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ON ASYMPTOTIC FORMULAE
IN SOME SUM-PRODUCT QUESTIONS

I. D. SHKREDOV

ABSTRACT. In this paper we obtain a series of asymptotic formulae in the sum-—
product phenomena over the prime field F;,. In the proofs we use the usual incidence
theorems in Fp,, as well as the growth result in SL2(F,) due to Helfgott. Here are
some of our applications:

e a new bound for the number of the solutions to the equation (a1 —a2)(az —a4) =
(af —ah)(af —a)), as,a € A, Ais an arbitrary subset of Fy,

e a new effective bound for multilinear exponential sums of Bourgain,

e an asymptotic analogue of the Balog—Wooley decomposition theorem,

e growth of p1(b)+1/(a+p2(b)), where a, b runs over two subsets of Fp,, p1,p2 € Fp|z]
are two non—constant polynomials,

e new bounds for some exponential sums with multiplicative and additive characters.

1. INTRODUCTION

Let p be an odd prime number, and let F,, be the finite field. Having two sets A, B C
F,, we define the sumset, the product set and the quotient set of A and B as

A+B:={a+b : a€ A be B},

AB:={ab : a€ A, be B},
and
A/B:={a/b : a€ A, be B, b#0},

correspondingly. Our paper is devoted to the so—called sum-product phenomenon in F,
which was developed in papers [I]-[17], [27]-[44], [49]-[54], [58], [59], and in many others.
This is an extensively growing area of mathematics with plenty of applications to number
theory, additive combinatorics, computer science, and dynamical systems. It seems like
at the moment there is “the second wave” of results and applications in this field, see,
e.g., [2], [34-[40], [44], and this wave is connected with a fundamental incidence result
of Rudnev [43] (see a simple proof of his theorem in [60] and also the famous Guth-
Katz [19] solution of the Erdés distinct distance problem which contains the required
technique for such incidence results), as well as with more applicable energy versions
of the sum—product phenomenon [2], [10], [29], [34], [37], and [44]. The sum—product
phenomenon asserts that either the sumset or the product set of a set must be large up
to some natural algebraic constraints. One of the strongest forms of this principle is the
Erdés—Szemerédi conjecture [I4] which says that for any sufficiently large set A of reals
and an arbitrary € > 0 one has

max {|A + A, |AA[} > |A]>~¢.
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At the moment the best results in the direction can be found in [53], [28], [29], [44], and
in [I], [42] for R and F,, respectively. For example, let us recall the main results from
[, 2.

Theorem 1. Let A CF, be an arbitrary set and |A| < p°/®. Then
(1) max{|A + A|, |AA|} > |A|*TV/5

As one can see the bound above works for small sets only and this is a usual thing
for the results in this area. On the other hand, the exact behaviour of the maximum in
(@ and other sum—product quantities are known just for very large sets having its sizes
comparable to the characteristic p; see, e.g., [15], [16], [58], [59]. Even in the strong recent
paper [54] containing an optimal estimate for the number of point/line incidences in the
case of Cartesian products we have just an upper bound for such incidences but not an
asymptotic. The first result in the sum—product theory which gives us an asymptotic

formula for a sum—product quantity and which works for sets of any size was proved in
[37, Theorem 10] (on T(A); see [31]).

Theorem 2. Let A CTF, be a set and let Q(A) be the number of collinear quadruples in
A x A. Then

(2) Q(A) =

Further, for the number T(A) of collinear triples in A x A one has

A 8
Ay 0(aP 10g]4)).

3) T(4) = % L O,

It is known that formula (2)) is sharp up to logarithmic factors but (@) is probably not;
see [31].

One of the aims of our paper is to prove a series of new asymptotic formulae in the
considered area. In the proofs we use the usual incidence theorems in Fy,, see [43], [54] and
other papers, as well as the growth result in SL 5(F,) due to Helfgott [22]. So, another of
our aims is to obtain some new applications (also, see the recent papers [33], [32] where
other applications were found) of classical graph (group) expansion phenomena; see [9],
[21], [18], [22], [45], and others.

Our first asymptotic formula concerns the quantity

THA) = {(a1,...,ap,ad},...,a}) € A%+ ag+--+ap=da| +- +a}
(similarly one can define its multiplicative analogue T; (A)) in the case when A is a
multiplicative subgroup of F (see Theorem 23] below). In papers [4], [5], [12], [51] just
upper bounds for T:(A) can be found but not an asymptotic formula.

Theorem 3. Let I' C Fy be a multiplicative subgroup. Then for any k > 1 one has
=

2k+1

< 23K (Cylog* p)k=1. T

|2k+1 (k+7)

(4) 0<TH (D) - T3 (D),

p
where C, > 0 is an absolute constant.

In Section Bl we obtain new asymptotic formulae and bounds for the quantities
() H(a1—a2)...(azk-1 —az2x) = (a) — a3) ... (ah_y —ay) @ ai, a; € A}|
as well as for
(6) {araz + -+ + agk_1a2, = ajaby + -+ + ab,_qa5, : a;, a; € A}|.

It allows us to improve estimates for exponential sums of Petridis and Shparlinski [40]
as well as Macourt [31]; see Corollary A5l below.
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Corollary 4. Given three sets X,Y,Z CTF,, |X| > |Y| > |Z]| and three complex weights
p=(pzy) 0 =(0z.), T=(7y,2) all bounded by one, we have

Z pw,y0m7z7'y7z€($y2) < pl/S‘X|7/8|Y|29/32|Z|29/32(|Y||Z|)_1/3072 ,
zeX,yeY, zeZ

provided |Y|,|Z| < p*®/°7.

Moreover we obtain a new effective bound for such sums in an optimal range | X||Y]|Z|
> p!*9 (and for higher sums). Previously, Bourgain [6, Theorem 1] obtained (5/10)!°"
instead of m; see formula () below. In general, our saving has the form

p0/(Crloa(Car/d)" for r sets instead of p_(‘;/r)cr from [6l Theorem A]. Here C,Cy,Cs > 0
are some absolute constants.

Theorem 5. Let X,Y,Z CF, be arbitrary sets such that for some § > 0 the following
holds:

(7) IX|[Y]|Z] > p'*o.
Then
8) S elayz) < X||Y|Z] - p TG

zeX,yeY,zeZ

Our next result is an asymptotic version of the Balog—Wooley [2] decomposition theo-
rem; also, see [29], [42], [49] (consult Theorem[48 and Corollary @9 below). In particular,
it gives us an asymptotic variant of Theorem [ (signs <, 2 suppress powers of the loga-
rithm of |A]).

Theorem 6. Let A CF, be a set and let 1 < M < p/(2|A]) be a parameter. There exist
two disjoint subsets B and C of A such that A= Bl C and

Bl _ |APBT

9 0<TH(B
o) <THB) - - < E P
and for any set X C F, one has
M?|X|?|AJ]?
(10) T3(0x)  ERAD e,
p

In particular, for any set A C F,, either
A+ A] = 5 min{| A/, p/2}
or

| AA| Z min{p|A|7*/5, 4]/}

In Section [§] we consider the expansion in SL2(F,) and obtain some combinatorial
applications of the celebrated Helfgott’s growth result. Our first theorem concerns the
intersection of the inverses of additively rich sets A; see Corollary

Theorem 7. Let A, B CF,, |B|>p®, ¢>0, and |A+ B| < K|A|. Then for any A\ # 0
one has

aq as
where k = k(g). Also,

11 K?|AP?
H___:/\ : a17a2€A}‘§—|+2K|A|p1/2’”2,
p

21 4121 2|2
T2+(1/A,1/B)— m
p

< KP4 APIBP? + K| AP

The theorem above can be extended to general polynomial maps (and even to rational
functions); see Corollary
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Theorem 8. Let p1,ps € Fplz] be any non—constant polynomial. Then for any A, B C
F,, |B| > p°, € > 0 one has

1 1 |A|?|B|?
0< b) + ———— = b’—l—i:a,aleA,b,b’eBH—i
le( ) a+ pa(b) n(¥) a’ + pa(b) P
(11) < 2|A||B|2p~ /2",

where k = k(e,deg p1,degps). In particular,

1 k42
b)+——— : ac A be B} >min{p, |Ap'/? }.
(s s a b mingo. a2 )

We write the saving p_l/Qk+2 with k& = k(e, deg p1,degps) in the form to specify the

dependence on parameters €, deg p1, deg ps below. Also, we break the square root barrier
for exponential sums of the form (and many other exponential sums)

() (o))

X(y+bz+#)7 X(y+p1(b)+¥>;

x+ by x + pa2(b)
see Corollaries [56] below. Here the variables x,y belong to some sets X,Y’; further
b1,be € B, |B| > p®, e and x are any non—principal additive/multiplicative characters
and pi,pe € F,[z] are non—constant polynomials.
Finally, we obtain an expansion result of another sort (see Corollary [67] from Section

0).

Corollary 9. Let A CF,, By,By,Bs CF,, B:=|B1| = |By| = |Bs| > p°. Suppose that
|Bs — B1Ba| < B%p~¢. Then there is § = §(¢) > 0 such that

a—+ by .
(12) Hm : aéA,bjGBj}‘>>m1n{p,A|p6}.

The paper is organized as follows. Section[2]contains the required notation. In Section
we give a list of the results, which will be used further in the text. Here we discuss
the “design” bound for the incidences, namely, estimate ([BI]) and a much deeper result
of Rudnev, namely, Theorem These two bounds are foundations of our paper and its
combination allows us to obtain many asymptotic results of this section and of further
sections. We finish this section by discussing some asymptotic sum—product results from
SLo(F,), see, e.g., [7], [9], which counterintuitively appeared before any asymptotic sum—
product theorem in IF,. In the next section we prove, among other results, Theorem [3]
which can be considered as an analogue of the discussed asymptotic result from [9]. In
Sections Bl [B we study the quantities from (fl), (6) and obtain new bounds for multilinear
exponential sums. It allows us to improve some results of papers [6], [40], [31] while our
scheme of the proof is different. Section [ is devoted to an asymptotic version of the
Balog-Wooley [2] decomposition theorem. In Sections [§ @ we give a new application of
the celebrated Helfgott result [22] on the growth in SLo(F,) to sum-product questions
in F,. The main advantage of SLo(F,)-actions is that they give non-linear results
(because SLo(FF,) is naturally connected to points on hyperbolas) contrary to classical
linear incidences of Section Bl The first application of such sort was obtained in [32]. A
reader who is not interested in SL o(F,,) can skip these sections as well as the last one. In
the appendix we give our proof of Bougain—-Gamburd Theorem[E0as well as a consequence
of the famous Frobenius Theorem on representations of SLo(F,) for convolutions.
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2. NOTATION
In this paper p is an odd prime number, F, = Z/pZ, and F; = [, \ {0}. We denote
the Fourier transform of a function f : F, — C by j/’\,
(13) F©) =3 f@e(~¢ 2
z€F,

where e(z) = €>™#/P. We rely on the following basic identities. The first one is called
the Plancherel formula and its particular case f = g is called the Parseval identity

(14) > [ Z f©7(@).
z€F, 56]F
Another particular case of ({4 is
(15) S| Y r@et-o| = 3 Ifi©
yeF, xz€F, £EIF
and the identity
(16) Z G
561F

is called the inversion formula. Further, let f,g: F, — C be two functions. Put

(17) (fx9)(@):=>_ fly)g and =Y fWely+=).
y€F, yeF,

Then

(18) Frg=J3 and fog=fg.

