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ON THE SOLVABILITY OF A BOUNDARY VALUE PROBLEM

IN p-ADIC STRING THEORY

KH. A. KHACHATRYAN

Abstract. This paper is devoted to the study and solution of a boundary value
problem for a convolution-type integral equation with cubic nonlinearity. The above
problem has a direct application to the p-adic theory of open-closed strings for the
scalar tachyon field. It is shown that a one-parameter family of monotone continuous
bounded solutions exists. Under additional conditions on the kernel of the equation,
an asymptotic formula for the solutions thus constructed is established. Using these
results, as particular cases we obtain Zhukovskaya’s theorem on rolling solutions of
the nonlinear equation in the p-adic theory of open-closed strings and the Vladimirov–
Volovich theorem on the existence of a nontrivial solution between certain vacua.

The results are extended to the case of a more general nonlinear boundary value
problem.

§1. Introduction

This paper is devoted to investigating the following boundary value problem for an
integral equation of convolution type with a cubic nonlinearity (and some generalizations
of this equation):

(1) af3(x) + (1− a)f(x) =

∫
R

Ka(x− t)f(t) dt, x ∈ R,

(2) f(±∞) = lim
x→±∞

f(x) = ±1,

where the unknown function f(x) is odd and continuous on R. In equation (1), a ∈ (0, 1]
is a numerical parameter and the kernel K(x) ≡ Ka(x) is an even function defined on
the set R and satisfies the following conditions:

K ∈ L1(R) ∩ CM (R),(3a)

K(τ ) ↓ with respect to τ on [0,+∞),(3b)

K(x) > 0, x ∈ R and

∫
R

K(x) dx = 1,(3c)

where CM (R) is the space of bounded continuous functions on the set R.
Problems (1)–(2) have an immediate application in the p-adic theory of open-closed

strings for the scalar tachyon field (see [1]–[6]). In particular, when

(4) K(x) ≡ Ka(x) =
1√
4πa

e−x2/4a, x ∈ R,
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problems (1)–(2) describe the motion (the rolling) of tachyons with respect to the time
of open-closed strings (see [1] and [2]). Only real solutions of equation (1) are of physical
interest.

A direct verification shows that equation (1) has the following trivial solutions (phys-
ically a vacuum):

f(x) ≡ 0, f(x) ≡ ±1, x ∈ R.

The main objective of this paper is to construct nontrivial monotonically nondecreas-
ing continuous and bounded solutions between the vacua f(x) ≡ ±1.

One of the main results in the paper is the following theorem.

Theorem 1. Let the kernel K be an even function on the set R and satisfy conditions
(3a)–(3c). Then, for any parameter a ∈ (0, 1], the boundary value problems (1)–(2) have
a one-parameter family of continuous monotonically nondecreasing bounded solutions of
the form

{
fc(x)

}
c∈R

, and f0(x) is an odd function. Moreover, if

m(K) ≡
∞∫
0

tK(t) dt < +∞,

then for any c ∈ R,
1± fc ∈ L1(R

∓),

where R
− ≡ (−∞, 0] and R

+ ≡ [0,+∞).

As a special case, Theorem 1 implies the Zhukovskaya theorem on rolling solutions of
the nonlinear equation (1) with a kernel of the form (4) (see [1]).

In the second part of the paper, the results we obtain are extended to the case of
a “nonhomogeneous” integral equation of convolution type with cubic nonlinearity (see
Theorem 2).

In the last part we study a more general boundary value problem for the following
nonlinear integral equation of convolution type:

Q
(
f(x)

)
=

∫
R

K(x− t)f(t) dt, x ∈ R,(5)

with the boundary conditions

f(±∞) = ±η, η > 0,(6)

where Q is an odd continuous function on R satisfying certain conditions (see Theorems 3
and 4). The results obtained generalize the Vladimirov–Volovich result on the existence
of a nontrivial solution between certain vacua (see [5, Theorem 5]).

§2. The proof of Theorem 1

We break up the proof of the theorem stated above into the following steps. In the
first three steps we establish lemmas which enable us to prove Theorem 1.

Step I. We first prove the following simple but important lemma.

Lemma 1. If K is an even function on the set R satisfying conditions (3a) and (3c),
then, for every a ∈ (0, 1], the characteristic equation

(7)

∞∫
0

K(t)e−pt dt =
2− a

4

has a unique positive solution p0 ≡ p0(a).
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Proof. Consider the function

χ(p) ≡
∞∫
0

K(t)e−pt dt− 2− a

4
, p ∈ R

+.

