θ dx.
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The cycle Γ is an element of the first twisted homology group of

(C\{a1, . . . , an})n\ diag,

which is (n− 1)-dimensional in this case (and can be identified with the space of highest
weight vectors in the weight 2n− 2 subspace of (C2

q′)
⊗n).

The corresponding covector 〈W | is given by the formula

〈W | =
∏
i<j

(ai − aj)
1/2

n∑
i=1

(v ⊗ . . .⊗ fv
i
⊗ . . .⊗ v)∗∏

j �=i(ai − aj)
.

Taking the pairing of 〈W | and the Kac–Moody conformal block (6.20) and using the
formula

n∑
i=1

1

(w − ai)
∏

j �=i(ai − aj)
=

1∏n
i=1(w − ai)

,

we obtain the Virasoro conformal block

(6.21)
∏
i<j

(ai − aj)
β/2

∫
Γ

n∏
i=1

(x− ai)
−β dx,

where β = θ + 1.
For general highest weights λ1, . . . , λn and multiple screening operators, the explicit

formula for the covector 〈W | becomes increasingly complicated. However, our general
results about the identification of the deformed conformal blocks guarantee that such a

covector always exists and pairing it with a conformal block for L̂g of level Lk, we obtain
the corresponding Wβ(g)-conformal block provided that the parameters are related by
formula (6.8). This yields an explicit identification stated in Conjecture 6.3.

Remark 6.7. In the case g = sl2, the Kac–Moody conformal blocks have been connected
to the Virasoro conformal blocks, if the parameters are related by the formula β =
1/(k + 2), by two different changes of variables. In both cases, each representation
of sl2 (the Lρλi

in the notation of the previous subsection) is realized in the space of
polynomials in one variable xi, viewed as the coordinate on the big cell of the flag
manifold of SL2. In the first approach, these variables xi are identified with the positions
ai of the vertex operators [52, 96]. In the second approach, the change of variables
is obtained by deforming Sklyanin’s separation of variables in the SL2 Gaudin model
[47, 111, 118]. In this case, the Fourier dual variables to the xi appearing on the Kac–
Moody side are converted, on the Virasoro side, into positions of additional degenerate
fields of type Φ1,2. It is unknown at present how to generalize these changes of variables
to the case of arbitrary affine Kac–Moody algebras.

In contrast, here we do not introduce any additional degrees of freedom. Rather, as
a consequence of our general results on the identification of the q-deformed conformal
blocks, we obtain that there exists a covector 〈W | on the tensor product

⊗
i
Lρλi

of finite-
dimensional representations of Lg, such that when we couple it with the corresponding
L̂g Kac–Moody blocks at level Lk, we obtain conformal blocks of the W-algebra Wβ(g),
if β = 1/L(k + h∨) + m. This provides an explicit identification of the two types of
conformal blocks.

7. Quivers from string theory

7.1. 3d quiver gauge theory. The quiver Q from Section 1.3 labels a gauge theory in
three dimensions withN = 4 supersymmetry. The ranks of vector spaces Va,Wa attached
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to the ath node of the quiver Q are the ranks of gauge GQ and global symmetry groups
GW :

(7.1) GQ =
∏
a

U(da), GW =
∏
b

U(ma).

The arrows of the quiver encode the representation in which the matter fields transform.
For every pair a, b of nodes connected by a link of the Dynkin diagram we get a hyper-
multiplet transforming in bifundamental representation (da, db) of under U(da)×U(db).
There are also ma hypermultiplets in fundamental representation da of the U(da) gauge
group.

7.1.1. The Nakajima quiver variety X is the Higgs branch of the gauge theory. The
Kähler parameters of X encode Fayet-Illiopolous (FI) terms in the gauge theory. The
equivariant parameters are the real masses, induced by weakly gauging GW symmetry.
Both the FI terms and the real masses get complexified once we compactify the gauge
theory on S1, as we will shortly do.13 The C×

�
action that scales the symplectic form on

X comes from a U(1) subgroup of SU(2)H × SU(2)V R-symmetry group.

7.2. Quiver gauge theory from IIB string. The quiver gauge theory with quiver Q
arises on D3 branes in IIB string theory compactified on

Y ×M6.

Here, Y is an ADE surface, a resolution of C2/Γg singularity, where Γg is a discrete group
of SU(2) related to g by McKay correspondence; M6 = C ×C×C is the six-manifold in
(1.17). The Riemann surface C is the same one we used to define the q-conformal blocks
in Section 1.2.

7.2.1. The ranks of the vector spaces Va,Wa are determined by the homology classes of
2-cycles in Y that the D3 branes wrap.

Recall the relation of geometry of Y to representation theory of g: The vanishing cycles
of the ADE singularity are topologically S2’s which intersect according to the Dynkin
diagram of g. Denote the vanishing cycles by Sa; their homology classes are the positive
simple roots of g, ea = [Sa]. They span H2(Y,Z), which can be identified with the root
lattice of g (with the norm coming from the intersection form on Y ). The weight lattice
of g is the same as the relative homology group H2(Y, ∂Y ;Z). The latter is spanned
by a collection of non-compact cycles S∗

a whose homology classes are the fundamental
weights, wa = [S∗

a ]. (A cycle in the class of S∗
a is the fiber of the cotangent bundle at a

generic point on Sa.)
To get the quiver Q, we take a collection of non-compact D3 branes in class [S∗] ∈

H2(Y, ∂Y ;Z), where

(7.2) [S∗] =
∑
a

ma[S
∗
a ], [S] =

∑
a

da[Sa],

together with a collection of compact D3 branes in the class [S] ∈ H2(Y,Z). In addition
to their support in Y , the D3 branes are distributed at a collection of points on C, and
on the complex plane in M6, associated with q as the equivariant parameter.

13There are additional parameters needed to define the theory, such as the gauge couplings, which
are not relevant for us, as they do not affect the partition function.
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7.2.2. The D3 branes on the compact cycles in homology class [S] in (7.2) support GQ
gauge fields in (7.1). The hypermultiplets in (da, db) arise from (zero-modes of) strings
at the intersections of cycles in classes [Sa] and [Sb], for a �= b. The intersection number
#(Sa, Sb) = Iab is identified with the incidence matrix Iab. Strings at the intersec-
tions between Sa and S∗

a cycles give rise to hypermultiplets in (da,ma) representation of
U(da) × U(ma). The flavor symmetry GW in (7.1) is the gauge group of non-compact
D3 branes on [S∗] in (7.2); due to non-compactness, the corresponding gauge fields are
frozen.

7.2.3. D3 branes give rise to a 3d gauge theory on S1
R′×C. The circle S1

R′ is not geometric
in IIB. It arises due to a stringy effect.

The D3 branes are located at points on C, which is a cylinder C = R×S1
R, with a circle

of radius R. Due to strings which wind around the S1
R, there are many infinitely many

particles in the theory on C. They are labeled by the winding modes on S1
R, which are in

turn equivalent to momentum modes on another circle S1
R′ , with radius R′ = 1/(m2

sR).
The three-dimensional nature of the theory can be made manifest by T -duality. The

duality relates IIB on S1
R with IIA on S1

R′ , and D3 branes in IIB at points on S1
R with

D4 branes in IIA wrapping the S1
R′ ; these theories are the same. The winding on S1

R

corresponds to momentum on the S1
R′ .