Put ET (A, B) for the common additive energy of two sets A, B C F, (see, e.g., [57]), that
is,

E+(A,B) = |{(a1,a2,b1,b2) €EAXxAXxBxB :a1+b = a2—|—b2}|.
If A = B, then we simply write E*(A) instead of ET(A, A) and the quantity ET(A) is
called the additive energy in this case. Clearly,

EF(A,B)=) (A*B)(x)*=> (AoB)(z)> =) (Ao A)(z)(BoB)(x)

and by (I5)),
1 -
(19) ==Y JAQPIB()
L
Also, notice that
(20) E™(4, B) < min{|A]*|B|,|B*|A|, |A]*?|B|*/?} .

Sometimes we write ET(f1, fo, f3, f4) for the additive energy of four real functions,
namely,

EN(f1 for f3 fa) = D Ail@) fa) fs( + 2) faly + 2) -

T,Y,2

Thus E*(f1, f2, f3, f4) pertains to additive quadruples, weighed by the values of fi, fa, f3,
fa. Tt can be shown using the Holder inequality (see, e.g., [57]) that

(21) EX(f1, fo, f3, f1) < (EF(f1)ET (f2)EF (f3)EF (f)/2.
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In the same way define the common multiplicative energy of two sets A, B C IF,,
EX(A,B) = |{(a1,a2,b1,b2) EAXAXBXB : aiby = a2b2}| .

Certainly, the multiplicative energy E* (A, B) can be expressed in terms of multiplicative
convolutions similar to (7). Further, the definitions and the formulae above take place
in an arbitrary abelian group G. If there is no difference between E* and E* or this is
the only operation on the considered group G, then we write just E.

Sometimes we use representation function notation like r4p(x) or 744 p(x), which
counts the number of ways x € I, can be expressed as a product ab or a sum a + b with
a € A, b € B, respectively. For example, [A| = 74_4(0) and ET(A) = rata-a-4(0) =
Sorhia(@) =3, 4 4(2). In this paper we use the same letter to denote a set A C T,
and its characteristic function A : F,, — {0,1}. Thus ra4p(z) = (A * B)(x), say. Having
P C A— A we write op(A) := > cpra—a(x). Also, we write fa(x) for the balanced
function of a set A C F,, namely, fa(z) = A(x) — |Al/p.

Now consider two families of higher energies. First, let
(22)

1 N
TH(A) = {(ar,...,a,d),...,a}) € A%+ aj+- - dap = aj+ - +al}| = ;Z |A(€)?.
13

It is useful to note that
Th(A) ={(a1,... a2, a,...,ah,) € A* ¢ (a1 + -+ ak) + (a1 + - + azi)

= (ay + -4 ap) + (- +ady)}

(23) = rea(@)rra@)rral@ + 2)rraly + 2)

T,Y,2

so one can rewrite T3, (A) via the additive energy of the function rya(z). Sometimes
we use T, (f) for an arbitrary function f, again T, (f) pertains to additive 2k—tuples,
weighed by the 2k values of f. It is easy to check that

(24) T < IFIRTEL ()
and hence by the Parseval identity

(25) TE) < IR 20003 -

Further, counting the trivial solutions a; = a;» to equation (22)), we have

(26) TH() = IIFI5

(another way to see that the last equality takes place is to apply the Holder inequality
to [22) starting with T1(f) = || f]|3 and apply the Parseval identity). Second, for k > 2,
we put

(27) Ef(A) =) (AoA)(@)f =) rh_4(e) = ET(Ax(A), 4Y),
w€F, w€F,
where
Ap(A) :={(a,a,...,a) € AF}.
Thus EJ (4) = T3 (A) = E*(A). Also, notice that we always have |A|* < Ef (A) < |A[FH!

and moreover

(28) Ef(A) <|AF'EF(A) WI<k.
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Finally, let us remark that by definition ([27) one has Ej (A) = |A|. Similarly, one can
define E*(f) for an arbitrary function f. From the inversion formula and the Parseval
identity, it follows that

(29) EFH=p""" > [f@)P. . f@) >0.

z1+--+xp=0

Some further results about the properties of the energies Eg can be found in [46]. Again,
sometimes we use Ef(f) for an arbitrary function f and the first formula from (27
allows us to define E; (A) for any positive k. It was proved in [49, Proposition 16] that
(Eff (f))/?* is a norm for even k and a real function f. The fact that (T} (f))/?* is a
norm is contained in [57] and follows from a generalization of inequality (21I).

We write d{z} =1 if x = 0 and é{z} = 0 otherwise.

All logarithms are to base 2. The signs < and >> are the usual Vinogradov symbols.
If we have a set A, then we will write a < bor b 2 a if a = O(b-log®|A]), ¢ > 0. When
the constants in the signs depend on a parameter M, we write <,; and >,;. For a
positive integer n, we set [n] = {1,...,n}. We do not normalize L,—norms of functions.

So, || fll, = 2, \f(x)|p)1/p for any complex function f.

3. PRELIMINARIES

First of all, we need a general design bound for the number of incidences. Let P C Fg
be a set of points and II be a collection of planes in Fg. Having 7 € P and 7w € II, we
write
1 ifgem,

0 otherwise.

7(r.m) = {

So, Z is the |P| x [II| matrix. If P = F3 and II is the family of all planes in F2, then we

obtain the matrix Z and 7 is a submatrix of Z. One can easily calculate T7TandZIT
embedding Fg into the projective plane IP’IFZ and check that both of these matrices are of
the form ald + b1, where a, b are some scalar coefficients, Id and 1 are an identity matrix
and all-ones matrices of corresponding dimensions; see, for example, [58,[59]. Moreover,
one can check that in our case of points and planes the following holds: a = p? and
b=p+1 (see [(HI]). In view of these facts and using the singular decomposition (see,
e.g., [23]), we have
min{|P],[IT|}
Irm) = > wyu(r)o(r),
j=1

where ;1; > 0 are square roots of the eigenvalues of 77 (which coincide with square roots
of non-zero eigenvalues of ftf) and u; and vj, are the eigenfunctions of 77’ and ftf,
respectively, j = 1,...,min{|P|, [II|}. Put @ := min{|P|, [II|}. From 1T = p?Id + (p +
1)1, we obtain
pi=p+@+1)Q and pp=...=pg=p
and
w(r)=(1,...,1) e R? and w () =(1,...,1) e R>{PLMI}

Hence we derive that for any functions f : P — C and ¢ : II — C, supported by only P
and II, respectively, one has
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Q

oD Z(rm)f(r)g(m)| = | D wslfrudlg.v)

r€P Tell j=2

> D I(rm)f(r)g(m)| =

reP well

Q
< pz |<f7’U:j><g,'Uj>| )
j=2
provided that

(30) Zf(r)zo or Zg(w)zo.

qeP mell

Using the Cauchy—Schwarz inequality we now see that under the condition (B0]) we have

(31) S>> Z(rw) (M| < pllfl2lgll2.

reP well

where, as usual || f||2 and ||g||2 are the L?-norms of functions f and g, respectively. Of
course, similar arguments work not just for point/plane incidences but, e.g., point/line
incidences and so on.

A much deeper result on incidences is contained in [43] (or see [37, Theorem 8] and the
proof of Corollary 2 from [34]). In the proof of formula (B3] one should use an incidence
bound from [36], Section 3].

Theorem 10. Let p be an odd prime, let P C IF;’, be a set of points, and let 11 be a
collection of planes in ]F;O’J. Suppose that |P| < |I1] and that k is the mazimum number of
collinear points in P. Then the number of point/plane incidences satisfies

11
(32) I(P,II) < 'Pp' R

More precisely,

|7’|| |

(33) Z(P,10) - < |PV2[11] + K|1I].

Corollary 11. Let o, 5 be nonfnegatwe functions, let C C F,, be a set. Suppose that

@) maxlal 8l ol 18l ol Bl el 315" < 12 < g2
and put L= og( o |8111C1/(lall18]2))- Then

# et - LR oo alaisieicr?

and ’

3) Yo - LR o s ataistaior?,

Proof. We obtain ([BH) because the proof of (B8] is similar. Let f(x) = C(x) — |C|/p.

then h _ (el l8llc)? yh
« ,8 Cl)

Split the level set of o, 8 into level sets Pj( ), Pi(B) Where the functions «, 3 differ
at most twice, correspondingly. Clearly, there are at most L such sets because if, say,
a(z) <e:= 272|017 2Bl |all2l|B]2, then

ellalll[CIPIBIIE < 272 1CP 2 lallulIBll lel2llBll2
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so it is negligible and hence the inequality 27 < ||a||; gives the required bound. Using
the pigeonhole principle and positivity of the operator 7;_ ;(z —y), we find some A4, Ap
and A C Pj(«), B C Pj(f) such that

o= Z’r‘iﬁ_,’_f(ilf) < L4A,24A2B ZT124B+f(I) .

On the one hand, in view of (BI)) the last sum is bounded by
(37) o < L*AALp|FI5AIlB| < L*A% A%p|AlBlIC].

On the other hand, using Theorem [I0] (one can consult paper [I])

Al%|B|?|C?
3 ta) - ALIBEICE S

[A]?|B]?|C]?
<« —————— + (JA||BI|C])*"* + | A||B||C| max{| Al, | B|,|C]}
If the second term in the last formula dominates, then we are done. If the first term is
the largest one, then p < (|A||B||C|)!/? and (B7) gives us

o < L*A%ARpA||B||C] < L*AZAR(JA]BIICN*? < LY|all]| Bl |all]Bll2|C1*2,

as required. Finally, condition (B4)) implies that the third term is negligible. This com-
pletes the proof. O

Now we obtain a simple asymptotic formula for the number of point/line incidences
in the case when the set of points form a Cartesian product.

Lemma 12. Let A,B C F, be sets, |A| < |B|, P = A x B, and let L be a collection of
lines in IF%. Then

(38) (P, L) —

Al|B||L
% < AP BM2|LPA 4 |2| + |A|| B

Proof. Let f(x) = B(z) — |B|/p be the balanced function of the set B. Then, using the
natural notation, we get

(P, L) =

Al|B||L
AP 776 4.z,

where we count the number of incidences with the weight f (JJ)A(a) or, in other words,

FOAL) =Y > f) ).

leL r=(z,a)
Using the design bound for point/line incidences, we obtain
(39) I(f @ A, L) < || flla(plAII£])? < (plAl|BIIL])?.