Taking (3a) and (3c) into account, since the kernel K is even we can readily see that

1) χ ∈ C(R+), 2) χ(p) ↓ with respect to p on R
+,

3) χ(0) =
a

4
> 0, χ(+∞) = lim

p→+∞
χ(p) =

a− 2

4
< 0.

Hence, using the Bolzano–Cauchy theorem, we complete the proof of Lemma 1. �

Remark 1. In the table below, we present approximate values of p0 ≡ p0(a) depending
on the values of the parameter a when the kernel has the form (4). The calculations were
carried out using the software Mathcad.

a 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
p0 0.769 0.675 0.593 0.521 0.454 0.393 0.334 0.275 0.215 0.145

Now consider the well-known Lalesco kernel

K(x) =
1

2
e−|x|, x ∈ R.

Then the unique solution of the characteristic equation (7) is defined by the formula

(8) p0 ≡ p0(a) =
a

2− a
, a ∈ (0, 1].

We choose a number a ∈ (0, 1] (and hence also the number p0 ≡ p0(a)) to use in the
arguments below.

Step II. Note that the a priori estimate given below plays an important role in the
presentation to follow. The following assertion holds.

Lemma 2. Under the assumptions of Lemma 1, the following lower bound holds:

(9)

x∫
−∞

K(t)ep0t dt+ e2 p0 x

∞∫
x

K(t)e−p0t dt ≥ 1− a

2
∀x ∈ R

+.

Proof. Consider the function

I(x) =

x∫
−∞

K(t) ep0t dt+ e2p0 x

∞∫
x

K(t) e−p0t dt− 1 +
a

2
, x ∈ R

+.

Taking Lemma 1 into account, since the kernel K is even, we see from (3a) and (3c) that

I(0) =

0∫
−∞

K(t)ep0t dt+

∞∫
0

K(t)e−p0t dt− 1 +
a

2
= 2

∞∫
0

K(t)e−p0t dt− 1 +
a

2
= 0,

I ′(x) = K(x)ep0x + 2p0e
2p0x

∞∫
x

K(t)e−p0tdt−K(x)ep0x = 2p0e
2p0x

∞∫
x

K(t)e−p0tdt > 0

∀x ∈ R
+. Hence, we have I(x) ≥ I(0) for all x ∈ R

+, which implies the assertion of the
lemma. �

Step III. Using inequality (9), we will now prove the following lemma, which is the main
lemma in this paper.
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Lemma 3. Let the conditions of Lemma 1 be valid. Then the following bound holds:

(10)
1− 2

∞∫
x

K(t)dt− e−p0x

x∫
−∞

K(t)ep0tdt+ ep0 x

∞∫
x

K(t)e−p0tdt

≥
(
1− a

2

) (
1− e−p0x

)
, x ∈ R

+.

Proof. By analogy with the proof of Lemma 2, if we consider the corresponding function

h(x) ≡ 1− 2

∞∫
x

K(t)dt− e−p0x

x∫
−∞

K(t)ep0t dt

+ep0x

∞∫
x

K(t)e−p0t dt−
(
1− a

2

) (
1− e−p0x

)
, x ∈ R

+,

we can readily prove that

h(0) = 0 and h′(x) = p0e
−p0x

⎛
⎝ x∫
−∞

K(t)ep0t dt+ e2p0x

∞∫
x

K(t)e−p0t dt− 1 +
a

2

⎞
⎠ .

Using Lemma 2, we see that h′(x) ≥ 0, x ∈ R
+. This yields

h(x) ≥ h(0) = 0, x ∈ R
+. �

Remark 2. Taking conditions (3a) and (3c) into account, we readily see from Lemma 3
that

(11)

∞∫
0

(K(x− t)−K(x+ t))
(
1− e−p0t

)
dt ≥

(
1− a

2

) (
1− e−p0x

)
, x ∈ R

+.

Indeed, using conditions (3a) and (3c), after simple manipulations we obtain

∞∫
0

(K(x− t)−K(x+ t))
(
1− e−p0t

)
dt

= 1−
∞∫
0

(K(x− t)−K(x+ t)) e−p0t dt− 2

∞∫
x

K(t) dt

= 1− 2

∞∫
x

K(t)dt− e−p0x

x∫
−∞

K(t)ep0t dt+ ep0x

∞∫
x

K(t)e−p0t dt ≥
(
1− a

2

) (
1− e−p0x

)
.