7.2.4. The positions of the non-compact D3 branes on C are the A-equivariant parameters
and the complexified real masses: a D3 brane supported at a point x = ai on C leads to
an equivariant parameter with the same name. This is also an insertion point of a vertex
operator in (1.7) and (1.9). The positions of compact D3 branes on C are dynamical
parameters; they are the insertion points of screening charge operators in (1.9). The
Kähler moduli of X are identified with the Kähler moduli of Y, as both correspond to
FI parameters in the 3d gauge theory. They determine the weights λ in (1.7) and (1.9).

7.3. Little string theory from IIB string. The 10d IIB string on Y ×M6 has many
more degrees of freedom than we presently need. There is a smaller theory, which captures
the physics relevant for us. It is a 6d string theory, “the little string theory” with (2, 0)
supersymmetry on M6.

7.3.1. The g-type little string theory with (2, 0) supersymmetry is defined as the limit
of IIB string theory on Y ×M6. The limit corresponds to taking the string coupling gs
to zero, keeping fixed the characteristic mass ms of the IIB string, ms and the moduli
of the 6d (2, 0) theory. (The moduli come from periods of five 2-forms in IIB string
compactified on Y ×M6, coming from the triplet of self-dual 2-forms of Y and the two
B-fields of IIB string, with appropriate normalizations.)

7.3.2. The theory one is left with is a string theory on M6: it contains strings whose
tension is m2

s, which are inherited from IIB strings. One reflection of the fact one gets
a string theory, and not a point particle theory, is that the little string theory has a T-
duality symmetry. T-duality relates the g-type (2, 0) little string, compactified on a circle
of radius R, with the g-type (1, 1) little string theory on a circle of radius R′ = 1/(m2

sR).
(The latter is obtained from IIA string on Y , in an analogous gs to zero limit.) The two
string theories are equivalent.

7.3.3. The D3 branes of IIB string on Y give rise to codimension four defects of the little
string theory on M6. The theory on the defect D3 branes is the quiver gauge theory
with quiver Q. The limit which reduces the 10d IIB string to the 6d little string on M6

does not affect the gauge theory on D3 branes at all. The triplet of FI parameters of the
3d gauge theory, for example, is given by R times the moduli of the little string, coming
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from the triplet of self-dual 3-forms on Y . The gauge couplings are R times the modulus
originating from the NS B-field. Here, R is the radius of the S1

R in C. All these remain
finite in the limit, since we are keeping both R and the moduli of (2, 0) little string fixed
as we take gs to zero. (See [2] for more details.)

7.4. Non-simply-laced case. To get non-simply-laced theories, we make use of the fact
that every non-simply-laced Lie algebra g arises as a subalgebra of a simply-laced Lie
algebra g0, invariant under the outer automorphism groupH of g0. Outer automorphisms
of g0 correspond to automorphisms in its Dynkin diagram.

7.4.1. We start with IIB string on Y0 an ADE singularity corresponding to g0. We take
Y0 to be fibered over M6 in such a way14 that, as we go around the origin of the complex
plane in M6 that supports the D3 branes, Y0 comes back to itself only up to the action
of a generator h ∈ H. The action of h on Y0 is by permuting the 2-cycles classes in
H2(Y0,Z) in a way compatible with the action of h on the root lattice of g0, and the
identification of the latter with H2(Y0,Z) (to our knowledge, this string construction was
first used in [18]).

7.4.2. The automorphism groups H are all abelian, H = Zm, generated by a single
element h ∈ H, with hm = 1. The roots of g are the combinations of roots of g0 which
are invariant under H. This way, from (g0, H) one gets g with:

(A2n−1, Z2) → Cn,

(Dn+1, Z2) → Bn,

(D4, Z3) → G2,

(E6, Z2) → F4.

(7.3)

The root lattice of g is obtained from the root lattice of g0 as follows. A simple positive
root of g is a sum over the simple positive roots of g0 which are in a single orbit of H,
normalized by the length of the orbit. The short roots of g come from the simple roots
in g0 which lie in orbits of H of length m. The long roots of g are the simple roots of g0
invariant under H. The length of the root is defined by (ea, ea), where (, ) comes from
the inner product on the root lattice of g0. Since all the roots of g0 have length 2, the
length of a short simple root of g is 2/m, and the length of a long root is 2. The coroots
of g are related to the roots of g in the usual way e∨a = 2ea/(ea, ea). It is easy to show
that the result is the Cartan matrix of g: Cab = (e∨a , eb).

7.4.3. The action of H on Y0 translates into the action on D3 branes supported on the
2-cycles in (7.2), and on the quiver Q0 that describes them. The D3 brane configura-
tions that are allowed in the fibered geometry are in one-to-one correspondence with the
configurations of 2-cycles on Y0 which are invariant under the H action: The D3 branes
we are considering are supported on 2-cycles in Y0 times the complex plane C ∈ M6

where the twist is; any H-invariant configuration in Y0 gives rise to a configuration on
the fibered product which comes back to itself up to the h-twist acting simultaneously
on M6 and on Y0.

14In [67], the twist is around the S1 in C instead, or more precisely, around its T-dual circle.
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7.4.4. For H to leave the quiver Q0 invariant, the ranks of vector spaces (Va,Wa) associ-
ated to the nodes of the Dynkin diagram of g0 which lie in a single orbit of H have to be
the same. From this it follows that the non-compact D3 branes, corresponding to Wa’s,
are labeled by fundamental weights of Lg, the Lie algebra Langlands dual to g. Similarly,
the compact D3 branes, corresponding to Va’s, are labeled with the simple roots of Lg.

To see this, one recalls that the simple roots and the fundamental weights of Lg coincide
with the simple coroots and fundamental coweights of g, respectively. The latter are, in
turn, simply the sums of the fundamental coweights and the simple coroots of g0 lying
in a single orbit of H. These are exactly the data labeling the H-invariant quivers Q0.
(For the former statement, one merely needs to recall the relation of the root lattices of
g and g0, and the definitions of the coroots and coweights. The coweight lattice is the
lattice dual to the root lattice.)

7.4.5. The fields of the quiver gauge theory on the D3 branes are a subset of those of
the original Q0 theory which are compatible with folding by H. Let z be the complex
coordinate on the C-plane that supports the D3 branes, and φ(z) a field of the Q0 quiver
gauge theory. The fields must obey

(7.4) φ(e2πiz) = h · φ(z),

where h ·φ denotes the image of φ under the h action on the quiver. The latter action is
trivial for fields that only involve the long roots, corresponding to nodes of the Dynkin
diagram of g0 which are invariant under H. For fields φ that involve the short roots,
coming from fields which transform in orbits of H of length m, the H action organizes
φ(z), h ·φ(z), . . . , hm−1 ·φ(z) into a single field (equal to their sum), which is single-valued
only on the m-fold cover of the C-plane. If w is a coordinate on the cover, z = wm, fields
coming from orbits of H of length m have integer mode expansion in terms of w = z1/m,
but fractional mode expansion in terms of z.

7.4.6. Langlands duality exchanges g and Lg, and roots and coroots, while transposing
the Cartan matrix. Since some define the Cartan matrix to be the transpose of ours, it
is easy to mix-up g and Lg. An unambiguous way to distinguish them is by the lengths
of their roots. While the norm of the inner product (, ) is a matter of convention, the
ratio of the lengths of the roots is not. For example, Bn has one short root, and (n− 1)
long ones, while Cn has (n−1) short roots, and one long one. (Bn and Cn are exchanged
under Langlands duality, while F4 and G2 map to themselves.)