By an analogue of the Szemerédi-Trotter theorem in F,, see [54] (or [34, Theorem 7],
[37, Theorem 9]), we have

(40) I(f © A, L) < |AP/BIV2 L) + || + |AllB,
provided |A||£] < p?. But if |A||£] > p?, then by ([B9), we see that
I(f @ A, L) < (p|AlB||L))? < |AP/4BIY? |
and the last bound is even better than ([@0). This completes the proof. |

We need a lemma from [51l Lemma 9] which is a consequences of the main result from
[43] or Theorem [T0l
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Lemma 13. Let A,Q C F, be two sets, A,Q # {0}, let M > 1 be a real number, and
QA < MIQ|. Then

2104 3/2|10)13
(41) EF(Q) < C. (MPQ' + M|A|1|f§| ) ,
where C, > 1 is an absolute constant.

The second lemma can be obtained in the same vein.
Lemma 14. Let A,B CF,, and |A+ B| < K|A|. Then
K?|AP|BJ?

p

(42) E*(1/A,1/B) — < K4 AP/ B)3? + K2|AP .

Proof. Indeed, for any «, 8 the following holds:

1 1\ e )
<E+E) “a+s TP aTE

Hence
ET(1/A,1/B) < [{b1 —bjz =by — b3y : bi,bo € B,z,y € (A+B)"'}| =Z(P, L),

where P = (A+ B) x (A+ B), L = {ly, »,}, and line I, p, is defined by the equation
by — b2z = by — b2y. Applying Lemma 2, we get

|A+ BJ*|BJ?
p

I(P,L) — < |A+ B4 BP*? + B>+ |A+ BJ?.

Clearly, |B| < |A+ B| < K|A| and hence

K2|A]2|B|?
E*(1/A,1/B) — KAFBE K34 AP/4BI3? + K2|AP?,
p

as required. 0

The next result is a slight generalization of [51, Lemma 10].

Lemma 15. Let f be a real function and let P C ¥, be a set. Then for any k > 1 one
has

4
(43) <Z r’}_f(x)> < IFII2*E3 (HET(P).

zEP
Proof. We have

(ZT.’?—f(@) = Z fog Z nfy+z1).. fly+zr)

rEP

2

<A >0 D PWFy+a) .. fly+a)l =£13 er pla)rf_s(@).

L1y Tk

Hence by the Cauchy—Schwarz inequality, we obtain

4
(Z ’”?—f(fl?)) < IFI3"ESL (NEF(P),

reX

as required. O
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Let A, B,C, D C T, be four sets. By Q(A, B,C, D) we denote the number of collinear
quadruplesin A x A, Bx B, C x C, D x D, that is, the number of quadruples of points
from the plane ]Ff) lying on a line such that the first point belongs to A x A, the second
point belongs to B x B, and so on. If A = B = C' = D, then we write Q(A4) for
Q(A, A, A, A). Recent results on the quantity Q(A) can be found in [39] and [37]. It is
easy to see (or consult [37]) that

(44)
/A VA L
Q(A,Bp,D):Hb o@_cd-d _dza a,a’eA,b,b’eB,c,c’eC,d,d’eDH

b—a c—a d—a

(45) = > Y 1B-a)B-a) @) C—a)/(c—a) (@) (D—a))(D—a)(T) -

a,a’€A T

Notice that in ([#4]), we mean that the condition, say, b = a implies ¢ = d = b = a or,
in other words, that all four points (a,a’), (b,b'), (¢, '), (d,d") have the same abscissa.
More rigorously, the summation in ([@5]) should be taken over [, U{+o00}, where & = +00
means that the denominator in any fraction z = bl;:‘;/ from, say, r(p_q)/(B—a’)(¢) equals
zero. Anyway, it is easy to see that the contribution of the point 400 is at most O(M?3),
where M = max{|A|,|B|,|C|,|D|}, and hence it is negligible (see, say, Theorem2labove).
Further, defining a function ¢4 g.c.p(z,y) (see [37]) as
b—a d—a

(46) ga.B,c,p(Z,Y) == H =z, =y :a€A beB,ceC,de D}
c—a c—a

b

we obtain another formula for the quantity Q(A4, B, C, D), namely,
Q(A7 37 Cv D) = Z q‘»24,B,C,D(‘/L.7 y)
Ty

because
2
Z QA7B,C7D(xa Y)
x,y

b—a V—d d—a
:Z =T = ; =Y
c—a d—a c—a
z,y
d—d
= :a’a/EA,b,b/EB,c,c/eC,d,d’eDH
cC —a
b_ b/_ / d_ d/_ /
:‘{ = = / a/’ 2 = / a/ :aaa/EA,b,b/EB,C,C/EC,d,dIED}‘
c—a —a c—a —a
b/_ / /! d/_ /
:‘{b a :C a — d a :a/7a‘/€A’b7bI€B7C,CI€C7d,d/ED}‘
—a c—a —a

= Q(A,B,C, D).

An optimal (up to logarithmic factors) upper bound for Q(A) was obtained in [37],
[39]; see Theorem [ from the introduction. We need a simple lemma about the same
bound for a generalization of the quantity Q(A). The proof is analogous to the proof
[52] Lemma 6] and [50, Lemma 5].

Lemma 16. Let A, B CF, be two sets, |B| < |A| < /p. Then
(47) Q(B, A, A4, A) < [A[/4]B[*log? |A] + T(A).
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It is known [I, Proposition 2.5] that T(A) < |A|%/2, provided |A| < p*/3 (also, see
Theorem [l from the introduction). So, the term T(A) in X)) is negligible if A and B
have comparable sizes, say.

Proposition 16 from [44] contains a combinatorial lemma; see Lemma [I7] below.

Lemma 17. Let (G,+) be an abelian group. Also, let A C G be a set, P C A — A,
P = —P. Then there is A, C A and a number q, ¢ S |A.| such that for any x € A, one
has rayp(x) > q, and ZwePrA—A(I) ~ |A.lq.

Another combinatorial result is [44, Theorem 13].

Theorem 18. Let (G, +) be an abelian group. Also, let A C G be a set, let K > 1 be
a real number, and let k > 2 be an integer. Suppose that ET(A) > |A|>/K. Then there
are sets A, C A, P C A — A such that |A| > |A|/(8kK), |P| < 8kK|A| and for any
ai,...,ar € Ay one has

A

(48) AN (P +a) NN (P +ar) >

We need a result on the energy of a set which is obtained using the eigenvalues method;
see [A7], [48], [37], [38]. In this form an analogue of the result above appeared for the first
time in [37, Theorem 28]. One can decrease the number of logarithmic factors slightly
but it is not our aim.

Theorem 19. Let A be a finite subset of an abelian group (G,+). Suppose there are
parameters Dy and Doy such that

Ef(4) < Dy|AP?
and for any finite set B C G
E* (A, B) < Dy |A||B>2.

Then
E*(4) < DY D3/ AP/ 13 10g"2/15 | 4.

It is implicit in the proof of Theorem [I9 that the bound for E(A, B) only needs to
hold for |B| < 4|A|*/ET(A).

Theorem [I9 implies the following bound for the multiplicative energy of a subset of
F, with large additive energy.

Corollary 20. Let A C F, and E*(A) > |A|?/K. Then there is A. C A, |A.| >

|A|/(16K) such that for any B C T, the following holds:

K*AP|BJ?
p

(49) EX(A., B) < + K72|B]*2 |4,

and if |[A|K < /p, then

(50) EX(A,) < K2/ AP log? | Al.
In particular, if |A|K < /p, then
(51) EX(A*) s K83/26|A‘32/13.

Proof. Applying Theorem [I§ with k& = 3, we find two sets A, C A, PC A— A, |A| >
|Al/(24K), |P| < 24K|A| such that for any a;,az2,a3 € A, one has

(52) |Aﬂ(P—|—a1)ﬂ(P—|—a2)ﬂ(P—|—a3)|Z%.
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Then
(53)
E* (A, B) < (|AI/4K) 2 [{(a—p)b = (a —p) : a,a’ € A, b, € B, p,p/ € P}

Clearly, the number of the solutions to equation (E3) can be interpreted as point/plane
incidences. Hence applying Theorem [I0] we obtain
(54)

x 5 (|AP|BI?PI? 3/2
B (A, B) < (Al K) 7 = =+ (ANBIPD™ =+ Al Bl Pl max{|A], [B], [P]} ]
In view of the desired bound (@) one can assume that |B| > K7, |A| > |B|'/?K"/?
(otherwise trivial bounds (20), namely, E*(A., B) < min{|A||B|?, |A|?|B|} work bet-
ter). Also, (52) implies, trivially, |P| > |A|/(4K) and we can assume that |B| <
4|AI*JET(A) < K|A|. Thus it is easy to check that the third term in (54) is negli-
gible and using |P| < K|A|, we obtain (£J).

To prove (BU) we notice that in view of (52) and (@) one has

ES(A) =Ha/a' =B/B" =7/ + a,a',8,8,7,7" € A}

b—a c—a d—a

{b/ =g a,a’ € A, bV, c,c,d d e PH
< (|Al/K)7*Q(A, P, P, P).

Suppose that |A| < |P| < /p. One can assume that K < |A[*/23 because otherwise there
is nothing to prove. It remains to estimate Q(A, P, P, P) and we have by Lemma [T0] that
(55) Q(A, P, P, P) < |P|**/*|A]"/*log® |A| + T(P).

Thus in view of T(P) < |P|*/?, see [I, Proposition 2.5], the second term in (5H) is
negligible. Then applying Lemma [[6] and the bound |P| < 24K |A|, we obtain (B0). If
|A| > |PJ, then we get an even better estimate for EJ (A.). Finally, using Theorem
M9 we derive from (@), (50) the desired bound (EI)) (because |B| < 4|A|*/E*(A) and
|A|K < |/p we see that the second term in (49) dominates). This completes the proof. [

(|Al/4K) =

In [38] some better bounds for the energy were obtained (for the reals and the case
of multiplicative subgroups) but they work in a situation which is opposite to Corollary
20, namely, when the product set (not the sumset) is small.

Now consider the group SLo(F,) of matrices

g—(ccl Z), a,b,c,d € Fp, ad —bc=1,
which acts on F,, (actually on the projective line) by
az+b
= — F,.
gz ot d’ zely

There are two important subgroups in SLo(F,). Let B be the standard Borel subgroup
of upper—triangular matrices, namely, elements of B are

b=b, = < A > . q€F,, reF,\{0}.
Also, let U C B be the standard unipotent subgroup. In other words, elements of U are
1
u:uqz(o (11>, qgeF,.

