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SYMMETRIC DIFFERENTIAL OPERATORS OF FRACTIONAL

ORDER AND THEIR EXTENSIONS

N. E. TOKMAGAMBETOV AND B. T. TOREBEK

Abstract. This paper is devoted to the description of symmetric operators and
the justification of Green’s formula for a fractional analogue of the Sturm–Liouville
operator of order 2α, where 1

2
< α < 1.

1. Introduction

In the theory of differential equations, the description and study of self-adjoint prob-
lems is of particular significance. One of the methods for describing such problems is
the theory of self-adjoint extensions, which is quite well developed, for example, in the
monographs [1] and [2]. In the theory of extensions and restrictions, one of the main
points is the justification of Green’s formula. In this paper, Green’s formula is derived
and justified for a differential operator of fractional order. We also introduce the con-
cept of fractional differentiation from generalised functions. For clarity, we present some
classes of self-adjoint problems for a fractional analogue of the Sturm–Liouville operator.
In view of the physical applications, the spectral properties of fractional operators are
the subject of intensive investigation, especially in the applied papers [3], [4], [5], [6],
and [7]. One of the first works to study the spectral properties of differential operators
of fractional order was that of Dzhrbashyan [8]. After Dzhrbashyan’s work, scientists
began an active study of the properties of certain special functions generated by frac-
tional equations. This work includes the papers [9], [10], [11], [12], [13], [14], [15], and
[16]. Since, on the whole, fractional operators are not symmetric, only nonself-adjoint
problems were considered in all of the above-mentioned papers, (see also [17], [18], and
[19]). A symmetric differential operator of fractional order was first introduced in [20] by
Klimek and Agrawal in a weight class of continuous functions. In this paper, an attempt
is made to justify Green’s formula for a differential equation of fractional order with a
further description of the class of self-adjoint problems.

The ultimate goal of this paper is to describe the class of self-adjoint problems in a
Hilbert space for a differential operator of fractional order. In fact, we find the symmetric
Caputo–Riemann–Liouville operator of order 2α (where 1

2 < α < 1), which is in some
sense a fractional analogue of the Sturm–Liouville operator.

The problems considered in the paper can be applied in solving problems in the math-
ematical modeling of physical and mechanical processes. For example, such problems
can arise in using the Fourier method to solve problems of subdiffusion, superdiffusion,
anomalous diffusion, the fractional Laplacian, and others (see [21], [22], [23], and [24]).
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Moreover, the study of spectral problems for differential operators of fractional order is
important for the enrichment and improvement of the theory of fractional calculi.

2. Operators of fractional differentiation and their properties

In this section, we define operators of fractional integro-differentiation; see [25], [26],
and [27].

Definition 1. Given a function f , defined on the interval [0, 1], if the integrals

Iα0 [f ](t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s) ds, t ∈ (0, 1],

and

Iα1 [f ](t) =
1

Γ(α)

1∫
t

(s− t)α−1f(s) ds, t ∈ [0, 1)

exist, then we call them the left- and right-hand integral Riemann–Liouville operators of
fractional order α > 0, respectively.

Definition 2. We define left- and right-hand differential Riemann–Liouville operators
of fractional orders α (0 < α < 1) in the following manner:

Dα
0 [f ](t) =

d

dt
I1−α
0 [f ](t) and Dα

1 [f ](t) = − d

dt
I1−α
1 [f ](t),

respectively.

Definition 3. For 0 < α < 1, we call the actions

Dα
0 [f ](t) = Dα

0 [f(t)− f(0)] and Dα
1 [f ](t) = Dα

1 [f(t)− f(1)],

respectively, the left- and right-hand operators of differentiation of order α (0 < α < 1)
in the sense of Caputo.

We remark that other types of operators of fractional differentiation and their ba-
sic properties are investigated in the monographs [25], [26], and [27]. In the following
statements we give some properties of integral and integro-differential Riemann–Liouville
operators and fractional Caputo operators which will be used extensively in the present
work.

Property 1 (see [27, pp. 73, 76, 96]). Let 0 < α < 1, and let f ∈ L1(0, 1), I
1−α
1 f, I1−α

0 f ∈
AC[0, 1]. Then for 0 < x < 1 the following equalities hold:

Iα0 I
β
0 f(x) = Iα+β

0 f(x), Iα1 I
β
1 f(x) = Iα+β

1 f(x), 0 < β < 1,

Iα1 D
α
1 f(x) = f(x)− I1−α

1 f(0)
(1− x)α−1

Γ(α)
, Iα0 D

α
0 f(x) = f(x)− I1−α

0 f(0)
xα−1

Γ(α)
.