7.5. Conformal limit. The (2, 0) little string is a string theory, containing strings whose
characteristic size is 1/ms. It becomes a point particle theory, the conformal field theory
in 6d with (2, 0) supersymmetry in the limit where one sends ms infinity,

ms → ∞.

We will call this theory theory X , for short. In the conformal limit, we want to keep the
moduli of the (2, 0) theory fixed, since they become the moduli of theory X . We also
want to keep fixed the Riemann surface it is compactified on, and the positions x = ai
of D-branes on it.

In the conformal limit, the gauge theory description of the defects is lost. The inverse
gauge coupling of the defect 3d quiver theory is given by the modulus of the (2, 0) theory
(which has dimensions of mass square) times 1/m4

s. Thus, in the ms to infinity limit,
the gauge coupling becomes infinite. This means that there is no sense in which we can
describe the theory on the defects as a gauge theory.
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8. Vertex functions from physics

The vertex function of Nakajima quiver variety has two closely related, but distinct
physics interpretations. Most directly, they are partition functions of 3d quiver gauge
theory from Section 7 with quiver Q, computed on C×S1

R′ . The gauge theory interpreta-
tion lets one make direct contact with vertex functions both in their defining formulation,
in terms of counting quasimaps C ��� X, and in the integral form of Section 3.

The more far-reaching interpretation, however, is that they are also the partition
functions of g-type (2, 0) little string theory on M6, with codimension four defects, where
the quiver Q captures data of the defect. This explains why vertex functions have
implications for Langlands duality. We will return to this in Section 9.

The two interpretations are related: the partition function of little string theory we
need, turns out to equal the partition function of the theory of its the defects. We will
define the relevant partition functions, explain the mechanism between the equality of
the bulk and the defect partition functions, and show how results of Section 3. emerge
from the 3d gauge theory perspective.

8.1. Little string partition function. The partition function of the g-type (2, 0) little
string on M6 is most easily defined in the T -dual language, using T -duality with respect
to the circle in C.

The dual of the (2, 0) string theory on M6 is the (1, 1) little string on

M ′
6 = C′ × C× C,

where C′ = S1
R′ × R. The (1, 1) string theory is, at low energies, a 6d gauge theory

with maximal supersymmetry, and gauge group based on the Lie algebra g. Its partition
function on M ′

6 is a supersymmetric index

(8.1) Index = Tr(−1)Fg.

The trace is the trace going around the S1
R′ ; F is the fermion number so (−1)F counts

bosons and fermions with signs. The insertion of g in the trace has the effect of turning
M ′

6 into a twisted product: as we go around the S1
R′ , we rotate the two complex planes

C×C by q and t−1, respectively. This is known as the Ω-background, defined by Nekrasov
and studied, e.g., in [75, 88, 92] and in many other papers.

8.1.1. Explicitly, g is the product of generators

(8.2) g = qS−SH × tSH−SV .

We denoted by S the generator of the rotation of the C-plane in M ′
6 which is rotated by

q. SV generates the action that rotates the second C-plane by t−1. SH is the generator
of the U(1) subgroup of SU(2) R-symmetry group of the 6d theory. The R-symmetry
twist is needed for the partition function to preserve supersymmetry.

8.2. Localization to defects. In the absence of defects, the partition function in (8.1)
is trivial. In the presence of defects, it equals the partition function of the theory on the
defects. One simply ends up computing (8.1), restricted to the modes on the defect.

8.2.1. Without any defects on M ′
6, the insertion of g in (8.1) ends up commuting with

four of the sixteen supercharges of the 6d theory. This is too many for the index to receive
non-trivial contributions: the supersymmetries end up relating bosons and fermions in
pairs and their contributions to the index cancel out. To get a non-trivial partition
function one must reduce the supersymmetries by a half. We will achieve this by adding
defect D-branes.15

15The relation of bulk and defect perspective is described in more detail in [2–4,7].
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With defects present, supersymmetry is broken, but only near the defects [97]. Away
from the defects, local physics is that of the (1, 1) little string, compactified on a circle,
with all of its supersymmetries intact. This leads to localization: the only non-trivial
contributions to the partition function can come from modes supported on the defects.
Computing the trace restricted to such modes is the same as computing the partition
function of the theory on the defect. (The notion of localization used here is in its
essence the same mechanism as in the more familiar applications of the term. The defect
is fixed by a linear combination of the supersymmetries in the bulk. See [123] for more
explanation.)

8.2.2. The defects we will use are the D3 brane configurations in Section 7. The quiver
Q which encodes the data of the defects, as in previous section, also encodes the 3d
quiver gauge theory on the defects. T-duality maps D3 branes at points on C in M6 to
D4 branes winding around the S1

R′ in C′ = R×S1
R′ , and at the same points in the radial

direction. The position of D3 branes on S1
R becomes the holonomies of the D4 brane

gauge fields around S1
R′ . T-duality makes it manifest that the gauge theory on these D

branes is a 3d theory on S1
R′ × C, where C is identified with the complex plane in M ′

6

supporting the defect; this is the copy of C which is rotated by q.
(In addition to D3 brane defects, there are other kinds of defects which lead to the

same localization effect. Adding D5 brane defects at points in C and filling C × C, for
example, will lead to Langlands correspondence with ramifications.)

8.3. Defect partition function. The index (8.1), computed in the 3d quiver gauge
theory on the defect, becomes the supertrace over the Hilbert space of the theory on C.
The trace is around the S1

R′ as before. The identification of C with the complex plane
in M ′

6 supporting the defect, determines the action of all the generators of g in the 3d
gauge theory.

8.3.1. From the 3d gauge theory perspective, the interpretation of various factors in g is
as follows. Let � = q/t. Then, (8.2) becomes

g = qS × �−SH × t−SV .

S generates rotation of C, the copy of C that supports the defect. This is a geometric
action from both the bulk and the defect perspective. SV acts as a rotation of a complex
plane transverse to the defect. It becomes an R symmetry generator in the gauge theory.
It corresponds to the U(1) subgroup of SU(2)V R-symmetry that acts on scalars in vector
multiplets. (A complex scalar in the vector multiplet is the position of the D branes on
C−1

t plane.) SH generates the U(1) subgroup of SU(2)H R-symmetry group acting on
hypermultiplet scalars; it generates an R−symmetry both in the bulk and on the defect.

There are factors in g we have refrained from writing out explicitly, to keep the
formulas simpler. The remaining part of parameters come from global U(1) symmetries
of the 3d N = 4 gauge theory. They enter g as the (complexified) holonomies of the
corresponding gauge fields around the S1

R′ . They are associated with the

T× A∨ × C×
q , T = A× C×

�

symmetry of the theory. The symmetries in T are associated to real mass parameters;
A∨ are associated to the real FI parameters. (The parameters in A preserve N = 4
supersymmetry, those in T but not in A break it to N = 2.)
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8.4. Index for non-simply-laced g. In non-simply-laced cases, there is an H-twist
around the complex plane that supports the defect. The trace in (8.1) is the trace over
states invariant under H (they correspond to fields obeying (7.4)). The generator S of
rotations of the plane supporting the defects now has eigenvalues that are integer, and
half integer, multiples of 1/m, where m is the order of H. This is because some of the
modes come back to themselves only upon going around the circle m or 2m times; see
Section 7.4.5. We prefer that only integer and half integer powers of q appear in the
partition function; to achieve this we will replace q by qm, and define g in (8.2) as:

(8.3) g = qmS × �−SH × t−SV ,

where now

(8.4) � = qm/t

for the index to preserve supersymmetry. (The action of S, SH , and SV on the supersym-
metry generators is independent of global identifications we make, so it is not sensitive
to folding by H.) This is the string origin of the identification of parameters in (1.6).