Having a group which is acting as a set, one can define a convolution which slightly
generalizes the ordinary convolution.
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Definition 21. Let F' : SLo(F,) — C and f : F, — C be two functions. Define the
convolution of F'* f : F, — C as

(Fxf)@):= Y  Flg)flg ).

g€SL 2 (F)

Let us mention a well-known lemma (see [9], [2I], [45], and other papers) on con-
volutions in SLy(F,) which follows from the well-known Frobenius Theorem [20] on
representations of SLo(F,). For the sake of completeness we add the proof of this lemma
in the appendix.

Lemma 22. Let f : F, — C be a function such that )" f(x) = 0. Then for any function
F :SLy(F,) — C and ¢ : F, — C one has

(56) Y (F = f@)e@) < 2] Fllallell] £z

z€lF,
Finally, we need the classification of subgroups of SL o(IF,); see [55].

Theorem 23. Let p be a prime and p > 5. Then any subgroup of SL o(FF,) is isomorphic
to one of the following subgroups:

(1) finite groups Ay, S4, As,

(2) the dihedral groups of order 4 (%) and their subgroups,

(3) a Borel subgroup of order p(p — 1) and its subgroups.

We finish this section recalling the celebrated result of Helfgott [22] on the growth in
SL o(F,).

Theorem 24. Let A C SLy(F,). Assume that |A| < p3>~% for § > 0 and A is not
contained in any proper subgroup of SLo(Fy). Then there is a positive function k(§) > 0
such that

|AAA| >5 |AMTO)

4. FIRST RESULTS

Throughout this section I' is a multiplicative subgroup of Fy. Such subgroups were
studied by various authors and many deep results about subgroups were obtained, e.g.,
5], [8], [12], [30], [51], and others. In this section we find upper bounds for T, (f), Ef (f),
and for the exponential sums over f, where f is an arbitrary I'-invariant function, that
is, f(axy) = f(x) for all ¥ € T (so the value of f(0) can be arbitrary). Recall that for a
function f, we put

TH(f) = > F@y) . fla) f(@) . flah) -

1t Fap=a)+ Ty

The main difference between our new theorems and results from [51] is, first, that we
consider general functions f and, second, the absence of any restrictions on size of support
of f (but not on size of I, of course) similar to R where we have no such restrictions; see
our previous paper [51].

We begin with the quantity T} (f) and we use T3 (f) in bounds below to make our
results sharper. Of course, one can replace this quantity to || f||3/| f||3 (see formula (25]))
or by something even smaller using Lemma [T3]

Theorem 25. Let f be a I'-invariant complex function with ), f(x) = 0. Then for any
k > 1 one has
ok+1

(57) TH(f) < 2% (Clog* p) 1 - I F12 4T =2 T (),

where C, 1s the absolute constant from Lemma [I31
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Proof. For k = 1 bound (B7)) is trivial, so below we will assume that k& > 2. Fix any
s>2and put L = Ly := slogp. Our aim is to prove

(58) T3.(f) S 128C LY fIFTH(HTITV2.
After that we use induction and obtain

—(k=1)

— — —_ - k e
TH(f) < (128C, ) L log" =1 p . 2= D (k=) 2) ) g 2o P =5 T f)

gk+1

2 _ _ _ (A—Fk)
2RI (Clog )M ST DT TE(S)
2 _ k+1_ A—Fk)
<2V (Colog' )P THTTE T ()

and this coincides with (51).
To prove (B8]) we notice that by formula ([23]) one has

TL() = Y res@rss@)rep(@ + 2)rep(y + 2).
T,Y,z
Here as usual we have denoted by r¢(z) the function r¢...; ¢(z), where the number of
f’s in the sum is s. We give two upper bounds for T3, (f) and first of all, notice that
from the last formula, it follows that T3,(f) equals

o:=|T|2 Z Z rsf(a)rsp(D)rsp(c)rs(d) - 6{a + v1b = ¢+ yod}
¥1,72€l a,b,c,d

plus the term £ which corresponds to a, b, ¢, d equals zero (see below). Consider the set
of points P C I3, each point p indexed by (71, ¢, d) and the set of planes IT C F indexed
by (a,b,72) and each ™ = 74+, € II has the form 7 : a + 2b = y + 722. Then in terms
of formula (BI]) one has d{a + 710 = ¢+ v2d} = Z(p,7) for p = (71, ¢,d) and ™ = 74 b ~,-
By the assumption ) f(x) = 0. It follows that > 7,¢(z) = 0 and hence

(59) o =T fr(y)fr(r) Y rsp(@)rsp(O)rsp(e)rss(d) - {a+mb = c+r2d},
Y1,72 a,b,c,d

where fr(z) = T'(z) — |T'|/p is the balanced function of I'. In a similar way, considering
for all non-zero « the function R(z) = [~ 3 fr(y)rss(zy~"), we obtain

o=I017" Y e fe(e)fr(e)fe(ra) Y rap(@)rsp(b)rss(e)rss(d) - 6{ma+ b

Y1,72,73574 a,b,c,d
= y3¢ + Y4d}
(60) =Y R(@)R(y)R(z+2)R(y + ).
T,Y,z

Clearly, R(0) = 0; further R(z) = rss(x), * # 0, and ||R||oc = ||7sf]|co if one considers
the function 74y as a function on F, only. Also, notice that || fr||; < 2|I'[ and hence
IRl < O Hlrspllallfoll < 2llrsplle < 2017115
Now put p = T4,(£)/(64] f[[%). Since

Y. R@R@)R+ )Ry +2)| < 8pll ¥ = T5()/8,
2.7 ¢ [R@)<p

it follows that
3 « 3
+ < Z b
TH(P) <5 3 R@RGRE + )R +2) + ¢,

Z,Y,2
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where the sum 3 above (we denote it as Ty, (f)) is taken over non-zero variables z, y, 2+
2,y + z with |R(z)|, |[R(y)|, |R(x + 2)|, |R(y + z)| > p and by (24))

& < dfrs5(0) erf Y)rsg(2)rsg(y + 2)| < drg g O)IFISTS ) < ALFIBIAR TS

(notice that £ can be non-zero even if f(0) = 0). Let us compare the obtained estimate
for £ with the upper bound in (B8). By the assumption f is a I'-invariant function and

hence ||f|l1 = || E&F;/F [£(&)], as well as
(61) IF1I3 =101 > [F©P < [T -
g€Fs /T
In particular,
(62) € AfIFTIAINT < AIFIFTEOI2.
Thus the obtained estimate for £ is much smaller than the upper bound for T3, (f) in
(B8)). Hence if (B8) holds, then there is nothing to prove and in the opposite case, we get

so it is negligible. Also, we can assume that T5,(f) > 0 because otherwise there is
nothing to prove. _

Put P; = {z : p27~ <|rgs(x)| < p27} CF;, j € N. By @26), we have T (f) > || f]I3°.
If (58)) does not hold, then, in particular,
(64) T30 = 27 AT NITIY2 = 27| fII L 13 T2

and hence the possible number of the sets P; does not exceed L. Indeed, for any x
one has |ror(z)| < || FII572If113 and hence p27=1 = 27="TF (f)| f]I7** must be less than
I £1I572(If||3 otherwise the correspondent set P; is empty. In other words, using the
Hélder inequality one more time, as well as bound (64]), we obtain

2T < IFIPTII3/TE ) < IR 2 22 /2T
<UD/ < 2,
as required. By the Dirichlet principle there is A = p270~1 and a set P = P;, such that
3 3 3
(65) TLU) < ST'QAYER(P) + 56 = To(f) + 3¢
Indeed, putting g;(x) = P;(z)rss(x), and using (IZI:I) we get

/

D rsp@)rspW)rss (@ + 2)rsp(y + 2) Z > 9i@)gi (W)gu(z + 2)gi(y + 2)

T,Y,% l]kl 1 z,y,z
L L 4
< > (EF(GET()E  (gn)EF (@)t = (DE*@»)“)
i,7,k,l=1 i=1
L
< L?) Ef(g;) < L*maxET(g;).
=1

Certainly, the sum . B(@)R(y)R(z + 2)R(y + z) can be estimated in a similar way
and one can check that all functions R;(z) = |71 3, fr(y)ri(zy~") have zero mean
and || R;lco < ||7i]loo- Moreover we always have |P|A? < T (f) and

(66) PIA <Y g @) <D Irsp(@)] <Y rgp(@) = I£15 -

zEP
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Using Lemma [I3] we obtain

Pt |P]?
ET(P)<C, 1217 .
er=e (U

Hence

(67) T4 (f) < 3(16C.) L (

A4‘P‘4 A4‘P‘3
IT[1/2
Suppose that the second term in (67) dominates. Then in view of |P|A? < TF(f) and
IPIA < |[fII5, we have
[PPAY = (PA)?PA* < [|fIFTE(S).
In other words, the second term in ([G7) does not exceed
(68) B(L6C)LY|IFII7° T ()02,

and inequality (B8) (also, recall bound (62))) is proved.

If the first term in (67) dominates, then we notice that |P||T[*/? > p and use another
bound. By ) fr(z) = 0, formulae (59), (63), and (BI)), as well as the last estimate, we
have

(69) To(f) < 3-8L*p(4|P|A%)2|D|~! = 3. 27LYPPAY T~ < 3-16LY|P[PA* | ~1/2

for || > 2°. Of course quantity (@) is less than the second term in @7). If |I'| < 2,
then it is easy to check that ([&1) takes place. Combining the obtained bound (69) with
([68), we see that in any case

To,(f) < 6(16C.) L*| FIIF T ()T 2.
Finally, using (G2]), we have
T5.(f) S 18O LY P T (HIDIV2.
This completes the proof. (Il

Now we are ready to obtain an upper bound for the exponential sums over any I'-
invariant function f.

Corollary 26. Let I' C Fy; be a multiplicative subgroup, |I'| > p’, 6 >0, and let f be
a I'~invariant complex function with )" f(x) = 0. Then for all sufficiently large p one
has

~ _ 58
(10 max |[F©) < 17l -p 75
Further we have a non-trivial upper bound o(||f||1) for the mazimum in [CQ) if
Clogp
71 log IT'| >
() og|T| 2 - 2EL

where C' > 2 is any constant.

Proof. By p denote the maximum in ([{0). It is attained at some non-zero £ because
>, f(x) = 0. Then by Theorem 25 a trivial bound which follows from (25]), namely,
T3(f) < |IfI211 113 and formula 22), we obtain

k41 2 _ k+1_ (A—k)
(72) ITp™ " <pTH(f) <p2* (Culogp)* - I FIT 2SI =
Using formula (€1]), we get
k+1 2 _ k+1 _ (k+3)
Dlp* < p2®% (Culog' p)* ' |IfIF |02
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Put k = [2logp/log |T| + 4] < 2/§ + 5, say. Also, notice that

p10g4(k71)p -1

(73) m—k/Q =

because k > 2logp/log |T'| + 4 and p is a sufficiently large number depending on ¢ (the
choice of k is slightly larger than 2logp/log|T| to “kill” p by division by |T'|*/2, as well
as logarithms log4(k71)p). Taking a power 1/2*+! from both parts of (T2), we see in
view of ([73)) that

5 - 55
P Hf“l ) |F‘ 2 L ”le D gT+26- 1

To prove the second part of our corollary just notice that the same choice of k gives

something non-trivial if 2¥ < elog|T'| for any € > 0. In other words, it is enough to have

2logp
< —== +5<loglog |T'| —log(1/e).
< gy 10 < loslos] | —log(1/¢)
It means that the inequality log |T'| > C'logp/(loglogp) for any C' > 2 is enough. This
completes the proof. | |

Let us obtain a new general bound for E;} (f).

