## Symmetric differential operators of fractional order and their extensions

HTML articles powered by AMS MathViewer

- by
N. E. Tokmagambetov and B. T. Torebek

Translated by: Christopher D. Hollings PDF - Trans. Moscow Math. Soc.
**2018**, 177-185 Request permission

## Abstract:

This paper is devoted to the description of symmetric operators and the justification of Green’s formula for a fractional analogue of the Sturm–Liouville operator of order $2\alpha$, where $\frac {1}{2}<\alpha <1$.## References

- A. A. Dezin,
*Obshchie voprosy teorii granichnykh zadach*, “Nauka”, Moscow, 1980 (Russian). MR**596223** - V. I. Gorbachuk and M. L. Gorbachuk,
*Granichnye zadachi dlya differentsial′no-operatornykh uravneniĭ*, “Naukova Dumka”, Kiev, 1984 (Russian). MR**776604** - Qasem M. Al-Mdallal,
*On the numerical solution of fractional Sturm-Liouville problems*, Int. J. Comput. Math.**87**(2010), no. 12, 2837–2845. MR**2728212**, DOI 10.1080/00207160802562549 - Tomasz Blaszczyk and Mariusz Ciesielski,
*Numerical solution of fractional Sturm-Liouville equation in integral form*, Fract. Calc. Appl. Anal.**17**(2014), no. 2, 307–320. MR**3181056**, DOI 10.2478/s13540-014-0170-8 - Łukasz Płociniczak,
*Eigenvalue asymptotics for a fractional boundary-value problem*, Appl. Math. Comput.**241**(2014), 125–128. MR**3223415**, DOI 10.1016/j.amc.2014.05.029 - Hassan Khosravian-Arab, Mehdi Dehghan, and M. R. Eslahchi,
*Fractional Sturm-Liouville boundary value problems in unbounded domains: theory and applications*, J. Comput. Phys.**299**(2015), 526–560. MR**3384739**, DOI 10.1016/j.jcp.2015.06.030 - Jing Li and Jiangang Qi,
*Eigenvalue problems for fractional differential equations with right and left fractional derivatives*, Appl. Math. Comput.**256**(2015), 1–10. MR**3316043**, DOI 10.1016/j.amc.2014.12.146 - M. M. Džrbašjan,
*A boundary value problem for a Sturm-Liouville type differential operator of fractional order*, Izv. Akad. Nauk Armjan. SSR Ser. Mat.**5**(1970), no. 2, 71–96 (Russian, with Armenian and English summaries). MR**0414982** - A. M. Nahušev,
*The Sturm-Liouville problem for a second order ordinary differential equation with fractional derivatives in the lower terms*, Dokl. Akad. Nauk SSSR**234**(1977), no. 2, 308–311 (Russian). MR**0454145** - T. S. Aleroev,
*The Sturm-Liouville problem for a second-order differential equation with fractional derivatives in the lower terms*, Differentsial′nye Uravneniya**18**(1982), no. 2, 341–342, 367 (Russian). MR**649679** - Anatoly M. Sedletskii,
*On zeros of Laplace transform of finite measure*, Integral Transform. Spec. Funct.**1**(1993), no. 1, 51–59. MR**1421434**, DOI 10.1080/10652469308819008 - I. V. Ostrovskiĭ and I. N. Peresyolkova,
*Nonasymptotic results on distribution of zeros of the function $E_\rho (z,\mu )$*, Anal. Math.**23**(1997), no. 4, 283–296 (English, with Russian summary). MR**1629981**, DOI 10.1007/BF02789843 - M. M. Malamud and L. L. Oridoroga,
*On some questions of the spectral theory of ordinary differential equations of fractional order*, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki**9**(1998), 39–47 (English, with Ukrainian summary). MR**1704850** - T. S. Aleroev,
*On the eigenvalues of a boundary value problem for a fractional-order differential operator*, Differ. Uravn.**36**(2000), no. 10, 1422–1423, 1440 (Russian, with Russian summary); English transl., Differ. Equ.**36**(2000), no. 10, 1569–1570. MR**1838493**, DOI 10.1007/BF02757400 - A. Yu. Popov,
*On the number of real eigenvalues of a boundary value problem for a second-order equation with a fractional derivative*, Fundam. Prikl. Mat.**12**(2006), no. 6, 137–155 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.)**151**(2008), no. 1, 2726–2740. MR**2314136**, DOI 10.1007/s10948-008-0169-7 - A. V. Agibalova,
*On the completeness of systems of root functions of a fractional-order differential operator with matrix coefficients*, Mat. Zametki**88**(2010), no. 2, 317–320 (Russian); English transl., Math. Notes**88**(2010), no. 1-2, 287–290. MR**2867057**, DOI 10.1134/S0001434610070266 - T. S. Aleroev and Kh. T. Aleroeva,