8.5. Vertex functions from 3d gauge theory. The index in (8.1), computed in the
3d N = 4 gauge theory on C × S1 based on the quiver Q, is the vertex function V of X
from (3.26). Then

(8.5) Index = Tr(−1)Fg = V.

The Index is not a function – it is a vector instead, because it is defined in the 3d gauge
theory on S1 ×C, and thus depends on the choice of the vacuum of the gauge theory at
infinity in C = C. We will show momentarily that the vector space it takes values in can
be identified with KT(X).

For a non-simply-laced Lie algebra g, the meaning of the Index is different. It is the
vertex function VH of X0, restricted to H-invariant modes.

The relation between the partition function of 3d gauge theory on C× S1 and vertex
functions of quantum K-theory of its Higgs branch are well known [84,89]. The integral
representation of vertex functions, which we proved in Section 3 are also known in the
physics literature; see for example [15]. We will briefly review the physics perspective on
these.

8.5.1. The 6d little string Hilbert space effectively localizes to the Hilbert space of the 3d
gauge theory on C = C, but even that is much larger than the space of configurations that
end up contributing to (8.1). The index receives contributions only from configurations

that are annihilated by the pair of supersymmetry generators Q, Q
†
, which anti-commute

with (−1)Fg; all others come in pairs related by actions of these generators, and cancel
out from the index. The field configurations which preserve the supersymmetries are
“quasimaps” from C to X. The quasimaps are simply the solutions to vortex equations
on C [84, 124]. In the adiabatic approximation, the supersymmetric path integral of the
3d theory on R × C (with R viewed as time direction) localizes to the supersymmetric
quantum mechanics on the moduli space M = QMnonsing(X) of quasimaps to X; see
[84, 89]. The quasimaps are non-singular at infinity of C: this corresponds to working
with boundary conditions which require the gauge field strength to vanish there. In
addition, finite energy configurations require one to restrict the matter fields to approach
a vacuum at infinity. In a theory deformed by masses, i.e., working equivariantly with
respect to T, the latter corresponds to a fixed point of T-action on X.

In supersymmetric quantum mechanics with a pair of supercharges, the partition
function Tr(−1)F computes the index of the Dirac operator on M. In the present case,
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the supersymmetric quantum mechanics have twice as many supersymmetries: there are
in fact two more supercharges Q,Q† that annihilate the solutions in M, they just fail

to commute with g for generic �. The supercharges Q, Q† and Q, Q
†
are identified

with Dolbeault operators ∂, ∂†, ∂, ∂
†
acting on differential forms on M. The index of

/D = ∂ + ∂
†
operator on M is the holomorphic Euler characteristic of the symmetrized

virtual structure sheaf Ôvir of M in (3.8); see [93] and also [89]. The Ôvir bundle is the
cohomology of the complex generated by the broken supersymmetries Q ∼ ∂ and Q† ∼ ∂†

acting on differential forms on M, obtained by quantizing the collective coordinates of
fermions. The Kähler variables of X come from the (complexified) real FI parameters in
the 3d gauge theory; they lead to grading of quasimap moduli space by the degree.

In practice, we like to think about indices as functions of their parameters, so we want
to extract a particular component of the vector V. This corresponds to picking a specific
vacuum state at infinity. The vacua lie on the T-fixed locus in X; if fixed points p ∈ XT

are isolated, it suffices to restrictM to the moduli space of mapsMp approaching p ∈ XT

at infinity. In that case, KT(X) is spanned by classes of fixed pointsOp. A class inKT (X)
labels the choice of a vacuum state even in more general situations. (More naturally, the
supersymmetric vacua are ground states of effective supersymmetric quantum mechanics
which arise in studying the 3d gauge theory on R × T 2, with T 2 of complex structure
parameter q, with equivariant/mass deformations turned on corresponding to parameters
in T. In this setting, the ground states should be labeled by elements of EllT(X), the
equivariant elliptic cohomology of X. For Nakajima varieties, the ranks of EllT(X) and
KT(X) turn out to be the same, so we will use the latter to label the vacua.)

8.5.2. The second way to compute (8.1), which leads to integral formulas, is simpler in
many respects.

Since a qS factor in g regularizes the non-compactness of C, one can treat the 3d
gauge theory on S1 × C as (gauged) supersymmetric quantum mechanics on the S1,
with discrete spectrum. The computation becomes an elementary exercise in quantum
mechanics (see [84] for more detail): enumerating the fields in the 3d theory, decomposing
each field into modes on C of fixed momentum, and evaluating their contribution to the
trace. For non-simply-laced Lie algebras one includes in the trace only the H-invariant
configurations, obeying (7.4).

It is easiest to start by treating GQ as a global symmetry; gauging it corresponds
to projecting to GQ invariant states, which one can do in the end. In addition, it is
helpful to abelianize the theory, breaking the gauge group GQ to its maximal abelian
subgroup. Then, at the outset, the partition function depends on equivariant parameters
associated with a maximal torus of GQ. These we denoted by x’s elsewhere (and by s
in the appendix and in Section 3) since they come from positions of compact D3 branes
on C. They are also (part of) the Coulomb branch moduli of the 3d gauge theory, so
this computes the partition function from the Coulomb-branch perspective. The index
in (8.1) depends on Kähler moduli of X via the classical FI terms in the Lagrangian. In
the end, since GQ is gauged one integrates over the x’s. The contour is chosen to project
to states which are neutral. This means integrating over

(8.6)

∫
|x|=1

. . . dHaarx

as in Appendix A and Section 3, where dHaarx =
∏

a,α dxa,α/xa,α and the contour is
chosen to pick out contributions independent of x’s. Depending on the values of FI
parameters, one gets to deform the contour, picking up the residues in the process. This
is the GIT quotient from Section 3.
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The contribution to (8.1) of vector multiplets from the ath node of the Dynkin diagram
of g, is

(8.7)
∏
α�=α′

ϕqa(xα,a/xα′,a)

ϕqa(t xα,a/xα′,a)

∏
α<α′

θqa(txα,a/xα′,a)

θqa( xα,a/xα′,a)
;

see [84] for derivation. The one new aspect is the dependence, in non-simply-laced cases,
on whether “a” labels a short, or a long root. Recall that a node corresponding to a
short root of g collects contributions m nodes of g0 which are in a single orbit of H. The
corresponding field configurations come back to themselves only after going around the
origin of the C-plane m times. By contrast, a node corresponding to a long root of g
comes from a node of g0 which comes back to itself going around once. Since q keeps
track of the minimum momentum on the disc, so that only (half-)integer powers of q enter
the partition function, then for “a” a short root qa = q, and for a long root, qa = qm.
This coincides with the Wq,t(g) algebra contributions from screening currents associated
to a single node in (2.22). Similarly, hypermultiplets connecting a pair of distinct nodes
a, b in the Dynkin diagram of g contribute:

(8.8)
∏
α,β

ϕqab
(tvab xα,a/xβ,b)

ϕqab
(vab xα,a/xβ,b)

where vab =
√
qab/t. If either of the nodes a, b is short, qab = q since then the fields that

contribute are single-valued only on the m-fold cover of the disc. If both of the nodes are
long, then qab = qm. This coincides with the two-point functions of screening currents
associated to the distinct pair of nodes a, b, in (2.23). Finally, for each node of the g

Dynkin diagram, the charged fields in fundamental representation contribute

(8.9)
∏
i,α

ϕqa(tva ai,a/xα,a)

ϕqa(va ai,a/xα,a)

where i runs from 1 to rk(Wa), and qa = q for short roots, and qa = qm for the long roots,

and va =
√
qa/t. This coincides with the two-point function, from (2.24), of screening

currents and vertex operators associated to this node.
We have yet to pick a specific vacuum at infinity. In simple cases, this can be done by

changing the contour of integration (to replace the contour in (8.6) by an inequivalent
one, that approaches thimble integrals in q → 1 limit). This is not the most convenient
way to do that, since in general cases construction of such contours becomes difficult.
Instead, it is better to keep the contour of integration fixed to (8.6) and instead realize
the choice of vacua as additional insertions in the integral. They arise as follows.