If f ∈ AC[0, 1], then

Iα0 Dα
0 f(x) = f(x)− f(0), Iα1 Dα

1 f(x) = f(x)− f(1), 0 < x < 1.

Property 2 (see [25, p. 87]). Let α, β > 0, and let 0 ≤ ε ≤ 1. Then for the function

f(x) = C
Γ(β)

Γ(α+ β)
(1− x− ε)α+β−1

∗ =

⎧⎨
⎩
0, 1− x ≤ ε,

C
Γ(β)

Γ(α+ β)
(1− x)α+β−1, 1− x > ε,
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where C is some constant, the following equality holds for all 0 < x < 1:

Iα1 f(x) =

{
0, 1− x ≤ ε,

C(1− x)β−1, 1− x > ε.

Property 3. Let 0 < α < 1, and let f ∈ L2(0, 1). Then for any ε ∈ (0, 1) and a constant
C, the function

f(x) = C(1− x− ε)α−1
∗ =

{
0, 1− x ≤ ε,

C(1− x)α−1, 1− x > ε,

satisfies the equation Dα
1 f(x) = 0, 0 < x < 1.

Property 4. Let 0 < α < 1, and let f ∈ L2(0, 1). Then for any ε ∈ (0, 1) and constant
C, the function

f(x) = Cθ(1− x− ε) =

{
0, 1− x ≤ ε,

C, 1− x > ε,

where θ(x) is the Heaviside function, satisfies the equation Dα
0 f(x) = 0, 0 < x < 1.

Property 5. Let 0 < α < 1, and let f ∈ L2(0, 1). Then for any ε ∈ (0, 1) and for
arbitrary constants C1 and C2, the function

f(x) = C1(1− x− ε)α−1
∗ + C2(1− x− ε)α∗

satisfies the equation Dα
1 f(x) = C2θ(1− x− ε), 0 < x < 1.

Property 6 (see [26, p. 34]). Let u, v ∈ L2(0, 1), 0 < α < 1. Then a formula for
fractional integration by parts is given by

(Iβ1 u(t), v(t)) = (u(t), Iβ0 v(t)).

Here and in what follows, we denote by (·, ·) the scalar product in the Hilbert space
L2(0, 1).

3. The main part

In what follows, let 1
2 < α < 1. We consider the expression

(3.1) Lu(x) := Dα
0 [D

α
1 [u]](x), 0 < x < 1.

Our goal is to investigate the spectral properties of operators generated by the differential
equation of fractional order (3.1) in the space L2(0, 1). But first we define the operator
in Hölder classes. We consider the spectral problem

(3.2) Lu(x) = λu(x), 0 < x < 1,

in the space H2α+o
1 ([0, 1]) := {ϕ ∈ H2α+o([0, 1]) : ϕ(1) = 0, . . . , ϕ(m)(1) = 0}, where

m = [2α + o], and H2α+o([0, 1]) is the Hölder space with parameter 2α + o. Here o is a
positive number that is sufficiently small so that o < 1− α. In fact, we are dealing with
the following spaces:

H2α+o
1 ([0, 1]) := {ϕ ∈ H2α+o([0, 1]) : ϕ(1) = 0, ϕ′(1) = 0},
Hα+o

1 ([0, 1]) := {ϕ ∈ Hα+o([0, 1]) : ϕ(1) = 0},
Ho

1 ([0, 1]) := {ϕ ∈ Ho([0, 1]) : ϕ(1) = 0}.
It follows from Samko, Kilbas, and Marichev’s book [25, Chapter 1, Theorem 3.2], that
the integro-differential operator L is well defined in H2α+o

1 ([0, 1]), which implies that the
functionals

ξ−1 (u) := I1−α
1 [u](0), ξ−2 (u) := I1−α

1 [u](1),

ξ+1 (u) := Dα
1 [u](0), ξ+2 (u) := Dα

1 [u](1)
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are well defined for all H2α+o
1 ([0, 1]). We let L0 denote the operator generated by the

fractional differential expression (3.1) with “boundary” conditions

(3.3) ξ−2 (u) = 0 and ξ+1 (u) = 0.

Then, in view of the properties and definitions given in § 2 (see also [25, Chapter 1]), we
represent the operator inverse to L0 in the form

L−1
0 f(x) = Iα1 I

α
0 f(x) :=

∫ 1

0

K(x, s)f(s) ds, 0 < x < 1,

for

f ∈ H̃o
1 ([0, 1]) :=

{
v ∈ Ho

1 ([0, 1]) :∫ 1

0

v(s)(1− s)2α ds = 0 and

∫ 1

0

v(s)(1− s)2α−1 ds = 0

}
,

as the operator L−1
0 : H̃o

1 → H2α+o
1 , with symmetric kernelK(·, ·) from L2(0, 1)⊗L2(0, 1).