Step IV. Consider the following auxiliary boundary value problem for a nonlinear integral
equation with a sum-difference kernel on the semiaxis:

aϕ3(x) + (1− a)ϕ(x) =

∞∫
0

(K(x− t)−K(x+ t))ϕ(t) dt, x ∈ R
+,(12)

ϕ(+∞) = lim
x→+∞

ϕ(x) = 1(13)
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with respect to the unknown function ϕ(x) which is continuous and bounded on R
+. For

equation (12), we introduce the following successive approximations:

(14)
aϕ3

n+1(x) + (1− a)ϕn+1(x) =

∞∫
0

(K(x− t)−K(x+ t))ϕn(t) dt, x ∈ R
+,

ϕ0(x) ≡ 1, n = 0, 1, 2, . . . , x ∈ R
+.

We will prove that the sequence {ϕn(x)}∞n=0 is bounded, using induction on n:

(15) ϕn(x) ≤ 1, n = 0, 1, 2, . . . , x ∈ R
+.

In the case of n = 0, inequality (15) holds automatically. Suppose that (15) holds for
some n ∈ N. Then, using the readily verifiable inequality

K(x− t) ≥ K(x+ t), (x, t) ∈ R
+ × R

+(16)

and conditions (3a) and (3c), we have

aϕ3
n+1(x) + (1− a)ϕn+1(x) ≤ 1− 2

∞∫
x

K(t) dt ≤ 1,

and so

a (ϕn+1(x)− 1)
(
ϕ2
n+1(x) + ϕn+1(x) + 1

)
+ (1− a) (ϕn+1(x)− 1) ≤ 0

or

(17) (ϕn+1(x)− 1)
(
aϕ2

n+1(x) + aϕn+1(x) + 1
)
≤ 0.

Note that

aϕ2
n+1(x) + aϕn+1(x) + 1 ≥ 1− a

4
> 0.

Using the last relation, from (17) we we see that (15) holds for n+1, and hence for every
n.

Step V. In this step, applying induction on n we prove that the sequence is decreasing:

(18) ϕn(x) ↓ with respect to n.

Obviously, the inequality ϕ1(x) ≤ ϕ0(x) follows from (15). Suppose that (18) holds for
some positive integer n. Then, taking (16) into account, we see from (14) that

(19) aϕ3
n+1(x) + (1− a)ϕn+1(x) ≤ aϕ3

n(x) + (1− a)ϕn(x), x ∈ R
+.

Since

F (t) = at3 + (1− a)t ↑ with respect to t on R

and a ∈ (0, 1], it follows from (19) that ϕn+1(x) ≤ ϕn(x).

Step VI. Now we prove that all the elements of the sequence {ϕn(x)}∞n=0 satisfy the
following lower bound:

(20) ϕn(x) ≥
1− e−p0x

√
2

, x ∈ R
+, n = 0, 1, 2, . . . .

This bound holds for n = 0 by the definition of the zeroth approximation. Suppose that
(20) holds for some n ∈ N. Then, using Lemma 3 and taking (16) into account, we see
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from (14) that

aϕ3
n+1(x) + (1− a)ϕn+1(x) ≥

1√
2

∞∫
0

(K(x− t)−K(x+ t))
(
1− e−p0t

)
dt

≥ 1√
2

(
1− a

2

) (
1− e−p0x

)
≥ 1√

2

(
(1− a)

(
1− e−p0x

)
+

a

2

(
1− e−p0x

)3)

= (1− a)
1− e−p0x

√
2

+ a

(
1− e−p0x

√
2

)3

.

As F (t) is monotonic, the inequality thus obtained gives the following bound:

ϕn+1(x) ≥
1− e−p0x

√
2

, x ∈ R
+.

Step VII. We will also use induction on n to prove that

ϕn ∈ C(R+), n = 0, 1, 2, . . . ,(21)

ϕn(x) ↑ with respect to x on R
+, n = 0, 1, 2, . . . .(22)

We first look at the proof of assertion (22).
Let x1, x2 ∈ R

+, x1 > x2, be arbitrary numbers. The inequality ϕ0(x1) ≥ ϕ0(x2) is
obvious. Suppose that the inequality ϕn(x1) ≥ ϕn(x2) holds for some positive integer n.
Then, representing the iterations (14) in the form

aϕ3
n+1(x) + (1− a)ϕn+1(x) =

x∫
−∞

K(t)ϕn(x− t)dt−
∞∫
0

K(x+ t)ϕn(t) dt,

ϕ0(x) ≡ 1, n = 0, 1, 2, . . . , x ∈ R
+,

and using (3b), we obtain

aϕ3
n+1(x1) + (1− a)ϕn+1(x1) =

x1∫
−∞

K(t)ϕn(x1 − t) dt−
∞∫
0

K(x1 + t)ϕn(t) dt

≥
x2∫

−∞

K(t)ϕn(x2 − t) dt−
∞∫
0

K(x2 + t)ϕn(t) dt = aϕ3
n+1(x2) + (1− a)ϕn+1(x2).