We treat C = C as a finite disc (since nothing in the computation depends on the area
of C), with boundary. To reproduce the vertex function V, we need to impose Dirichlet
boundary conditions on the gauge fields, and place the conditions on the matter fields
to localize them to a component of XT at the boundary. Instead of imposing boundary
conditions by hand, we couple the 3d theory to a 2d theory at the boundary, and integrate
over all the fields with no restrictions (for examples, see [24]). Due to couplings in (8.1)
the boundary theory has only (0, 2) supersymmetry. The contribution of the elliptic
genus of the boundary theory to the partition function leads to an additional insertion
of (3.31)

F (x)/θ(T 1/2) = F ′(x),

in the integral; see (3.32). The condition, from (3.31), that F ′(x) is invariant under
x �→ qdx says that the boundary theory has no gauge anomalies. While there are many
different theories that can be coupled consistently (any anomaly free (0, 2) theory would
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do), there is a finite-dimensional space of distinct non-trivial contributions they could
give rise to, parametrized by classes in EllT(X).

8.5.3. The vertex functions V lead solutions of qKZ which are holomorphic in z, per
construction. We get a second basis of solutions to the same equation, which we de-
noted VC, which are holomorphic in a chamber C of mass/equivariant parameter space,
corresponding the choice of ordering of defects on C. The vertex functions VC and V
solve the same set of difference equations in equivariant (and Kähler variables) since they
originate from the same 3d gauge theory on C × S1. Correspondingly, the matrix PC

relating them

(8.10) VC = V PC

is a matrix of pseudo-constants. Theorem 4 of [5], gives the matrix elements of PC in
terms of elliptic stable envelopes of X.

The change of basis in (8.10) corresponds to imposing different conditions on the fields
of the 3d theory at the ∂(C ×S1) = T 2 boundary. We can in principle impose boundary
conditions leading to VC in the same way as we did for V, by coupling the 3d theory
to a 2d theory on the boundary. This time the coupling, among other things, has an
effect of imposing Neumann boundary conditions on the gauge fields. Having picked the
chamber C, the stable basis leading to a-solutions of qKZ in this chamber is unique [5].
Here, we will only sketch some salient features of its construction.

To obtain a component of the covector VC, one starts by picking a component of the
A-fixed point set XA ⊂ X. The boundary conditions on matter fields parametrizing
directions transverse to the fixed locus are either Neumann or Dirichlet boundary con-
ditions depending on whether they correspond to attracting or repelling directions; this
depends on C. The rest of the boundary theory is determined by cancellation of gauge
anomalies. More precisely, the choices left to make are parametrized by equivariant el-
liptic cohomology classes of the corresponding fixed point locus. The elliptic genus of
the boundary theory leads to a contribution to the integral which now takes the form

(8.11) F (x)/θ(T 1/2) → StabellC (x, z) e(z)−1/θ(T 1/2) .

(See Sec. 6.3. of [5] for a more precise statement.) Here Stabell are elements of the
elliptic stable basis, which assign, to every class in EllT(XA) a class in EllT(X),

StabellC (X) : EllT(XA) −→ EllT(X).

Per definition, the right hand side is invariant under x �→ qdx: the automorphy of
the elliptic genus of the boundary theory cancels the bulk contribution coming from

e(z) = exp
(

λ(z,x)
ln q

)
. This reflects the contribution of boundary degrees of freedom

to the anomaly which cancels the anomaly the bulk theory has, in the presence of T 2

boundary. Since the right hand side is constant under x �→ qdx in computing the integral
by residues,

(8.12) PC(x) = StabellC (x) e(z, x)−1/θ(T 1/2)

acts like a matrix of constants, so VC is related to V by a linear operator PC in (8.10),
obtained by evaluating (8.12) on classical vacua.

The matrix PC in (8.10) itself has a gauge theory interpretation. The partition func-
tion of the 3d gauge theory on I×T 2 with Neumann-type boundary conditions that lead
to a-solutions are imposed on one end of I, and those for Dirichlet-type z-solutions on
the other. The supersymmetric partition function does not depend on the size of the
interval, and shrinking it to zero, one gets an effective 2d gauge theory on T 2 with (0, 2)
supersymmetry. The entries of the matrix PC are elliptic genera of the resulting theories.
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8.5.4. Vertex functions with descendants correspond to placing line operators at 0 ⊂ C,
winding around the S1. The line operators one needs can be constructed geometrically
as well; see [6], in terms of the K-theoretic stable basis StabK . The later is a q → 0
limit of the elliptic stable basis. One can make use of this fact to obtain its gauge
theory construction: first cut open a neighborhood of 0 ⊂ C, and impose the boundary
conditions corresponding to elliptic stable basis. Then, shrinking the boundary back to
a point has the same effect as taking q to zero. The elliptic genus of the boundary theory
becomes a line operator insertion – this is the supersymmetric partition function on S1

of the resulting quantum mechanics problem. Inserting the line operator, in the integral
(8.6) takes V and VC to fundamental z- and a-solutions of qKZ.

8.6. Conformal limit. The variables q, t, � are related to the parameters of the Ω-
background as

(8.13) q = exp(R′εq), t = exp(R′εt), � = exp(R′ε�).

In the conformal limit, point particle limit, we send ms → ∞ and we keep ε’s fixed, since
they are part of the definition of the background the (2, 0) theory is compactified on. For
the same reason, we keep the Riemann surface C fixed. This means the radius R of the
circle in C must stay fixed, and hence the T -dual radius

R′ = 1/(m2
sR) → 0

goes to zero in the limit. Since R′ goes to zero, with ε’s fixed, we recover (2.6) and (2.25).
The positions of the points on the Riemann surface are fixed as well, but the z’s have

to scale to 1 to keep the moduli of the (2, 0) theory fixed in the limit. Namely,

(8.14) z = exp(R′ζ) = qμ

where ζ is the 3d FI parameter complexified by the holonomy of the corresponding
background gauge field around the S1. It follows from its string theory origin that
Re(ζa) is R times the modulus of the (2, 0) theory, and both of these we need to fix in
the limit. This implies that Re(R′ζa) goes to zero in the conformal limit, and hence z
goes to 1. The rate at which z goes to one is fixed, however, so μ defined by (8.14)
remains fixed.

9. Langlands correspondence from little strings

It has been known for a long time that geometric Langlands correspondence should be
a consequence of S-duality of the maximally supersymmetric N = 4 Yang-Mills theory
[65, 125, 129]. While some aspects of S-duality can be understood within the gauge
theory, and many more from theory X , to derive S-duality one needs string theory. This
was shown in [119], and reviewed recently in [11].