Theorem 27. Let f be a I'-invariant function real function with ) f(x) = 0. Then
for positive integer k > 2 either

2k+1

Egir (f) < 3202 (L4 Tog(If I L £l DILAIE ES ()T

or
ok+2

g () < 20I£113
Here C, is the absolute constant from Lemma [[3l. In particular, if k is chosen as

(74) 01555 > 3203741+ log(IF I LAl O AR,

2k+2

then ES., () < 2| 113

Proof. Fix an even integer [ > 1 and prove that either

(75) EL(f) <320 (1 + log(I £l )L£1I3 )L FIAES (f)T|~2/®
or
(76) EL(H) < 2] 7115

After that it requires the use of induction to see
—1\\k— k1493 o
Efen (/) < (32027 (1 log( £ ILA I ) AT+ L ()~ =7

4 _ _ k+2_ (f—
< (320 (L + dog (| FILIIF I3 D) E A1 SE (f) |~ /8,
Trivially, E(f) < [|£[1$]1 /] and hence

ok+2

IFI3 < Efen (F) < (320241 + log(I £ I £IZ ) L A1
Thus if

ok+2
2

IR

D15 > (32011 + og(IL AL £l D IR 122

k+2
thena CleaTIY7 E;_kJrl (f) S 2||f||% :
We give two upper bounds for Ej{l (f). First, let us remark that for any positive integer
n there exists a function F' such that

(77) ri_¢(x) =rp_r(z).
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Indeed, from the definition of the required function F' and formula (29) one has

F@P=p > |f)Pf) >0

Y1t tyn=x

and we can choose the Fourier transform of F' taking, say, a positive square root of the
left—hand side of the previous formula. It defines our function F' (but not uniquely, even
in the case n = 1 one can take F(z) = f(z) or F(x) = f(—x), say). In particular, by the
Parseval identity, we get

(78) IFIE=p IFE=p>" D @)l 1 Fwa)* = 1715

T yit-tyn=z

To obtain another proof of the last equality just substitute = 0 into ([{]) and notice
that (F o F)(0) = [|[F||3 =}_;(0) = (f o f)"(0) = || f||l3". Applying these arguments for
n =4l — 1, we obtain

4
ELCH) =D rp s} (@) Zf“f r@)rr_p(z).
T
By the assumption the function f is I'-invariant. Thus

EL() =10172 Y D Fa)f()F(e)f(d)- 5{a+mb=c+r2d}.

Y1,72€l a,b,c,d

Consider the set of points P C ]Fg, each point p indexed by (71, ¢, d) and the set of planes
IT C F3 indexed by (a,b,72) and each w € II has the form 7 : a 4+ 2b = y + y22. Then
we have as in Theorem that 6{a + v1b = ¢ + y2d} = Z(p,n). By the assumption
S, f(z) = 0. Besides ||[F|3 = || f||5 2. Hence by @I, we have

(79) Eq(H) < pllFISTIT

Now let us give another bound for EJ, (f). Put g(z) :rép_f(x), L=2+2log(||fl.lIfllz 1)

and E};(f) = EJ,(f) — | f]15!. We will assume below that Ef;(f) > 27*E];(f) > 0 because
otherwise the required inequality ([76) follows immediately. Similarly, we can assume
that Ej;(f) > || f]|3" because otherwise E,(f) < 2| f||3" and we are done. Further, put
pr =27 | IS fl % and Py = {2 p27 7 < g(x) < p27}. Clearly,

> gt @) < AT =27 18
z : g(x)<p

Thus the number of the sets P; does not exceed L. Indeed, for any x one has g(x) < || f||3
and hence 27~!p must be less than ||f||3' because otherwise P; is empty. Whence for
Jj=3

IS < 20D FIE 2 = 207 DA < 5

and j <242 log(HfH I £lI3") := L (if j < 3, then the last bound holds trivially). Notice
that log(|| f|l1]|f|lz*) > 0. Using the Dirichlet principle, we find a set P = P;, and a
positive number A = p2/°~! such that P = {z : A < g(z) <2A} CF} and

(80) (f) <203 rt (@) < 2Ll F13 Y 35 @) = |If13o

zeP zEP
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Applying Lemma [[8], combining with Lemma [[3] we obtain

P4 |P]? )”4

o < 2L2A)2 3"l (x) < 2220V LA £|L (B (F) ( TWEE

zeP

A6|P|4 A6|P|3)1/4

2 ~1/4 1 4
1) < 2RO DIEL ) (S + T

Suppose that the second term in (@) dominates. Since ! is an even number, we have
A|P| < Ef(f), A% P| < EJ,(f) and hence AS| P[> < (EJ,(f))®. It follows that

2L () < El(f) < 8CLIFISER(HIT
and we obtain (75). Now if the first term in (@) dominates, then |P||T|'/2 > p and
returning to (80), we have
wu(f) < 32LA%P|.
Multiplying this inequality by |P| and using A?|P| < EJ,(f), we get

|PIEL(f) < 32L(E5(f))°.

Recalling (79), applying the inequality |P||T|'/? > p and the last bound, we obtain
EL () < pllfIS DI < IPIAISITIY? < 32L £1I5 (B3 (N))2IT 2 (B ()~
Whence in view of the inequality Q*IEL(f) < E},(f), we have
EL(S) < SLYV2| B (HITI~H.

Thus we see that the required inequality (75]) takes place in any case. This completes
the proof. O

Remark 28. The upper bound in Theorem P7]is optimal. Indeed, let x(x) be the Legendre
symbol. In other words, if R is the set of quadratic residues and xo(x) is the trivial
character, then x(x) = 2R(z) — xo(z). Let T' C R be a multiplicative subgroup. Then
x(z) is a real I'-invariant function and ) x(z) = 0. By standard formulas for characters,
see, e.g., [3], one has for any k > 2 that Ef (x) = Y., (xox)*(z) = (p—1)F+(p—1)(—1)k ~
P* ~ [Ixl13*.

Remark 29. Let f be a real I'-invariant function with zero mean and let T' = || f{|1 /|| f]l 2-
By (6I) we have T > |T'|'/2. Choosing an integer k& = C'log T'/log|T| with sufficiently
large constant C' > 0, we satisfy condition (74), provided logT < |I'|. Under this

condition, we get
2k:+1

1l (maxl(Fo @) <22
It follows that
(82) max |(f o f)(@)| < 713 - (7)Y

Thus we have obtained a non-trivial upper bound for the quantity max,.¢ |(f o f)(z)| if

the condition
logT
log |T" _—
og || > loglogT
holds. Of course, the last bound implies logT < |I'|. Some applications of such sort of
bounds can be found in papers [4], [51].
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Corollary 30. Let I' C F) be a multiplicative subgroup, IT| > p°, and let f be a T~
invariant real function with )~ f(x) = 0. Also, let k be chosen as

(83) 0155 > (3202 (1 + log(If 1 £17 ) I £ 11 7112,
and s = [2log|| f|l1/log(|T'|/2)]. Then

k+s+2
Exrem (D <BIFIZ 2

Proof. For any integer [, we have

EX(f+1) = IFB + 12D+ Y vl e (@)

z#0,1
<2fI5 + D2 (@) -
z#0,1

Here we have used that Y. f(z) = 0. Further, for any o # 0,1 put f*(z) = f(a™'z).
Then

/() (@) = Tpopa(z = 1)
Take k such that
k-1 1/4 — _ _
015 > (320 (1 + Tog (| £ 1 £115 ) I £1131 71152
As in Remark 29, we have for any = # 0, 1

gk+1

|F| (max |( f)(y)|> < er fx = 2k+1 (fI)E;_kJrl (f))1/2 - E;r’wl (f) :

Here we have used the Cauchnychwarz inequality. Applying Theorem 27, we obtain

max |(f* o F)(y)] < IF13 - 2T~

Thus for any s, we have

ok+1

|2k+2+s

k+2+4s
Eernre g (FHD) S20FI15 7 T2+
Taking s such that

FIRQ/TD =112 22+ 13 2/IT)?) -

(ITl/2)° > 17117
or, in other words, s > 2log || f||1/log(|T'|/2), we obtain the required result. This com-
pletes the proof. O

For example, let f(z) = Q(x) — |Q|/p, where @ is any '-invariant set, log |Q] < |T'|.
Then k ~ log|Q|/log|T'| and s ~ log|@|/log|T|, so we have the same bound as in
Theorem [27] for more or less the same order I ~ k, s of the energy E;(f).

The next result shows that smallness of the energy Ez allows us to obtain upper
bounds for sums of types (B3 and (86). The arguments of the proof are rather general.
Estimate (86]) allows us to give an alternative proof of formula ([82). Also, putting s = 2*
and B = P in formula (88]) one can derive Lemma [T

Corollary 31. Let I' C F, be a multiplicative subgroup and let f be a I'-invariant
function real function with )" f(x) =0. If k is chosen as

k=1 4 _ _ _
(84) 0155 > (3204 (1 + Jog (L[l ll 1l D)) 1A £11 2,
then for any set B C F), one has

E+(B)\ /2
(85) P Y ole) < 111 (2p|—3(|))
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and for any function g : F, — C and a positive integer s < 2% the following holds:

2E*(B) > R

(36) < |Bllgl3I713 (W

Y (9o f) (@)

zEB

Proof. Denote by ¢ the sum from (85) and put u(z) = p~!|f(z)[2. Clearly,
o= Z(M x B)(z) .
r€EB
Then using the Cauchy—Schwarz inequality %k times, we obtain
k k_ k_
o < B (ke ix BY(@) = B LS (ko 0)(@)(B o B) (@)
r€EB T
Applying the Cauchy—Schwarz inequality one more time, as well as formula (29), we get
k41 k41_ _ k41 _
o® < |BPP TPEN(B)To(u) =p 7 BIF TPEN(B)ES(f)

2k+2

By our choice of the parameter k and Theorem 27, we have Ef, ., (f) < 2||f[3 and
hence

k41
2E+(B)>1/2
o < B3 (_

It remains to prove (B4). Using the Holder inequality twice, one has

2k+2 /g 4
<Z<go f)s(w)> < B/ (Zwo n* <w>>

rEB zeB
4

=[BP ST g g(ye) Yy +w) .y + )

Y15--5Ysk rEB

2
<|BI*" /g3 (Z(f o f)¥ (z)(Bo B><x>> <B4 g3 By (F)ET(B).

x

By our choice of the parameter k and Theorem 7], we have EJ,,, (f) < 2Hf||§k+2. Hence
k42
. e (25BN
> tgo @) < lalslsigel ()
r€EB
as required. O

Estimate (8Gl) shows that the smallness of E;(A) energy implies that the sums from
this inequality are small. It is easy to see that the reverse direction takes place as well.
Indeed, suppose to the contrary that E,(A) > M|A|™ for a parameter M > 1 and for
all positive integers n. Also, let [ be a positive integer and let P = P, be a set as in the
proof of Theorem 27 such that E;1(A) ~ |P|JAY! and A < r4_4(z) < 2A on P. Then
|P| 2 M, and using our assumption (let s = 1 for simplicity)

Ei+1(4) S Alop(A) < A'A||P||P|~° S |A[E(A)M
where € > 0 is a constant from our assumption. So, after ¢ applications of this argument,

we get
MIAI'™ < Brye(A) STAE(A)M T < A
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and hence after t steps such that M1 > |A| we obtain a contradiction and it means
that, in particular, E;;1(A) < M|A[*. For example, if M = |A|°, then E;;(A) < |A|'T?
for t > %, say.