Using this inequality together with the monotonicity of the function F (t), we arrive at
the inequality ϕn+1(x1) ≥ ϕn+1(x2).

The membership relation (21) follows immediately from the fact that both the kernels,
K and F , are continuous; we have also used the fact that F is monotonic.

Step VIII. It follows from (15), (18), (20), and (21) that the sequence of continuous
functions {ϕn(x)}∞n=0 has pointwise limit as n → ∞:

lim
n→∞

ϕn(x) = ϕ(x), x ∈ R
+,

where, by Beppo Levi’s theorem (see [7]), the limit function ϕ(x) satisfies equation (12).
By (15) and (20), we obtain the following two-sided bound for ϕ(x):

(23)
1− e−p0x

√
2

≤ ϕ(x) ≤ 1, x ∈ R
+.
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Now ϕ ∈ M(R+) and K ∈ L1(R) ∩ CM (R) by (3a), and so it is known that (see [8])

(24)

∞∫
0

(K(x− t)−K(x+ t))ϕ(t) dt ∈ CM (R+).

Since the function F is continuous and monotonic, taking (24) into account, we see from
(12) that ϕ ∈ CM (R+). Since the sequence of continuous functions {ϕn(x)}∞n=0 tends to
a continuous limit function ϕ(x) on R

+, it follows from Dini’s theorem (see [9]) that the
convergence of the sequence is uniform on every compact set in R

+.
On the other hand, ϕn(x) ↑ with respect to x on R

+, n = 0, 1, 2, . . . (see (22)), and
hence the limit limx→+∞ ϕ(x) ≡ λ, 0 < λ < +∞, exists. In equation (12), passing to the
limit as x → +∞ and taking the well-known limit relation (see [8])

lim
x→+∞

∞∫
0

K(x− t)ϕ(t) dt =

∫
R

K(τ ) dτ · lim
x→+∞

ϕ(x)

into account, we have: aλ3 + (1− a)λ = λ. Since λ > 0, it follows from the last equation
that λ = 1.

Step IX. Since the kernel K is even and the function F defined on R is odd, direct
verification shows that the odd extension to R

− of the function ϕ,

(25) f0(x) ≡
{

ϕ(x) for x ≥ 0,

−ϕ(−x) for x < 0,

is a continuous and monotonic nondecreasing solution of the boundary value problems
(1)–(2). Since the kernel K and the function ϕ are continuous, it follows from (12) and
(25) that f0(0) = 0.

Note that all possible shifts of the function f0(x) also satisfy the boundary value
problems (1)–(2). Indeed, it is clear that the limit relations (2) hold for the one-parameter
family of functions {fc(x)}c∈R

of the form fc(x) = f0(x+c). We will prove that, for every
c ∈ R, the function fc(x) in the family also satisfies equation (1). We have

∫
R

K(x− t)fc(t) dt =

∫
R

K(x− t)f0(t+ c) dt =

∫
R

K(x+ c− τ )f0(τ ) dτ

= af3
0 (x+ c) + (1− a)f0(x+ c) = af3

c (x) + (1− a)fc(x).

Thus, the first part of the theorem is proved.
In the next two steps we will prove that if m(K) < +∞, then

1± fc ∈ L1(R
∓) ∀c ∈ R.

Step X. First we prove by induction on n that

(26) 1− ϕn ∈ L1(R
+), n = 0, 1, 2, . . . .
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When n = 0, the inclusion (26) follows from (14). Let 1− ϕn ∈ L1(R
+) for some n ∈ N.