In this section we will recall the derivation of S-duality from little string theory, as
well as the expected relation between S-duality of the N = 4 theory and the geometric
Langlands. The fact that one is able to derive S-duality from little string theory offers
an explanation why one can derive (quantum) geometric Langlands from it.

9.1. S-duality of 4d Yang-Mills theory. S-duality relates Yang-Mills theories with
N = 4 supersymmetry and gauge groups based on Lie algebras g and Lg,

(9.1) S : (Lg, Lτ) ←→ (g, τ ).

The gauge coupling parameters are related by

(9.2) mτ Lτ = −1,
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where τ is given by τ = θ
2π +i 4π

g2
Y M

in terms of the Yang-Mills coupling constant gYM and

the θ angle. The theory with Lie algebra g has in addition a symmetry T corresponding
to the 2π shift of the theta angle16

T : (g, τ ) → (g, τ + 1),

which maps the theory to itself for any g. The action of the S and T on the particles of
the theory is always non-trivial.

9.2. Derivation of S-duality from little string theory. Start with IIB string on

(9.3) (Y0 × S1
q × S1

t )/H ×M4,

where Y0 is an ADE surface corresponding to a g0 Lie algebra, as in Section 7, and S1
q ,

S1
t are a pair of circles (the subscripts are there to distinguish them). The H-twist acts

by folding the Dynkin diagram of g0, in going once around S1
q . Nothing in what follows

depends on the value of the string coupling, so we can take gs to zero to get the g0 little
string theory on S1

q × S1
t ×M4, with the H-twist.

We would like to understand which 4d theory we get when we send to zero the charac-
teristic size of the string 1/ms and the area of the two torus T 2 = S1

q ×S1
t . The resulting

theory can be derived using T -duality symmetry of string theory [119].
T -duality on the S1

t circle leads to the description based on N = 4 SYM theory with
Lie algebra g. The description based on Lg follows from T -duality on the S1

q circle,
instead. The more weakly coupled description comes from T -duality on the smaller of
the two circles.

9.2.1. T -duality on the S1
t circle relates IIB string on (9.3) to IIA string on

(9.4) (Y0 × S1
q × S1

t′)/H ×M4.

The two string theories are equivalent once we exchange the momentum and the winding
modes around the S1

t . Y0 is the same ADE surface as in (9.3), and the H-twist is on
S1
q . If Rq and Rt are the radii of S1

q and S1
t circles, respectively, then S1

t′ is a circle of

radius Rt′ = 1/(Rt m
2
s). At the singularity in IIA theory we get the (1, 1) little string

theory, as described in Section 7. This theory has a 6d gauge symmetry, with gauge
group based on g0 Lie algebra; its gauge coupling parameter is m2

s [107]. Presently, the
(1, 1) little string is compactified on the two-torus (S1

q × S1
t′)/H times M4, where the

H-twist around S1
q permutes the fields of the gauge theory according to the action of H

on the Dynkin diagram of g0. The theta angle originates from the NS B-field on the
two-torus; its periodicity results in the symmetry T we had before.

Starting with the gauge theory in six dimensions with (1, 1) supersymmetry, in the
limit we take the area of the two-torus to zero, and ms to infinity, we get a 4d gauge
theory on M4 with N = 4 supersymmetry, gauge group based on g, and coupling τ =
im2

sRqRt′ = iRq/Rt. This follows by restricting the fields of the 6d gauge theory to
constant (zero momentum) modes around the T 2; these are the only excitations whose
energy remains finite as the size of the torus goes to zero.

9.2.2. It was shown in [119] that T -duality on S1
q circle relates IIB string on (9.3) to IIA

string on

(9.5) (LY0 × S1
q′ × S1

t )/
LH ×M4,

with twist by LH, going around S1
q′ circle once. Here LY0 is the ADE singularity based

on a simply-laced Lie algebra Lg0. The Lie algebra Lg0 has outer automorphism group

16This assumes the normalization of the invariant metric on g we have chosen—the one in which the
short coroots of g have length squared equal to 2; see [11,29].
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LH, such that by projecting to its LH invariant part we get Lg, the Lie algebra which
is the Langlands dual of g. The radius of S1

q′ is Rq′ = 1/(mRq m
2
s). The factor of m

comes about due to the H-twist on the original circle in IIB: the momentum on S1
q is

quantized in units of 1/(mRq) since all modes come back to themselves only after going
m times around S1

q . Hence, the strings wound on the T -dual circle S1
q′ must have masses

quantized in units of m2
s Rq′ = 1/(mRq).

The (1, 1) little string theory one gets by decoupling the modes far from the singularity
in IIA theory now has the low energy description as a 6d maximally supersymmetric gauge
theory based on the Lg0 Lie algebra. The 4d theory on M4, which we get in the limit of
the area as the two-torus goes to zero, has N = 4 supersymmetry, gauge group based on
Lg, and coupling Lτ = im2

sRtRq′ = iRt/(mRq). In particular, τ and Lτ are related by
(9.2).

9.2.3. In principle, in addition to the Lie algebra, one should specify the global form
of the gauge group on each side in (9.1). This corresponds to specifying the allowed
representations of electrically charged fields, a character sublattice of the weight lattice
of Lg; its dual lattice is the character lattice of g; see [60] for review. In this paper, we
will allow for the most general choice of electric charges for Lg, choosing the character
and weight lattices to coincide. This implicitly sets LG to be the simply connected group
with Lie algebra Lg. The dual group G then is of adjoint-type, as its weight lattice is
equal to its root lattice.

9.3. Gauge theory partition function from little string. We showed that partition

functions of (2, 0) 6d theory on M×
6 and M6 compute the conformal blocks of L̂gLk and

Wβ(g) (in the conformal limit of our results). The relation of (2, 0) 6d theory to the
pair of N = 4 gauge theories with gauge groups based on Lg and g then implies that
conformal blocks are the partition functions of these gauge theories, in the background
induced from their six dimensional origin.

This leads to an explicit relation between the S-duality of N = 4 gauge theories in
four dimensions and the conformal field theory approach to geometric Langlands, which
we reviewed in Section 6. We will describe some essential aspects (see also Sec. 8 of
[54]), leaving a more detailed analysis for future work.

9.3.1. Consider g0-type (2, 0) little string theory compactified on a six-manifold

M×
6 = C × (C× C×)/H,

with an H-twist around C×. M×
6 differs from M6 in (1.17) by having the origin of

one of the complex planes deleted. This is merely a convenient choice made for ease of
discussion. Working with M×

6 leads to partition functions which compute vector-valued
q-conformal blocks, instead of scalar ones we get from M6. The converse is that closing
up the puncture, and thereby replacing M×

6 with M6, corresponds to contraction of the
vector-valued partition function with the Whittaker-type vector in (1.10).

The six-manifold M×
6 is a T 2 = S1

t × S1
q fibration

(9.6) T 2 → M×
6 → M4 = C ×B.

As we go once around the S1
q circle, viewed as the circle fiber of C×, we twist by H; the

fiber of C is S1
t . T -duality of little string theory on the S1

t or on the S1
q circle fiber leads

to two distinct descriptions of the 4d theory on M4, as we reviewed in Section 9.2: the
first leads to the N = 4 SYM theory based on gauge group g, the second based on Lg.