5. ON SOME SUM—PRODUCT QUANTITIES WITH SIX AND EIGHT VARIABLES

For any set A C F,, let
(87)  D*(A) =Dz (A) := [{(a1 — az)(as — as) = (a) — a3)(a5 —ay) : a;, aj € A},
and more generally for k£ > 1

DF(4) i= (a1 — a2) ... (azk—1 — a3x) = (6 — @}) .. (ahy_y — ) : a, 0] € A}].
Clearly, Di(A) = ET(A). Sometimes, we need D} (A, B) for two sets A, B and even more
generally D («, 8) for two functions a, 3.

Our task is to estimate the quantities D*(A), D;(A). The quantity D*(A4) (and

similar D} (A)) can be interpreted as the number of incidences between points and planes
(see details in [1])

(88) (a1 = az)A = (a} — ay)p,
counting with the weights |[{ag—as = X : as,a4 € A}| and |{ay —a) = p : af,a) € A}|.
Theorem 32. Let A CF, be a set. Then

(9) D*(4) = A « (10g 421417 (E* (4)) 72

Moreover, for all k > 2 one has

| |4k

(90) DS (A) — o < (log [A]* 41272 "R ()2

Generally, for any non—-negative function o and B(x) = A(x), the following holds:

2k —k+2 k—1
(01) D} (e, ) M«L%nau 181022l llBl)> > E (o, )2

where L := log(Halll||5H1\A|/(H04||2||6H2))-
Proof. We have
“(A) = racaMra—a(wn(i, p),

where na4 (X 1) = >, 7a—a)x(%)7(a—a)u(x) . Consider the balanced function f(z) =
fa(x) = A(z) — |A|/p. Then we have

Al® Al®
D> _AF | +Z7“A AN ra—a(p)ng, s (A, w) 12‘ |

— f0
Our task is to estimate the error term o. Put L =log|A|. Splitting the sum, we get

L
o< 3 np s e ()
ii=1 A\pu

where by r%l (1) we have denoted the restriction of the function r4_4 on some set P;

with A; < TEL{)_A(/L) < 2A;, p € P; and A; > 0 is some number. Clearly, the operator
ny,r(A, 1) is non—negatively defined and hence

L
o< LZ anvfo" 1) 7",(4{) A(A)T,(ZZA(M .
J=1 \p
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By the pigeonhole principle there is some A = A; and P = P; such that

(92) o < LPA* ng (A p)P(N)P(p) .
Ap

Since )~ f(x) = 0, we derive from (88)) and (BI)) that

(93) o < L*p|A]?|P|A?.

Now we obtain another bound for . Using Theorem [I0, we get
A4 P|?
(94) o< L*A? (% + |A]P|P]*? + | A]*|P| max{| A], |P|}> :

Since P C A — A it is easy to see that the term |A|?|P|max{|A|,|P|} is negligible

comparable to |A|?|P|>/2. Suppose that the second term in the last formula dominates.
Then
o < L*JAP(A|P]) - (A%|P)Y/2.
Clearly,
(95) AP <30 4@) € 3o rasate) < AP
x x

and

A?|P| < Z r9 (2))? <EY(A).
Hence

o < L2 A]P(ET(A))Y/?
and we are done. If the first term in formula (@4) is the largest one, then p < |A||P|'/?
and inequality (@3) gives us
o < L*p|A]PA%|P| < L*|APA?|PP/2.

We see that it is smaller than the second term in ([©@4)) and hence we have proved (89).
Another way to bound (@2) is just to use estimate (33) of Theorem [0l
To obtain (@) we first, notice that

AS
p*(4)= A" | +ZTA ANra—a(p)ng, (A, p)

Al® Al®
= | +Z7‘f F)rp—p(ng,p (A, 1) 2—|7+0

and using the Dirichlet prln(:lple as above, we can find a set P and a number A such
that A < |ry_¢(p)| <2A on P and

o < LPA”D ng (A 1) P(N)P(p)
A1

(from the Fourier transform, say, it is easy to see that ns ¢(\, ) > 0 for any function f
but actually one can avoid this step of the proof). Second, we have

AIPI <Y lrpp()] < Z ra—a(z) + A2 /p) < 2|A]?
zeP
and

AP <> (rp-p(x)* <ET(f).
zEP
Thus one can refine the upper bound for o, namely,

o = D*(f) < LJAP(E (/)2
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Similarly as above, we get for any k > 2

Dy (f) < LAP*H(D_ ().

Hence by induction
(96) Dy (f) < LHA*=272 g ()2 < p A R () 2

If the third term in (Q4) dominates (we are considering the quantity D} (f) now), then
the term |A|**~2 appears but it is easy to check that it does not exceed the last estimate
in ([@6) because ET(A) > |A|%. Finally, to obtain (@) use Corollary [Tl to estimate the
required number of incidences with weights «a, 8. Using

(97) E*(, ) < min{|lall2]|Bllz el |8l [l BIIAIE, el 11813}

as well as E*(a, 8) > ||a||3]|8]|3 (at other steps of our iterative procedure similar bounds
work) and |laf]y > |||z for a(x) > 0, one can check that all conditions (34]) are satisfied.
This completes the proof. O

Remark 33. Similarly, one can obtain an upper bound for the quantity
D'(A) = |[{a1a2 + asas = ajaly + a4aly : a;, a; € A},

as well as for higher energies D, (A) = T, (raa), D}(A, B), and even D) (a, ) for an
arbitrary non-negative function a and 3 = A(x). In this case ET in (89)—(@I]) should be
changed to E*. Notice that our bound for D} (A) is better than the correspondent bound
in [6l, Theorem 2]. Some additional conditions on A and k are required in [6].

Is is easy to see that our error term for D} (A) cannot be significantly improved for
large k. Indeed, considering A to be a small interval [n], we get |[AA| > |A]*~¢ and
|kAA| < |A|>. Hence one cannot obtain something better than a quadratic saving for
the error term.

Remark 34. The same method works for convex sets [25] in the real setting where one
obtains

_9_o—k+3 k—2 _ —k+1
Ti(4) < (log [AD*|APF 7272 TTEH(A) 2 < (log | A]) AP

for any convex set A, and we have used that E*(A) < |A[>/2. This coincides with
the main result of [25] up to logarithmic factors. Applying the best known bound for
the additive energy of a convex set (see [48]), namely, E*(A) < |A]*2/13, we obtain an
improvement.

The theorem above immediately implies a consequence on the growth of the products
of the differences (here we use a trivial upper bound for the energy E*(A) < |AJ3).

Corollary 35. Let A CF, be a set. Then for any € > 0 and an arbitrary integer k > 1
one has

(A — A > min{p, |A]>2 "~}

Another quick consequence of Theorem B2lis (also, see Section 4 from [37]) the follow-
ing.

Corollary 36. Let A C T, be a set, |A| < p°/'6. Then
(A= A)(A— A)| > min{p, |A*/**}

where ¢ > 0 is an absolute constant.
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Proof. By Theorem [B2] and the Cauchy—Schwarz inequality, we obtain
A 8
(98) AP <@ (5w 1ap e 2o a1 |

where @Q = |(A— A)(A— A)|. Thus if the first term in (@8)) dominates, then we are done.
Further, if ET(A) < |A|>7¢, where ¢ > 0 is some small constant, then we are done. If
not, then put M = |AJ® and apply the Balog—Szemerédi-Gowers Theorem [57], finding
A" C A, |A| >p |A| and |A' + A'| < |A'|. Using Theorem 4 from [37], we have for
any a € A that

(A= A)(A=A) = |(A=a)(A-a)| Zar A",
provided |A| < p®/1®. This completes the proof. a

The same argument works for the set H but in this situation much better bounds
are known; see [4I], [56]. A lower bound for the sets of the form (A — A)(A — A),
(A—A)/(A— A) in general fields F, can be found in paper [35].

Similar arguments allow us to formulate the second part of Theorem[2las the following.

Theorem 37. Let A CTF, be a set and let T(A) be of collinear triples in A x A. Then
A 6
0<T(A) - A2 < min {]91/2|A|7/27 |A\9/2} .
p

Proof. We use the arguments from [54]. Put f(z) = A(x) — |A|/p. It is easy to see that
the quantity T(A) equals the number of incidences between
!/

(99) the planes o =

— Q

1 o
—ay+z = 0 and the points (a, ~ - = ,> .
a a’” —a’ " -«

Hence as in the proof of Theorem 32] we have

6
T(A) :—%—l—a,

where the sum o counts the number of incidences (@9) with the weight f(a)f(a). Hence
6

by BI), we get o < p|AJ* and by Theorem [I0 we have 0 < ﬁ + |A|%2. T |A]P/2 > p,

then o < p|A|> < |A]P/2. If |A]*/? < p, then 0 < ‘Al + |A\9/2 < |A]°/2. In any case

o < |A|°/2. Combining this with the bound from Theorem 2 we obtain the required
result. This completes the proof. O

For any sets A, B,C C F,, put
N(A,B,C)=[alb—c)=d' (b =) : a,a’ € A, b)b' € B, ¢, € C}|.

We write N(A) if A = B = C. Now we prove an upper bound for the quantity N(A)
which is better than O(|A|%/?) for sets A with small energies EX(A) and E*(A), namely,
when (EX(A))?ET(A) < |A]®¥7, e > 0.