Then, taking relations (3a)–(3c) and (15) into account, we see from (14) that

0 ≤ 1− ϕn+1(x) ≤ (1− ϕn+1(x))
(
1 + aϕn+1(x) + aϕ2

n+1(x)
)

= 1− aϕ3
n+1(x)− (1− a)ϕn+1(x) =

∞∫
0

K(x− t) (1− ϕn(t)) dt+

∞∫
x

K(t) dt

+

∞∫
0

K(x+ t)ϕn(t) dt ≤ 2

∞∫
x

K(t) dt+

∞∫
0

K(x− t) (1− ϕn(t)) dt ∈ L1(R
+),

because

0 ≤
∞∫
0

∞∫
0

K(x− t) (1− ϕn(t)) dtdx ≤
∞∫
0

(1− ϕn(t))dt ·
∫
R

K(t)dt

=

∞∫
0

(1− ϕn(t)) dt < +∞

and

∞∫
0

∞∫
x

K(t)dtdx =

∞∫
0

tK(t)dt ≡ m(K) < +∞.

Hence, 1− ϕn+1 ∈ L1(R
+).

Step XI. First, we note that there is a number r > 0 such that

(27) ρ ≡
r∫

−∞

K(t)dt < 1.

Inequality (27) follows immediately from (3c). Fix r > 0.
In the previous step we proved that

(28) (1− ϕn+1(x))
(
1 + aϕn+1(x) + aϕ2

n+1(x)
)

≤ 2

∞∫
x

K(t) dt+

∞∫
0

K(x− t) (1− ϕn(t)) dt, n = 0, 1, 2, . . . , x ∈ R
+.
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Integrating both sides of (28) from 0 to ∞ with respect to x, we obtain

∞∫
0

(1− ϕn+1(x))
(
1 + aϕn+1(x) + aϕ2

n+1(x)
)
dx

≤ 2

∞∫
0

∞∫
x

K(t)dt dx+

∞∫
0

∞∫
0

K(x− t) (1− ϕn(t)) dt dx

≤ 2m(K)+

∞∫
0

r∫
0

K(x− t) (1− ϕn+1(t)) dt dx+

∞∫
0

∞∫
r

K(x− t) (1− ϕn+1(t)) dt dx

= 2m(K)+

r∫
0

(1− ϕn+1(t))

∞∫
0

K(x− t)dx dt+

∞∫
r

(1− ϕn+1(t))

∞∫
0

K(x− t)dxdt

≤ 2m(K)+

r∫
0

(1− ϕn+1(t))

t∫
−∞

K(y)dy dt+

∞∫
r

(1− ϕn+1(t)) dt

≤ 2m(K)+ρ

r∫
0

(1− ϕn+1(t)) dt+

∞∫
r

(1− ϕn+1(t)) dt.

Therefore, by (20), it follows from this inequality that

r∫
0

(1− ϕn+1(x)) dx+

(
1 +

a (1− e−p0r)√
2

+
a (1− e−p0r)

2

2

) ∞∫
r

(1− ϕn+1(x)) dx

≤
∞∫
0

(1− ϕn+1(x))
(
1 + aϕn+1(x) + aϕ2

n+1(x)
)
dx

≤ 2m(K) + ρ

r∫
0

(1− ϕn+1(x)) dx+

∞∫
r

(1− ϕn+1(x)) dx.

In turn, this implies that

(1− ρ)

r∫
0

(1− ϕn+1(x)) dx+

(
a (1− e−p0r)√

2
+

a (1− e−p0r)
2

2

) ∞∫
r

(1− ϕn+1(x)) dx

≤ 2m(K).

Hence,

min

{
(1− ρ) ;

(
a (1− e−p0r)√

2
+

a (1− e−p0r)
2

2

)} ∞∫
0

(1− ϕn+1(x)) dx ≤ 2m(K)

or

∞∫
0

(1− ϕn+1(x)) dx ≤ 2m(K)

(
min

{
(1− ρ) ;

(
a (1− e−p0r)√

2
+

a (1− e−p0r)
2

2

)})−1

.
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Since ϕn(x) ↓ with respect to n and ϕn(x) ≤ 1 for n = 0, 1, 2, . . . , and x ∈ R
+ (see

(18) and (15)), it follows from Lebesgue’s theorem that 1− ϕ ∈ L1(R
+) and

∞∫
0

(1− ϕ(x)) dx ≤ 2m(K)

(
min

{
(1− ρ) ;

(
a (1− e−p0r)√

2
+

a (1− e−p0r)
2

2

)})−1

.

Since 1−ϕ ∈ L1(R
+), it follows immediately from the definitions of the functions fc and

f0 (see formula (25)) that 1 ± fc ∈ L1(R
∓) ∀c ∈ R. Thus, the proof of the theorem is

complete.