The base M4 is a manifold with a boundary, since B = R × R+. The boundary
conditions [54, 65] for the two 4d gauge theories we need are defined by recalling their
origin from the 6d (2, 0) theory on M×

6 , which is a six-manifold without boundaries [127].
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9.3.2. We studied the supersymmetric partition function of the (2, 0) little string theory
on M×

6 in Section 8. In the conformal limit, the partition function we defined in Section
8 becomes the partition function of the (2, 0) 6d conformal field theory on C times the
4d Ω-background on C× C×, or on C× C if we replace M×

6 by M6.
It was argued in [92] that placing the (2, 0) 6d CFT theory on C times a 4d Ω-

background leads to partition functions of the two S-dual N = 4 theories on M4 with
topological twist of geometric Langlands-type, studied in [65].

Further, [92] explained how to relate the parameters of Ω-background to the effective
coupling constant of the gauge theory. One uses the fact that, asymptotically and locally,
far away from the fixed points of rotations by C×

t and C×
q , M6 is a flat manifold. There, all

effects of topological twisting go away and the Ω-background parameters of the twisted
theory are identified17 with the inverse radii of the two S1’s in T 2 = S1

q × S1
t in the

undeformed gauge theory: εt = 2π/Rt and εq = 2π/(imRq).
Putting our results together with those of [92], we find the following.

9.3.3. The chiral conformal block of Wβ(g), corresponds to the partition function of 4d
SYM theory with gauge group based on g and coupling (see Section 9.2.1)

(9.7) τ = εt/mεq = β/m,

which one gets from (2, 0) theory on M6. One wants to work with M6 rather than M×
6

here since the Wq,t(g) algebra blocks from (1.9) are naturally scalar.
This relation follows from AGT correspondence [8], and was used in [92]. It also

follows from our results (and from [2]) by taking the conformal limit.

9.3.4. The chiral conformal blocks of L̂gLk correspond to YM theory with gauge group
Lg and coupling parameter Lτ given by (see Section 9.2.2)

(9.8) Lτ = εq/ε� = −L(k + h).

It follows when we place the theory on M×
6 .

This relation to WZW models was predicted in [95] nearly 20 years ago. The (2, 0)
conformal field theory on any three-manifold M3 times C×S1

q is expected [95] to compute

the partition function of Chern-Simons theory based on Lg Lie algebra, on M3. In the
present case, this applies with M3 = C ×R. For non-simply-laced Lg, one starts with the
g0 type (2, 0) theory, and introduces the twist by H [127], just as we did.

In the construction of [95], the level L(k + h∨) of Chern-Simons theory is determined
by the parameter q′ arising geometrically from the Ω-background on C × S1

q . To get

Chern-Simons theory at level Lk from (2, 0) theory on M3 × C × S1
q , we rotate C by

q′ = exp( 2πi
L(k+h∨) ) as we go around S1

q , and accompany the rotation with an R-symmetry

twist.
We can apply this here, with one subtle point. Namely, we need ε� not −εt to be the

Ω-background that rotates the complex plane (the two are related by ε� = εq−εt). This is
related to the fact that since C× is a cylinder, the topological twist on it is trivial. We only
need the R-symmetry twist with parameter ε�, from Section 8, which gets compensated
by a twist of the C-plane in M×

6 by ε�. Altogether, we find q′ = exp(−mRq · ε�), and
since imRq = 2π/εq, (9.8) follows.

17Our conventions for ε’s are set in Section 8 and in (8.6) and they differ from those in [92] by factors
of 2π.
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9.3.5. Since mεq = εt + ε�, we have that the two theories are related by

τ − 1 = −1/(mLτ ),

as in (1.3). This is the action of S-duality, together with the shift of the θ angle in the
g-theory.

9.4. Little string defects and line operators in gauge theory. In the (2, 0) theory
on M×

6 , we have defects supported on C×
q , labeled by collection of weights of Lg. These

defects, which originate as D3 branes of IIB wrapping 2-cycles of Y0, are self-dual strings
of the (2, 0) theory. (The self-dual strings are strings present both in the (2, 0) little
string theory, and in theory X . They are distinct from fundamental strings of little
string theory, which are not present in theory X .)

Reducing the 6d (2, 0) theory on T 2 to N = 4 theory on M4 = C × Rq × R+
t , the

self-dual strings supported on S1 ⊂ T 2 become particles on M4. We have that particles
are supported at a collection of points on C, with coordinates {ai}, and charges which
are labeled by weights of Lg. They are located at the tip of R+

t , and their world lines are
along the “time” direction Rq. Presence of such particles affects the partition function
of the 4d theory by insertion of line operators. Which line operator we get depends on
the N = 4 gauge theory description one uses.

9.4.1. In the N = 4 theory description based on Lg, the self-dual string of the 6d theory
supported on C×

q becomes the Wilson line operator. Namely, when we view the T 2

compactification of theory X as a two step reduction, reducing on S1
q ∈ C×

q first, the self-
dual string defects become particles already in five dimensions, electrically charged under
Lg-valued gauge field. Reducing further on S1

q , we get the Wilson lines of N = 4 theory
on M4. This is as expected from our description, in Subsection 2.1, of the conformal
blocks we study. Namely, the Wilson line operators of the Yang-Mills theory become

Wilson line operators of L̂g Chern-Simons theory and the corresponding WZW model.

9.4.2. In the N = 4 theory based on g, the same strings give rise to ’t Hooft line
operators. Compactifying theory X on S1

t , we get a 5d gauge theory with strings; the
strings are charged under the magnetic dual of the g-valued 5d gauge field, a 2 form.
After further compactifying on S1

q they become magnetically charged particles; their
world lines introduce t’Hooft line operators in M4. The ’t Hooft line operators are
labeled by coweights of g and hence by weights of Lg. The effect the line operator in
the g gauge theory is described by how they affect the boundary conditions at the tip of
R+

t . In the limit when the gauge theory become classical, [54] argued that the boundary
conditions one gets are described in terms of g opers. This agrees with what we find,
since opers describe the classical limit of Wβ(g) algebra conformal blocks of our paper.

Appendix A. Integral formulas in K-theory of GIT quotients

Let a reductive group G act on a variety X̃ and let L be a very ample G-linearized

line bundle on X̃. The GIT quotient

(A.1) X = X̃////LG = Proj

(⊕
n

H0(X̃,L ⊗n)G

)
is the categorical quotient of the set of semistable points

X̃ss = {x ∈ X̃, ∃s ∈ H0(X̃,L ⊗n)G, s(x) �= 0}
by the action of G. We denote by

πGIT : X̃ss → X
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the canonical affine morphism.

A.0.1. Let F̃ be a G-equivariant coherent sheaf on X̃. It induces a coherent sheaf F on
X by

Γ(U,F ) = Γ(π−1
GIT(U), F̃ )G .

In particular, L itself induces the canonical line bundle O(1) on X.
Our interest is in the computation of χ(X,F ) in terms involving the prequotient

X̃. This is the value of the quasipolynomial χ(X,F (m)) at m = 0, where F (m) =
F ⊗ O(m). By definition, a quasipolynomial in m is an element of a ring of the form

Q[m, a±m
1 , a±m

2 , . . . ] ,

where the parameters ai may be roots of unity or weights of a group of automorphisms
of X.

A.0.2. There is the following basic lemma.

Lemma 3. For m � 0,

(A.2) χ(X,F (m)) = χ(X̃, F̃ ⊗ L m)G .

A more general formula, valid without the m � 0 assumption, follows from the results
of Teleman [117]; see also [130] and [61].