Corollary 38. Let A,B CF, be sets. Then

41RB2
N(B, 4, 4) — ALBE
p

< (EX(B)'2(ET(4))/*|A]? log |A] .
Proof. Put f(x) = A(z) — |A|/p. We have
N(B, B, A) ZTB/B A)/(A-a)(N)

|A| |B|? A1 Bl |B|2
) +er/3 Nr—pra—aA) = )
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By the Cauchy—Schwarz inequality, we get

2
o? = (Z 7”B/B()‘)7'(f—f)/(A—A)(M) < ZTQB/B(A) ‘ Zr?f—f)/(A—A)(A)
Iy A Iy

<exm) (or -0

p
Using Theorem B2] we obtain the required result. O

Similarly to N(A), put
(100) N'(A) = [{araz + a3 = a\ay + a5 : a;, a; € A}].
Corollary 39. Let A CF, be a set. Then
N'(A) — % < JAPPE(A)YPEX (A) Y4 10g |A] .
Proof. Put f(x) = A(z) — |A|/p. As in the proof of Theorem B2] we have

_ AP

N'(A) : +o,

where the sum o counts the number of the solutions to equation (I00) with the weights
flaj), f (a}). Thus by Theorem [I0] the Dirichlet principle, and the Holder inequality, we
get

o =ET(f,rpp) < (EF(F))XE (rps)? < log |A| - AE (A)V2EF (145, P)Y/?

A" P2
p

1/2
(101) < log |A| - AE*(A)Y/? ( + |A|3|P|3/2) ,

where A < |rs(z)] < 2A on the set P. Here we have used the definition of E*(rsy, P),
namely,

E*(rss, P) = {p + araz = p' +ajay : p,p’ € P},
counting with the weights f(a1)f(az2), f(a})f(a}). Again one can assume that the second
term in (I0I) dominates. Hence using A|P| < |AJ?, A%|P| < EX(f) < EX(A), we obtain

o < log |A]- EY(A)V2APPEX (A)VY,
as required. 0

The results above imply an estimate for some average sums of the energies (other
results on such quantities can be found in [44]).

Corollary 40. Let A CF, be a set. Then
X||A®*
Z EY(A,zA) — M
reX p
Proof. Indeed, putting f(z) = A(z) — |A|/p, we have

X||A*
o=y EN(Az4) = ra aNra—ax() = % -
reX A

< JAPET (APEX (X)) Y 1ogt/? | A

D> racaWrg—px(A).
A

Hence by the Holder inequality, we get

1/2
X||Al*
o — 7| ]L | < E*‘(A)l/2 <Z ’I“(Qf_f)X(/\)> .

A
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Using the Holder inequality one more time, we obtain
) 12 AP
S px ) < B0 (07 - E)
A
Applying Theorem B2, we have finally
o< |A|5/4E+(A)3/4E><(X)1/4 10g1/2 |A|,
as required. ([l

Notice that it was proved in [44, Corollary 8] that for any A C F,,, |A| < p?/® there exist
two disjoint sets B and C of A, each of cardinality > |A|/3, such that EX(B)3E*(C)? <
|A‘14.

6. UNCONDITIONAL UPPER BOUNDS FOR D*(A), D’(A) AND MULTILINEAR
EXPONENTIAL SUMS
The aim of this section is to prove the following.
Theorem 41. Let A CTF, be a set, |A| < p2846/4991 " Then for any ¢ < 4—:1% one has
D*(A) < |A[*3/27¢,
Further, if |A| < p*8/97 | then for any c; < 53 the following holds:
D*(A) < |A[*3/27er
We need two lemmas from [37, Section 4.5].

Lemma 42. Let A C T, be a set and |A + A| = M|A|, |A| < p'¥/ZM?/92. Then for
any o € IF,, one has

EX(A—I—a) < M51/26|A|32/13.

Lemma 43. Let A CF, be a set and |AA| = M|A|, |A| < p'3/23M10/23. Then for any
a € F) one has

EX(A—I—a) < M33/13|A|32/13.
We have a connection between the quantities EX (A — «) and D*(A), namely
(102) D*(A) < |A|4ma;‘< EX(A—a).
ae

Indeed, just fix four variables ag, ab, a4, aly in (§7).
Now we are ready to prove Theorem Il

Proof. Let K be a parameter and D = D*(A4) — %. Our proof is a sort of an algorithm.
If D < |A|'/2/K'/2, then we are done. If not, then E*(A) > |A|?/K because otherwise
by Theorem B2 we have D < |A|'3/2/K'/2. So, we suppose that E*(A) > |A]?/K.
Applying the Balog—Szemerédi-Gowers Theorem (see the required form of this result in
[10]), we find A’ C A, |A’| 2 |A|/K such that |4’ + A'| < K*|A’|3|A]~2. By Lemma @2
and estimate ([I02]), we have

DX(A/) < |A|4|A/|5/271/26K102/13M51/13
where M = |A’|/|A|. The condition of the lemma takes place if

(103) || < ptE (KA |Al)?)
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and we will check ([I03)) later. After that consider A\ A" and continue our algorithm with
this set. We obtain disjoint sets A; = A’, As,... and, clearly, Zj |A;| < |A|. Finally, in
view of (I02) and the norm property of E*(-), we get an upper bound for D, namely,

4

D S |A|13/2K71/2 +K102/13|A|4 Z(|Aj‘5/271/26(|Aj|/|A|)51/13)1/4

J
S ‘A|13/2K71/2 +K102/13‘A|4|A|5/271/26.

Optimizing over K, that is, taking K = |A|'/?'7 we obtain the required bound because
condition ([I03]) follows from

‘AI|42‘A|5O < |A|92 < p52K100

or, in other words, from |A| < p(2+100/217)/92 — ,2846/4991 * Al5o in view of the condition
|A| < p?846/4991 the term |A|®/p is negligible.

Similarly, using bound (&1J) of Corollary 201 and the same calculations, we see that

4
D < |A|PB/2K V2 4 [(53/26| A  AP/2-1/26 4 83/26 Z |A;|(|A[5/2-1/26)1/4
J
< |A‘13/2K71/2 + K83/26|A|4|A|5/271/26'

Optimizing over K, that is, taking K = |A|1/ 96 we obtain the required bound because
the condition |A|K < ,/p follows from [A| < p*8/97 This completes the proof. |

Remark 44. The same arguments, combining with Lemma [3 (or its refinement from
[38]) allow us to prove that either D'(A) < |A['*/27¢ or D'(A + a) < |A|"3/2=¢ for any
a # 0 and all sufficiently small sets A (also, see Remark B3). Here ¢ > 0 is an absolute
constant.

Given three sets X,Y, Z C F,, and three complex weights o = (o )sex,; 8 = (By)yey
v = (Y2)zez all bounded by one, put

S(XY, Zie, B,7) = Y, auByree(ayz).
zeX,yeY, zeZ

Similarly, for some complex weights p = (pz.4), 0 = (04,2), T = (7,,2) all bounded by
one, we define

T(X,Y,Z;p,0,7) = Z PayOa,2Ty €(TYZ) .
zeX,yeY, zeZ

Such sums were studied in [40], [3I]. Using Corollary B8] and Theorem [EI] we improve
[40, Theorems 1.3] and refine [40, Theorems 1.1] for sets with small energies (a similar
bound can be obtained for a correspondent sum with four variables; see [40, Theorem
1.2, 1.4] for large range). The proof follows the arguments from [40], [31] almost literally.

Corollary 45. Let |X| > |Y| > |Z|. Then
S(X,Y, Z; o, B,7)
< log"t [Y] - pM X PIAY PR 2| 2 (B (2)) VS (EF (V)1 + IXPIAY ) 21,
and if |Y| < p*®/°7 then
T(X,Y, Z;p,0,m) < p"B|X[/EY P92 22052y || Z)) =1 /072
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A series of applications of upper bounds for S(X,Y, Z;a, 8,v), T(X,Y, Z; p,0,7) can
be found in the same papers [40], [31I]. Now we obtain a quantitative form of the main
result of [6].

Theorem 46. Let X,Y,Z CF, be arbitrary sets. Then for any k > 2 one has
(104)

o—(k+1)

o (k+1) P
e(ayz) < |XIIV112 {122 +<—)
2 XVIIZ]

zeX,yeY,z€Z

<|X|Y>“'“> .

More generally, for any non—negative functions a(x), B(y), v(z) the following holds:
> a@)By)y(2)e(xyz) < p" Va1 [1Bl1]v]k

T,Y,2

_g—(k+1) o—(k+1) 5—2F
105 [edE pllel3lBIEI1YIE lleellx [l 311
(105) X 2 + 2181122 3
[iefl5 el lBIEIVIIT lledll2]| 3]z

Proof. Let S be the sum from ([[04]). Using the Cauchy—Schwarz inequality several times,
we get for any k

\S|2k’ < ‘Z|2k,1 Z(TXY *or Txy ) (N Z(2)e(A2) .
A,z

Applying the Cauchy-Schwarz inequality one more time, combining with the Parseval
identity, we obtain

‘2k+1

(106) 1512 <121 DL (X, Y)pl 2]

Put | = 2*. By an analogue of Theorem B2 for D (X,Y), see Remark [33], and bound
k
20)), we have
k+1
|S|2’chl < p|Z‘2k+l—l <(|X|Y|)2
p

o—l+1

+ og XIYD* (577 )

X[yt
X[ (1Y) )

ey (XY
< p|2[? 1<?+aog|xny>8<|xm2 X[y,

as required. Similarly, to obtain (I05) just use Corollary [[1] (actually, in this case we do
not need sharp asymptotic formulae but just the incidence results as in Theorem [I0]) to
estimate the required number of incidences with weights «, namely,

k41
(el N1811)? 42 .
p

+LE(ld[ 1812 2 (lallz18112)>72 " (EX (. B))?

—1+1
o (1 alZIBIE (a8l >
< L8 (o 810)* " | = +
L R HEEANEEE

and apply the previous arguments. Here we have put
L =log([lafl [ Bl (ledl2llBllzllv]l2) ) < logp

and also we have used the bound E* (o, 8) < ||a|l2]|8]l2llell1]|B]l1 as in @T)). This com-
pletes the proof. |

/2k (Of, /8) <K LS'
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Omne can obtain Theorem [f] for general weights like in [6]. Also, it is known that
an analogue of our result (and un upper bound for the multilinear exponential sums as
well) for more than three sets follows from the case of three sets; see [0, Section 8]. We
demonstrate this just for exponential sums with three and four sets; see explicit bounds
([I08), ([I09) below. In general, one can use a simple inequality which takes place for any
even k; and non-negative functions o;

ki...ky

Z ay(ar)...ar(az)e(ar ... ap)

A1,...5Qp

r ajlls ky...k,
(HJ:1 llevj 1) Z (041 *hy al)(al) . (Ozr X, Oér)(ar)e(al o.ap)

k.
H;:l ||aj||1J at,...,ar

and ensure that the dependence on r in the saving has the form p—¢/(€1108(C27/0)" "where
C1,Cs > 0 are absolute constants. In this case we do not need sharp asymptotic formulae
but just the incidence results as in Theorem [[0l The dependence in [6, Theorem A] was

<

p_(‘S/T)CT, where C' > 0 is another absolute constant, so our result is better.