Since S := span{(1− x)k, k ∈ N} ⊂ Ho
1 ([0, 1]), the sets S and

S̃ :=

{
v ∈ S :

∫ 1

0

v(s)(1− s)2αds = 0 and

∫ 1

0

v(s)(1− s)2α−1ds = 0

}

are equipotent, so we conclude that the closure of the space H̃o
1 ([0, 1]) with respect to

the L2-norm is L2(0, 1). Hence, L−1
0 has a continuous extension to a compact operator in

L2(0, 1). Compactness, in turn, gives us the existence of a nonempty discrete spectrum
with eigenfunctions that form an orthogonal basis of L2(0, 1).

We denote by λk, k ∈ N, the eigenvalues of the spectral problem (3.2)–(3.3) ordered
by increasing absolute value, and by uk, k ∈ N, the corresponding eigenfunctions, that
is,

Dα
0 [D

α
1 [uk]](x) = λkuk(x), 0 < x < 1,

ξ−2 (uk) = 0 and ξ+1 (uk) = 0

for all k ∈ N. In this way, the domain of definition of L0,

Dom(L0) := {u ∈ H2α([0, 1]) : ξ−2 (u) = 0, ξ+1 (u) = 0},
is nonempty.

We now introduce a space of test functions C∞
L0
([0, 1]) in the following manner:

C∞
L0
([0, 1]) :=

∞⋂
k=1

Dom(Lk
0),

where Dom(Lk
0) is the domain of definition of the operator Lk

0 . Here Lk
0 is the k-fold

iterated operator L0 with domain of definition

Dom(Lk
0) := {Lk−j−1

0 u ∈ Dom(L0), j = 0, 1, . . . , k − 1}
for k ≥ 2. The space of test functions C∞

L0
([0, 1]) is nonempty as a set, since the linear

span of all eigenfunctions is contained in C∞
L0
([0, 1]). For further properties of the space

C∞
L0
([0, 1]), see [29], [30], [31], where the properties of the test functions (introduced via

basis functions) are well studied (see also [32], [33], where special cases are given). We
denote the space dual to C∞

L0
([0, 1]) by D′

L0
(0, 1) (the space of continuous functionals

defined on C∞
L0
([0, 1])).

We now turn to the definition of fractional derivatives with respect to generalised
functions. To begin with, we note that for u, v ∈ C∞

L0
([0, 1]), the following equality holds:

(3.4) (Dα
0 [D

α
1 u], v) = (u,Dα

0 [D
α
1 v]),

where both sides exist in the classical sense.
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In fact, the equality (3.4) follows from direct calculation of (Dα
0 [D

α
1 u], v). By defini-

tion,

(Dα
0 [D

α
1 u], v) =

∫ 1

0

(∫ x

0

(x− t)−α d

dt
Dα

1 u(t) dt

)
v(x) dx,

and, changing the order of integration, we obtain

(3.5)

∫ 1

0

(∫ x

0

(x−t)−α d

dt
Dα

1 u(t) dt

)
v(x) dx =

∫ 1

0

d

dt
Dα

1 u(t)

(∫ 1

t

(x−t)−αv(x) dx

)
dt.

Integrating by parts on the right-hand side of equation (3.5), we have∫ 1

0

d

dt
Dα

1 u(t)

(∫ 1

t

(x− t)−αv(x) dx

)
dt = Dα

1 u(t)I
1−α
1 v(t)

∣∣∣1
0
+ (Dα

1 u,D
α
1 v)

= Dα
1 u(t)I

1−α
1 v(t)

∣∣∣1
0
− I1−α

1 u(t)Dα
1 v(t)

∣∣∣1
0
+

∫ 1

0

I1−α
1 u(t)

d

dt
Dα

1 v(t) dt.

Applying Property 6 to (I1−α
1 u, d

dtD
α
1 v), in view of the equivalent definition of the Caputo

derivative (see [25, Chapter 1]) we obtain(
I1−α
1 u,

d

dt
Dα

1 v
)
= (u,Dα

0 [D
α
1 ]v).

As a result, this gives us Green’s formula

(3.6) (Dα
0 [D

α
1 u], v) = (u,Dα

0 [D
α
1 ]v) +

2∑
i=1

[
ξ−i (u)ξ+i (v)− ξ−i (v)ξ+i (u)

]
.