*On a class of nonselfadjoint operators concomitant to differential equations of fractional order*, Izv. Vyssh. Uchebn. Zaved. Mat.**10**(2014), 3–12 (Russian, with English and Russian summaries). MR**3379574** - Małgorzata Klimek, Tatiana Odzijewicz, and Agnieszka B. Malinowska,
*Variational methods for the fractional Sturm-Liouville problem*, J. Math. Anal. Appl.**416**(2014), no. 1, 402–426. MR**3182768**, DOI 10.1016/j.jmaa.2014.02.009 - L. M. Eneeva,
*A boundary value problem for a differential equation with derivatives of fractional order with different origins*, Vestnik KRAUNTS. Fiz.-Mat. Nauki (2015), no. 2(11), 39–44 (Russian); English translation: Bulletin KRASEC. Phys. Math. Sci.**11**(2) (2015), 36–40. - M. Klimek and O. P. Agrawal,
*Fractional Sturm-Liouville problem*, Comput. Math. Appl.**66**(2013), no. 5, 795–812. MR**3089387**, DOI 10.1016/j.camwa.2012.12.011 - L. M. Isaeva and T. S. Aleroev,
*Qualitative properties of the one-dimensional fractional differential equation of advection-diffusion*, Vestnik MGSU**7**(2014), 28–33 (Russian). - Mohsen Zayernouri and George Em Karniadakis,
*Discontinuous spectral element methods for time- and space-fractional advection equations*, SIAM J. Sci. Comput.**36**(2014), no. 4, B684–B707. MR**3240858**, DOI 10.1137/130940967 - M. Klimek,
*2D space-time fractional diffusion on bounded domain — Application of the fractional Sturm–Liouville theory*, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, 2015, pp. 309–314. - Liangliang Qiu, Weihua Deng, and Jan S. Hesthaven,
*Nodal discontinuous Galerkin methods for fractional diffusion equations on 2D domain with triangular meshes*, J. Comput. Phys.**298**(2015), 678–694. MR**3374572**, DOI 10.1016/j.jcp.2015.06.022 - Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev,
*Fractional integrals and derivatives*, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikol′skiĭ; Translated from the 1987 Russian original; Revised by the authors. MR**1347689** - A. M. Nakhushev,
*Fractional calculus and its application*, Fizmatlit, Moscow, 2003 (Russian). - Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo,
*Theory and applications of fractional differential equations*, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. MR**2218073** - M. A. Naĭmark,
*Lineĭ nye differentsial′nye operatory*, Izdat. “Nauka”, Moscow, 1969 (Russian). Second edition, revised and augmented; With an appendix by V. È. Ljance. MR**0353061** - Michael Ruzhansky and Niyaz Tokmagambetov,
*Nonharmonic analysis of boundary value problems*, Int. Math. Res. Not. IMRN**12**(2016), 3548–3615. MR**3544614**, DOI 10.1093/imrn/rnv243 - Julio Delgado, Michael Ruzhansky, and Niyaz Tokmagambetov,
*Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary*, J. Math. Pures Appl. (9)**107**(2017), no. 6, 758–783 (English, with English and French summaries). MR**3650324**, DOI 10.1016/j.matpur.2016.10.005 - M. Ruzhansky and N. Tokmagambetov,
*Nonharmonic analysis of boundary value problems without WZ condition*, Math. Model. Nat. Phenom.**12**(2017), no. 1, 115–140. MR**3614589**, DOI 10.1051/mmnp/201712107 - Baltabek Kanguzhin and Niyaz Tokmagambetov,
*The Fourier transform and convolutions generated by a differential operator with boundary condition on a segment*, Fourier analysis, Trends Math., Birkhäuser/Springer, Cham, 2014, pp. 235–251. MR**3362022** - Baltabek Kanguzhin, Niyaz Tokmagambetov, and Kanat Tulenov,
*Pseudo-differential operators generated by a non-local boundary value problem*, Complex Var. Elliptic Equ.**60**(2015), no. 1, 107–117. MR**3295092**, DOI 10.1080/17476933.2014.896351

## Additional Information

**B. T. Torebek**- Affiliation: Institute of Mathematics and Mathematical Modeling, Al-Farabi Kazakh National University, Alma-Ata, Kazakhstan
- MR Author ID: 951730
- ORCID: 0000-0002-2354-2377
- Email: torebek@math.kz
- Published electronically: November 29, 2018
- Additional Notes: This work was supported by grants AP05130994 and AP05131756 from the Ministry of Education and Science of the Republic of Kazakhstan.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Moscow Math. Soc.
**2018**, 177-185 - MSC (2010): Primary 45J05, 35S99
- DOI: https://doi.org/10.1090/mosc/279
- MathSciNet review: 3881463