§3. The solvability of the corresponding “inhomogeneous” equation

Consider the corresponding “inhomogeneous” equation on the whole line:

(29) aΦ3(x) + (1− a)Φ(x) = g(x) +

∫
R

K(x− t)Φ(t) dt, x ∈ R,

with respect to the unknown function Φ(x), which is continuous and bounded. Here
a ∈ (0, 1] is a numerical parameter and the kernel K again satisfies conditions (3a)–(3c).
We also make the following assumptions on the free term g(x):

I): g(x) is an odd bounded continuous function defined on R,
II): g(x) ≥ 0, x ∈ R

+, and g(x) ↑ with respect to x on R
+.

Taking condition I) on g(x) and conditions (3a)–(3c) on K(x) into account, it is easy to
see that if Ψ(x) is a continuous solution on R

+ of the nonlinear integral equation of the
form

(30) aΨ3(x) + (1− a)Ψ(x) = g(x) +

∞∫
0

(K(x− t)−K(x+ t))Ψ(t) dt, x ∈ R
+,

then

Φ(x) ≡
{

Ψ(x) for x ∈ R
+,

−Ψ(−x) for x ∈ R
−

is a continuous odd solution of equation (29).
Since g(x) has properties I) and II) it follows that

(31) lim
x→+∞

g(x) ≡ c0 < +∞, g(x) ≤ c0, x ∈ R
+.

Consider the following characteristic equation:

(32) aτ3 − aτ = c0

with respect to τ ∈ R
+. First, we will show that equation (32) has a unique positive

solution c∗ for every a ∈ (0, 1], and c∗ ≥ 1.
Consider the function

(33) G(τ ) ≡ aτ3 − aτ − c0, τ ∈ R
+.

Obviously, G(0) = G(1) = −c0 and G(+∞) = +∞,

G′(τ ) ≤ 0 for τ ∈
[
0,

1√
3

]
,

G′(τ ) ≥ 0 for τ ∈
[

1√
3
,+∞

]
.
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It follows from the properties of G listed above that there is a unique number c∗ ≥ 1
such that G(c∗) = 0 (see the figure), that is,

(34) ac3∗ − ac∗ = c0.

τ

G

G(τ)

O

−c0

c∗

1

1�
3

Consider the following successive approximations:

(35)
aΨ3

n+1(x) + (1− a)Ψn+1(x) = g(x) +

∞∫
0

(K(x− t)−K(x+ t))Ψn(t) dt,

Ψ0(x) ≡ c∗, n = 0, 1, 2, . . . , x ∈ R
+.

First we will prove that

(36) Ψn(x) ↓ with respect to n.

To this end, we prove that Ψ1(x) ≤ Ψ0(x), x ∈ R
+. Taking (31) and (34) and conditions

(3a)–(3c) into account, we see from (35) that

(37) aΨ3
1(x) + (1− a)Ψ1(x) ≤ c0 + c∗ = ac3∗ − ac∗ + c∗ = ac3∗ + (1− a)c∗.

As F (t) is continuous and monotonic, it follows from (37) that Ψ1(x) ≤ Ψ0(x). Assuming
that Ψn(x) ≤ Ψn−1(x), x ∈ R

+, for some n ∈ N and using the monotonicity of the
function F (t) in (35) again, we see that Ψn+1(x) ≤ Ψn(x).

As in the proof of Theorem 1, we can verify that the following hold true:

(38) 1) Ψn(x) ≥
1− e−p0x

√
2

, n = 0, 1, 2, . . . , x ∈ R
+,

where p0 = p0(a) is the unique solution of the characteristic equation (7),

2) Ψn ∈ C(R+) for n = 0, 1, 2, . . . ,

3) Ψn ↑ with respect to x on R
+, n = 0, 1, 2, . . . .

The facts 1)–3) imply that the sequence {Ψn(x)}∞n=0, converges pointwise and, by Beppo
Levi’s theorem, the limit function Ψ(x) ≡ limn→∞ Ψn(x) satisfies equation (30). Since
K ∈ C(R), g ∈ C(R) and F ∈ C(R), it follows from (30) that Ψ ∈ C(R). It follows
immediately from fact 3) that Ψ(x) ↑ with respect to x on R

+.
From (36) and (38), we conclude that Ψ(x) satisfies the following two-sided inequality:

1− e−p0x

√
2

≤ Ψ(x) ≤ c∗, x ∈ R
+.
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Write μ = limx→+∞ Ψ(x) < +∞. Taking (31) and the limit relation

lim
x→+∞

∞∫
0

K(x− t)Ψ(t)dt = μ ·
+∞∫

−∞

K(τ )dτ = μ

into account, we see from (30) that aμ3+(1−a)μ = c0+μ or aμ3−aμ = c0. Since μ > 0,
we see from (32) and (34) that μ = c∗. We will now prove that if we assume in addition
that c0 − g ∈ L1(R