Since u, v ∈ C∞
L0
([0, 1]), (3.4) follows from (3.6).

We define an action of the operator L on a generalised function u ∈ D′
L0
(0, 1). We set

(3.7) (Lu, v) := (u,Dα
0 [D

α
1 v])

for all v ∈ C∞
L0
([0, 1]). The value (u,Dα

0 [D
α
1 v]) exists because it follows from v ∈

C∞
L0
([0, 1]) that also Dα

0 [D
α
1 v] ∈ C∞

L0
([0, 1]). Thus, the action of the operator L in the

space of generalised functions D′
L0
(0, 1), introduced in formula (3.7), is well defined.

We now consider the expression

(3.8) Lu(x) := Dα
0 [D

α
1 [u]](x), 0 < x < 1,

in L2(0, 1). In order for L to be properly defined in L2(0, 1), we introduce the space
W2α

2 (0, 1) as the closure of H2α+o
1 ([0, 1]) in the norm

‖u‖W2α
2 (0,1) := ‖u‖L2(0,1) + ‖Dα

0D
α
1 u‖L2(0,1).

In fact, W2α
2 (0, 1) with the norm we have introduced is a Banach space. Moreover, it is

a Hilbert space with scalar product

(u, v)W2α
2 (0,1) := (u, v) + (Dα

0D
α
1 u,Dα

0D
α
1 v).

We define Lm as the operator acting from L2(0, 1) into L2(0, 1) by the formula (3.8)
with domain of definition

Dom(Lm) =
{
u ∈ W2α

2 (0, 1) : ξ−1 (u) = ξ−2 (u) = ξ+1 (u) = ξ+2 (u) = 0
}
.

We also introduce the operator LM : L2(0, 1) → L2(0, 1) generated by the expression
(3.8) with domain of definition Dom(LM ) := {u ∈ W2α

2 (0, 1)}.
Further, we introduce a class of 2×4 matrices, by means of which we define boundary

forms for a differential equation of fractional order Dα
0 [Dα

1 [u]].
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Definition 4. The matrix

θ :=

(
θ11 θ12 θ13 θ14
θ21 θ22 θ23 θ24

)

is called an S-matrix if it can be written in one of the following forms:(
1 0 r c
0 1 − c d

)
,

(
d 1 0 r
c 0 1 d

)
,

(
1 d r 0
0 c − d 1

)
,

(
r c 1 0

−c d 0 1

)
,

where r, c, d ∈ R. We assume here that the matrices(
θ11 θ12 θ13 θ14
θ21 θ22 θ23 θ24

)
,

(
θ11 θ12 θ13 θ14
γθ21 γθ22 γθ23 γθ24

)
for (γ 	= 0),

(
θ11 ± θ21 θ12 ± θ22 θ13 ± θ23 θ14 ± θ24
θ21 θ22 θ23 θ24

)
and

(
θ21 θ22 θ23 θ24
θ11 θ12 θ13 θ14

)
have one entry.

Theorem 1. Let θ be an S-matrix. Then the operator Lθ generated by the expression

Dα
0D

α
1 u(x) = f(x), 0 < x < 1,

for u ∈ W2α
2 (0, 1) with “boundary” conditions

θ11ξ
−
1 (u) + θ12ξ

−
2 (u) + θ13ξ

+
1 (u) + θ14ξ

+
2 (u) = 0,

θ21ξ
−
1 (u) + θ22ξ

−
2 (u) + θ23ξ

+
1 (u) + θ24ξ

+
2 (u) = 0

is a self-adjoint extension of the operator Lm in the class W2α
2 (0, 1).

We note that, on the whole, the results of Theorem 1 are false for the case α < 1/2.

4. Proof of Theorem 1

We give below some properties of the operators Lm and LM .

Lemma 1. For arbitrary ε ∈ [0, 1], any linear combination of the functions (1− x− ε)α∗
and (1− x− ε)α−1

∗ is contained in the kernel of the operator LM (KerLM ).

The proof of Lemma 1 follows from the assertions of Lemmas 2, 3, 4, and 5.

Lemma 2. The equation Lmu = g has a solution u ∈ Dom(Lm) if and only if there
exists f ∈ L2(0, 1) such that (f, v) = 0 for arbitrary v ∈ KerLM :

R(Lm)⊕KerLM = L2(0, 1).

Proof. Let f ∈ R(Lm). Then there is a function w ∈ L2(0, 1) such that for any v ∈
KerLM , we have the equality

(f, v) = (Lmw, v) = (w,LMv) = 0.