Proof. Since L is ample, we have

χ(X,F (m)) = Γ(X,F (m)) = Γ(X̃ss, F̃ ⊗ L m)G

for m � 0. Therefore, it suffices to see that the natural restriction map

(A.3) Γ(X̃, F̃ ⊗ L m)G → Γ(X̃ss, F̃ ⊗ L m)G

is an isomorphism for m � 0. The spaces in the source and the target in (A.3) form a

module over the graded algebra in (A.1). The sheaf F̃ is coherent and the line bundle
L is ample, hence for sufficiently large r and d there is a map(

L −d
)⊕r → F̃

inducing a surjection

Γ(X,L m−d)⊕r → Γ(X, F̃ ⊗ L m) → 0

for m � 0. Because G is reductive, we get a surjectivity for G-invariant sections and so
the modules in question are finitely generated. Therefore,⊕

d≤D

Γ(X̃,L m−d)G ⊗ Γ(X̃, F̃ ⊗ L d)G → Γ(X̃, F̃ ⊗ L m)G → 0

where D is the maximal degree of a generator, and similarly for X̃ss in place of X. Since

all sections in Γ(X̃ss⊗L m)G extend by zero to X̃, the isomorphism in (A.3) follows. �
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A.0.3. From now on we assume there is a torus

T ⊂ AutG(X̃)

acting on L and F that contracts X̃ to a proper G-invariant set as t → 0T, where 0T
is a point in a toric compactification of T. This is the case, for example, when X̃ is
a linear representation of G, or the zero locus of a moment map in a linear symplectic
representation of G. The additional T-grading makes the trace

(A.4) trΓ(X̃,F̃⊗L m)(g, t) ∈ Q(G× T)

converge for |t| � 1 to a rational function. Here |t| � 1 means that t−1 lies in a certain
neighborhood of 0T and in that region the poles of (A.4) are disjoint from any fixed
maximal compact subgroup Gcompact ⊂ G. Therefore

trΓ(X̃,F̃⊗L m)G t =

∫
Gcompact

trΓ(X̃,F̃⊗L m)(g, t) dHaarg

=
1

|W |

∫
|s|=1

ΔWeyl(s) trΓ(X̃,F̃⊗L m)(s, t) dHaars(A.5)

for |t| � 1, where

W is the Weyl group of G,

{|s| = 1} ⊂ Gcompact is a maximal torus,(A.6)

ΔWeyl(s) is the Weyl denominator ,

and the Haar measures are normalized to have total mass 1.

A.0.4. We denote by S ⊂ G the complexification of the torus in (A.6). By localization,

(A.7) trΓ(X̃,F̃⊗L m)(s, t) =
∑
k

pk(s, t)∏
(1− w−1

k,i )
νmk

where the sum in (A.7) is over the components F̃k of the fixed locus

X̃S×T =
⊔

F̃k ,

pk are certain Laurent polynomials in s and t, the characters νk are the S × T-weights
of L restricted to the components of the fixed locus, and wk,i are the weights in the
denominators of the localization formula (i.e., normal weights to the fixed locus in some

ambient smooth equivariant embedding of X̃).

A.0.5. The integral in (A.5) may be computed by residues as follows. By linearity, it
suffices to deal with each term in (A.7) separately. If νk

∣∣
S
is a trivial character, then∫

|s|=1

. . . νmk dHaars = νmk

∫
|s|=1

. . . dHaars ,

which is tautologically a quasipolynomial in m.
If νk

∣∣
S
is a non-trivial character, then we deform the integration contour {|s| = 1}

to the region |νk| � 1 in S while picking up residues in the process. These residues are
integrals of the same form over translates of codimension one subtori in S, and so we can
deal with them inductively.

The resulting quasipolynomial in m computes the quasipolynomial χ(X,F (m)).
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A.0.6. For the most basic example, we can take G = GL(1) acting with weight one on
Cn and L = OCn(k), where the twist is by the kth power of the defining representation.
Then

Γ(L m)G = polynomials of degree km ,

and so

X =

⎧⎪⎨⎪⎩
Pn−1, k > 0 ,

pt, k = 0 ,

∅ , k < 0 ,

or, taking polarization into account, X is the kth Veronese embedding of Pn−1 for k > 0.
We can take T = A, where

(A.8) A =

⎧⎪⎨⎪⎩
⎛⎜⎝a1

. . .

an

⎞⎟⎠
⎫⎪⎬⎪⎭ ⊂ GL(n) ,

which gives normal weights wi = sai, i = 1, . . . , n at the unique fixed point 0 ∈ Cn.
Therefore, we get the integral

χ(X,O(m)) =
1

2πi

∫
|s|=1

skm∏
(1− a−1

i s−1)

ds

s
, |ai| > 1 ,

which may be computed by deforming the contour to |s| = ε±1, depending on the sign
of k.

A.0.7. Of importance to us will be the special case when L is twisted by a large power
of a non-trivial G-character χ. In this case, we can start the analysis of (A.5) with
deforming the contour into the region |χ| � 1.

We denote by

S◦ =
{
s
∣∣∣ ∀wk,i, wk,i �= 1

}
⊂ S

the regular locus of the integrand. The homology groups of S◦ have been studied in
detail; see [28]. In particular, non-canonically,

(A.9) H∗(S
◦,C) =

⊕
S′

H∗(S
′,C)⊗H∗(NS/S′ \ {hyperplanes},C)

where S′ ranges over the components of all possible intersections of {wk,i = 1}, and
hyperplanes in the (trivial) normal bundle NS/S′ to S′ are cut out by the differentials
of the characters wk,i trivial on S′. Since all homology groups vanish above the middle
dimension, we have

(A.10) Hmid(S
◦,C) =

⊕
S′

Hmid(S
′,C)⊗Hmid(NS/S′ \ {hyperplanes},C) .

For the computation of the integral, we are interested in homology relative to the
subset |χ| � 1, and for those we conclude

(A.11) Hmid(S
◦, {|χ| � 1},C) =

⊕
S′,χ
∣∣
S′
=const

same as in (A.10) ,

which parallels the computation by residues discussed in Section A.0.5. We set

(A.12) γχ = image of {|s| = 1} in LHS of (A.11) .

As a middle-dimensional cycle, it is represented by products of a maximal compact torus
in S′ with a middle-dimensional cycle in a certain hyperplane arrangement. We conclude
the following.
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Proposition 5. If L is twisted by a sufficiently large power of a character χ, then

(A.13) χ(X,F (m)) =
1

|W |

∫
γχ

ΔWeyl(s) trχ(X̃,F̃⊗L m)(s, t) dHaars

for m � 0, and for all m if dim S′ = 0 for all S′ in (A.11).

If dimS′ > 0 for a certain S′ in (A.11), then the corresponding integral needs to be
treated as in Section A.0.5 to pick the right quasipolynomial in m.

An important special case when one can be sure that dim S′ = 0 for all S′ in (A.0.5)
is the case of Nakajima quiver varieties. More generally, we have the following simple
lemma.

Lemma 4. Suppose G =
∏

GL(Vi) and

{wk} = weights of Vi, V
∗
i , and Vi ⊗ V ∗

j ,

where i, j = 1, . . . , n. Then a generic character χ of G is non-trivial on every component
S′ of {wk1

= · · · = wkl
= 1} of positive dimension.

Proof. This is equivalent to the differential dχ being in the span of dwk1
, . . . , dwkl

if and
only if this span is the whole space. The generic character is not in the span of weights
of Vi⊗V ∗

j and so at least one fundamental or the dual fundamental weight has to appear
among wki

. We can then argue modulo this weight and induct on
∑

dimVi. �
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