+), then c∗−Ψ ∈ L1(R
+). To this end, taking (31) and (3a)–(3c) into

account, we represent the iterations (35) in the following form:

a(c3∗ −Ψ3
n+1(x)) + (1− a)(c∗ −Ψn+1(x)) = c∗ + c0 − g(x)

−
∞∫
0

(K(x− t)−K(x+ t))Ψn(t)dt, Ψ0(x) ≡ c∗, n = 0, 1, 2, . . . , x ∈ R
+,

or

(c∗ −Ψn+1(x))(ac
2
∗ + ac∗Ψn+1(x) + aΨ2

n+1(x) + 1− a)

=

∞∫
0

K(x− t)(c∗ −Ψn(t))dt+

∞∫
0

K(x+ t)Ψn(t)dt+ c0 − g(x)

+c∗

∞∫
0

K(x+ t)dt, Ψ0(x) ≡ c∗, n = 0, 1, 2, . . . , x ∈ R
+.

Since c∗ ≥ 1, we can prove (as in the proof of Theorem 1; see Steps X and XI) that
c∗ −Ψn ∈ L1(R

+) and

∞∫
0

(c∗ −Ψn(x))dx ≤ (2c∗m(K) +

∞∫
0

(c0 − g(x))dx) · q,

where

q ≡
(
min

{
(1− ρ) ;

(
a (1− e−p0r)√

2
+

a (1− e−p0r)
2

2

)})−1

.

Hence, by Lebesgue’s theorem, we can say that c∗ − Ψ ∈ L1(R
+), and the following

bound holds:

∞∫
0

(c∗ −Ψ(x))dx ≤

⎛
⎝2c∗m(K) +

∞∫
0

(c0 − g(x))dx

⎞
⎠ · q.

The arguments we have given above prove the following theorem.

Theorem 2. Let K be an even function defined on R and satisfying conditions (3a)–
(3c). In this case, if g has properties I) and II), then equation (29) has a continuous
monotonic nondecreasing solution Φ(x) on R, and limx→±∞ Φ(x) = ±c∗. Moreover, if
in addition m(K) < +∞ and c0 − g ∈ L1(R

+), then c∗ ± Φ ∈ L1(R
∓).
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§4. Some generalizations of the above results

Consider the boundary value problems (5)–(6) under the assumption that the kernel
function K that is defined on R is even and satisfies conditions (3a)–(3c) and that Q is
a continuous function on R that is odd and satisfies the following conditions: there are
numbers ε ∈ (0, 1) and ξ ∈ (0, η) for which

(A): 0 ≤ Q(u) ≤ εu, u ∈ [0, ξ],
(B): Q(u) ↑ with respect to u on the interval [0, η] and Q(η) = η, where η

stands for the first positive root of the equation Q(u) = u.

The following theorem holds.

Theorem 3. Let the kernel K be an even function on R that satisfies (3), and let Q be
an odd continuous function on R that satisfies (A) and (B). Then the boundary value
problems (5), (6) have a one-parameter family of continuous bounded solutions of the
form

{
fc(x)

}
c∈R

that are monotonic nondecreasing, and f0(x) is an odd function.

Proof.

Step I. Lemmas 4, 5, and 6 presented below are proved by analogy with the proofs of
Lemmas 1, 2, and 3, respectively.

Lemma 4. If K is an even function on R satisfying conditions (3a) and (3c), then the
characteristic equation

(39)

∞∫
0

K(t)e−pt dt =
ε

2
, ε ∈ (0, 1),

has a unique positive solution p∗ ≡ p∗(ε).

Lemma 5. Under the assumptions of Lemma 4, the following lower bound holds:

(40)

x∫
−∞

K(t)ep∗t dt+ e2 p∗ x

∞∫
x

K(t)e−p∗t dt ≥ ε ∀x ∈ R
+.

Lemma 6. Let the conditions of Lemma 4 hold. Then the following lower bound holds:
(41)

1− 2

∞∫
x

K(t)dt− e−p∗x

x∫
−∞

K(t)ep∗t dt+ ep∗ x

∞∫
x

K(t)e−p∗t dt ≥ ε
(
1− e−p∗x

)
, x ∈ R

+.