We now fix a function f ∈ L2(0, 1) that satisfies the equality (f, v) = 0 for all v ∈
KerLM . In view of the definition of LM , there is a function g ∈ Dom(LM ) such that
LMg = f . It is easy to see that for arbitrary v ∈ KerLM , we have

(4.1) 0 = (f, v) = (LMg, v) =
2∑

i=1

[ξ−i (v)ξ+i (g)− ξ−i (g)ξ+i (v)].
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Further, it follows from Lemma 1 that the kernel of LM consists of an infinite collection
of linearly independent functions, and since v is arbitrary, it follows from the identity
(4.1) that

ξ−i (g) = ξ+i (g) = 0, i = 1, 2.

Consequently, f ∈ R(Lm). This completes the proof of Lemma 2. �

Corollary 1. The set Dom(Lm) is dense in L2(0, 1).

Proof. Let g ∈ L2(0, 1) be the orthogonal to the lineal of Dom(Lm). We find a function
v that is an arbitrary solution of the equation LMv = g. Then for any u ∈ Dom(Lm) we
obtain

0 = (u, g) = (u, LMv) = (Lmu, v).

In view of Lemma 2, we have v ∈ KerLM . Consequently, g = LMv = 0. The lemma is
proved. �

4.1. Proof of Theorem 1. Since for any u, v ∈ Dom(Lm)

(Lmu, v) = (u, Lmv),

by definition (see [28]) Lm is Hermitian. Also, in view of Corollary 1, Lm is symmetric.
Thus, for Lθ to be a selfadjoint operator, it is sufficient that

(4.2) Dom(Lθ) = Dom(L∗
θ).

As a result, the validity of Theorem 1 follows from simple calculations, taking formula
(3.6) into account.

5. Some spectral properties of Lθ

Theorem 2. Let θ have the form(
0 1 0 0
θ21 0 θ23 0

)
.

Then the operator Lθ is self-adjoint and the following assertions are valid for it:

(i) The operator L−1
θ is completely continuous in L2(0, 1).

(ii) The spectrum of the operator Lθ is real-valued and discrete, and the system of
eigenfunctions forms a complete orthogonal system in L2(0, 1).

Proof.
(i) If θ21 	= 0 and θ21 	= θ23, then we represent the inverse operator in the form

L−1
θ f(x) =

θ21(1− x)α

(θ21 − θ23)Γ(α+ 1)
[Iα+1

0 f ](1) + Iα1 I
α
0 f(x).

For θ21 = 0 we have
L−1
θ f(x) = Iα1 I

α
0 f(x), 0 < x < 1.

The compactness of the operator L−1
θ in L2(0, 1) now follows.

(ii) In view of the complete continuity of L−1
θ , we see that the spectrum is discrete,

and the system of eigenfunctions forms a complete orthogonal system in L2(0, 1). Using
[28], it then follows from the selfadjointness of Lθ that all the eigenvalues are real. �

Theorem 3. Let θ have one of the following forms:

(5.1)

(
1 0 0 0
0 1 0 0

)
,

(
1 0 0 0
0 0 0 1

)
,

(5.2)

(
ρ 1 0 0
0 0 1 ρ

)
,

(
0 0 1 0
0 0 0 1

)
.
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Then for all ρ ∈ R, the operator Lθ is positive in the space L2(0, 1).

Proof. To prove the theorem, it is sufficient to verify the inequality

(Dα
0 [D

α
1 u], u) ≥ 0.

So, we calculate

(Dα
0 [D

α
1 u], u) =

∫ 1

0

(∫ x

0

(x− t)−α d

dt
Dα

1 u(t) dt

)
u(x) dx.

Changing the order of integration, we have∫ 1

0

(∫ x

0

(x− t)−α d

dt
Dα

1 u(t) dt

)
u(x) dx =

∫ 1

0

d

dt
Dα

1 u(t)

(∫ 1

t

(x− t)−αu(x) dx

)
dt.

Integrating the right-hand side of the last integral by parts, we obtain∫ 1

0

d

dt
Dα

1 u(t)

(∫ 1

t

(x− t)−αu(x) dx

)
dt = Dα

1 u(t)I
1−α
1 u(t)

∣∣∣1
0
+ (Dα

1 u,D
α
1 u).

From any of the forms (5.1) and (5.2), we obtain the identity

Dα
1 u(t)I

1−α
1 u(t)

∣∣∣1
0
= 0,

which implies the validity of the theorem. �
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