In particular, Lemma 6 readily implies the bound

(42)
1

ε

∞∫
0

(K(x− t)−K(x+ t))
(
1− e−p∗t

)
dt ≥ 1− e−p∗x, x ∈ R

+.

Step II. Now, along with the boundary value problem (5), (6), we consider the following
boundary value problem on the semiaxis:

Q (ϕ(x)) =

∞∫
0

(K(x− t)−K(x+ t))ϕ(t) dt, x ∈ R
+,(43)

ϕ(+∞) = lim
x→∞

ϕ(x) = η > 0(44)
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and introduce the following successive approximations for equation (43):

(45)
Q (ϕn+1(x)) =

∞∫
0

(K(x− t)−K(x+ t))ϕn(t) dt,

ϕ0(x) ≡ η, n = 0, 1, 2, . . . , x ∈ R
+.

Using the fact that Q is an odd continuous function on R with properties (A) and (B),
it is easy to prove, similarly to the proof of Theorem 1, that the sequence of functions
{ϕn(x)}∞n=0 satifies the following:

(46) ϕn(x) ↓ with respect to n, n = 0, 1, 2, . . . , x ∈ R
+;

(47) ϕn ∈ C(R+), n = 0, 1, 2, . . . ;

(48) ϕn(x) ↑ with respect to x on R
+, n = 0, 1, 2, . . . ;

(49) ϕn(x) ≥ ξ
(
1− e−p∗x

)
, n = 0, 1, 2, . . . , x ∈ R

+.

Relations (46)–(49) imply that the function sequence {ϕn(x)}∞n=0 converges pointwise:
limn→∞ ϕn(x) = ϕ(x), and the function ϕ(x) satisfies equation (43) by the continuity of
the function Q and Beppo Levi’s limit theorem. Taking (46) and (49) into account, we
can say that the limit function ϕ(x) satisfies the following two-sided inequality:

(50) ξ
(
1− e−p∗x

)
≤ ϕ(x) ≤ η, x ∈ R

+.

Since Q ∈ C(R) and K ∈ CM (R), we see from (43), taking (50) and conditions (A) and
(B) into account, that ϕ ∈ C(R+) and ϕ(0) = 0. It also follows from (48) that

(51) ϕ(x) ↑ with respect to x on R
+.

Step III. Finally, our final step is to prove that

(52) lim
x→+∞

ϕ(x) = η.

By (50) and (51), the limit limx→+∞ ϕ(x) ≡ λ > 0 exists, and λ ≤ η. However, as is well
known,

(53) lim
x→+∞

∞∫
0

(K(x− t)−K(x+ t)) ϕ(t) dt = λ

∫
R

K(τ ) dτ = λ.

Using the continuity of the function Q and formula (53), we see from (43) that

lim
x→+∞

Q (ϕ(x)) = Q

(
lim

x→+∞
ϕ(x)

)
= λ

∫
R

K(τ ) dτ = λ,

and hence

(54) Q(λ) = λ.

In this case, using the fact that λ ∈ (0, η] and the assumption that η is the first positive
root of the equation Q(u) = u, we see from (54) that λ = η.

Similarly, as in the proof of Theorem 1, we can prove that the odd extension of
the function ϕ to R

− (see formula (25)) and all possible shifts of the extension are
continuous monotone nondecreasing solutions of the boundary value problems (5), (6).
This completes the proof of the theorem. �
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Theorem 4. Let the kernel K satisfy the conditions of Theorem 2 and have finite mo-
ment of first order:

m(K) ≡
∞∫
0

tK(t) dt < +∞.

Suppose, further, that Q is an odd continuous function on R satisfying condition (B). In
this case, if the function Q satisfies the two-sided inequality (which is stronger than (A))

0 ≤ Q(u) ≤ au3

η2
+ (1− a)u, a ∈ (0, 1], u ∈ [0, η],

which is stronger than (A), then η ± f ∈ L1(R
∓).

The proof is similar to that of the second part of Theorem 1.

Remark 3. It is of interest to note that Theorems 3 and 4 generalize the first (ε =
1− a

2 ; ξ = 1√
2
; η = 1) and second parts of Theorem 1, respectively.

Remark 4. Theorem 3 implies, as a special case, the Vladimirov–Volovich existence the-
orem (see Theorem 5 in [5]) if we choose a function of the form (4) for the kernel K and

take Q(u) = up, a = 1, ε = 1
2 , ξ =

(
1
2

) 1
p−1 and η = 1, where p > 2 is an arbitrary odd

number.
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