Corollary 47. Let X,Y,Z C I, be arbitrary sets such that for some 6 > 0 the following
holds:

(107) X[[Y112] = p'*°.
Then
(108) S elayr) <IX||Y|Z]| - pT TR

zeX,yeY,zeZ

Finally, let r = 4; then for any sets Ay, ..., A, CF, with H;Zl |A;| > p**+° one has

- s
(109) > e(ar...a,) < [ |4;]-p~ rerostoacooran .

a1€AL, ...,ar EA, j=1

Proof. To obtain (I08) we want to use Theorem Put | = 2*. Then using crude
bounds | X|,|Y] < p, we get
o—(k+1)

P —2F _ i1 _
<W> (IX||]Y)2 " < pd/@)+27 < s/

provided

2t 8

2>,

I =4
It is easy to see that | = [21og(8/d)] > 6 is enough. Applying Theorem HG we see that
the second term in (I04) is at most | X||Y||Z|p~ ses/5771 . The first term in this formula
equals

|21 (21712 < poo/ ),

provided |Z| > p°/? and hence this bound has the same quality. Suppose that |Z| < p®/2.

Then by (I07), we obtain | X||Y| > p**%/2 and by a trivial bound for double exponential
sums, we get

> elwyz) < |2 VPIXIY] = IX|IYVN12] - o/ (XTY]) < [X|Y)12]-p°*
zeX,yeY, zeZ

which is even better.
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Now to get ([09) we can replace all A;(z) to A;(x) — |A;|/p if we want. Let S be
the sum from ([I09). Also, let n(x) = ra4,4,(z) and L = log(|A1||A2||A43]). Applying the
Holder inequality, we obtain
2n

1S < (|43 ... |A )2 >

a3€As,...,arEA,
= (|43 .[A)*"" 12 (1 %20 1 Z e(zas...a,).
ageA3,...,a7.6A7.

Applying the Holder inequality as in Theorem ] (see estimate (I00])), combining with
an analogue of ([@Il) for D’ and using r = 4, we obtain for any [

*on 1, 1/41
|A3|71 Z(U *2n, 1) () Z e(xzasg...ar)—— [4al <pD2l(n 1 AS))

x az€As,...,ar€EA, |A3| |A4|

Z n(z)e(zas...a,)

x

A
< LA (s L5 (A2 g2 45 )2
| A3

1_9—2l+1

2i—1\ 1/41
X (I 2n n3143]) (% (%20, 43)) /%)

- n n — n— —2n+1 20—1 1/4l
<<A—:( |Ad] TP L (JAL P Ao P As )2 (Al | A2 [ Ag])] As| /2 )

1/41

< [Aa (A 42])" ( .L16(|A1||A2|)22n+1|143|2Wl)

p
|A1[|Az2[|As][ A4l
Here we have used the fact that EX (1 9, 1, A3) < ||17 %2, 1||3| 43|%. So, taking [ = n such
that n = [0.510g(200/6)], we obtain the required result. This completes the proof. [

7. AN ASYMPTOTIC VARIANT OF THE BALOG-WOOLEY DECOMPOSITION THEOREM

Now we prove a result in the spirit of [2], [29], [42], [44]. The difference between
our Theorem (8] and these results is that we have an asymptotic formula for the energy.
Of course in formulae (II0), (III) below the additive and multiplicative energy can be
swapped (for some other sets B and C') and moreover can be replaced with other energies
(see [44]).

Theorem 48. Let A C F,, be a set and let 1 < M < p/(2|A]) be a parameter. There
exist two disjoint subsets B and C of A such that A= BUC and
[BI* _ |AP/?|B[7/?

<

(110) EXB) - =<

and for any set X C F, one has

M2 X2 AP

(111) EX(C,X) < + M32|A| X P2

Proof. Our proof is a sort of algorithm similar to the arguments of the proof of Theorem
AT At the first step put B = A and C' = (). Suppose that we have constructed B at some

step of our algorithm. Write fg(z) = B(x) —|B|/p. Then ET(B) = ﬂ +E*(fB, B). It

|A|2/3‘B‘7/3

fB> ZB IrfB+B B( ) M 9
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then we are done. If not, then E*(fp, B) > W and by the pigeonhole principle
we find a set P such that A < |ry,_p(x)| < 2A for all z € P and
|A|2/3‘B‘7/3

2
3 SETURB) SAY B@lrsye(@)] < A3 BE)rner(r) + AIBIIP|

p

|B|*

<AY B@)rpip() + BT <20 B@)rpsp(@).

Here we have used the assumption M < p/(2|A|). Using Lemma [[7 with P = P and
A = B, we find a set B, C B and a number ¢, ¢ < |B,| such that for any = € B, one
has rpyp(z) > ¢, and Y B(z)rp4+p(x) ~ |By|g. We have

EX(Bs, X) < q 2|{(b+p)z = +p)z’ : z,2/ € X, bV € B, p,p/ € P} .

Using Theorem [I0] and the definition of g, we obtain
(112)

X2B2P2
EX(B.,X) < q—2<w+

(X|IBIIP)Y2 + |X||Bl|P| masx{|X],| B, |P|})

5<E+<fB,B>>—2|B*|2A2(

Now clearly,

| X[?|B[*| P?
ﬁ+(|X|\B\|P|)3/2+\X||BIIP|maX{\XL|B|7|P|} :

(113) A[P| <Y rp_p(z) + B> < 2|BJ
and
(114) AN’|P| < 1%, p(x) =E*(f5,B).

Then using the last formulae, the fact that B C A and returning to (I12)), we obtain
E*(B.,X) < (E*(f5, B))*|B./?

X|?|BI¢
x ("% T IXP2|BI2(E* (£, B))/? + A2\ X||B||P| max{|X], B, P})

M?|X|?|B,|?
< | | | | +M3/2|A|71|B*|2|X‘3/2

(115) + M2 A BT P A B PIX | Pl max{|X |, | B, | P}

Suppose that the third term in the last estimate is negligible. After that we consider
B\ B, and continue our algorithm with this set. We obtain disjoint sets A; = By, Aa, ...
and let C be its union. Finally, in view of the norm property of E* (-, X'), we get an upper
bound for E*(C, X), namely,

2 2
M?| X |? _
EX(C.) < | DU(EX(4;, X)) <(]'T'+M3/2|Al 1|X|:”/2>~ > 14
J

~

J

(116)

M?|X|?|A)?
< ‘ p| | | +M3/2‘A||X|3/2.

It remains to check that the third term in (T3] is negligible. From (IIGl), it follows that
(117) MP <X < AP /M
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/ /
because otherwise there is nothing to prove. Since, E*(fg, B) > w we easily
derive
(118) |B| > E*(f5, B)!/* > |A| /M52

Using these bounds, as well as a trivial upper estimate E*(f5, B) < |B|? one can quickly
check that
E+(fB,B) < M_1/2|X|_1/2|B|11/3|A|1/3, E+(fB,B) < M_1/2|X‘1/2|B|8/3|A‘1/3
and
‘B‘l/?’Ml/z < ‘X|1/2‘A|1/3
and thus indeed the third term in (II5) is negligible. This completes the proof. O

Notice that one cannot obtain an asymptotic formula as in ([I0) for both sets B
and C. Indeed, it would imply that |B + B|,|CC| > p but there are sets A having
small sumsets and product sets, just put A = P NI, where P is a suitable arithmetic
progression and I is a subgroup.

Now let us obtain a result on the sum-product phenomenon (of course one can replace
below + to * and vice versa).

Corollary 49. Let A C F), be a set. Then either
A+ Al = 5 min{| 4], p/2}

or
| AA| Z min{p|A|~*/5,[A]*/5}.

Proof. Apply Theorem B8 with M = |A|'/®. We find two disjoint subsets B and C' of
A such that A = B U C and estimates ([I0), (I1I) take place. If |B| > |A|/2 and
M|A| = |A|%/> < p/2, then by ([[I0) and the Cauchy-Schwarz inequality one has

Bl |A[*2|B["/ 3|A[*% B[/

B*<|B+B
it < g+l (120 4 .

and hence |A+ A| > 57| A|%/5. If | B| > |A|/2, then just consider a maximal set A’ C A
of size |A’|/%> < p/2 and use the previous arguments. Finally, if |C| > |A|/2, then putting
X = A in ({I1]), we obtain

> <|A+ A

[AP[C?
Ex(A,C)
as required. O O

[AA] = |AC| = 2 min{p|A| /%, |4/},

8. ASYMPTOTIC FORMULAE IN SL,(F))

Now we consider the action of SL2(F,) on F, and we begin with our version (see
Theorem B0 below) of the so—called Lo—flattering lemma from [7] (also, see [9], [45])
which is a consequence of the celebrated Helfgott’s Theorem The proof of Theorem
can be found in the appendix.

Theorem 50. Let ;1 be a symmetric probability measure on SLo(F,) such that for a
parameter K > 1 one has

o pu(gl) < K= for any proper subgroup I' C SLo(F,), g € SLo(F,) and

o |lpllee < K1

Then for any integer k < K the following holds:

(119) 0 < |lpw#or pll3 — |SLo(Fp)| 7' < CEK—F

where ¢, € (0,1), Cix > 1 are absolute constants.
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Of course the first condition of Theorem B0l implies the second one (just consider I' to
be the trivial subgroup) but the author thinks that such formulation is more transparent.

Now we derive some consequences of Theorem to sum—product phenomenon and
we begin with some generalizations of arguments from [32]. Transformations

correspond to SL o(F,) matrices

, (0 -1 , (b —1+ab
S_<1 a)eS, sa,b_<1 | >6S.

The collections S’, S of such matrices are clearly connected with continued fractions

| J= —
a,as,...] = ————
o @+ o
and correspond to classical continuants (see, e.g., [26]), as well as continuants (entries)
of the product of two matrices ((1) all ) ((1) a12 )
We need several properties of the set S and the first one can be found in [32] (or see
the proof of Lemma B8 and Remark [60] below). It is easy to check that Lemma [51] does

not hold for the set S".

Lemma 51. Suppose that in the definition of the set S one has a € C1, b € Cy. For any
91,92 € SLo(F,) and the standard Borel subgroup B the following holds:

(120) |ng ggﬂs‘ Smax{|C’1|,|Cg|}.
Moreover, for any dihedral subgroup T' one has
(121) |g1Tg2 N'S| < 8 max{|C1], |C2|} .

Theorem B0, combining with Lemma 51l gives a consequence for continued fractions;

see Theorem [B2] below. (Indeed, consider the following two-step transformation ﬁ
x+b
with the correspondent map from SL »(F,); then by the well-known connection of con-

tinued fractions with continuants, see, e.g., [26], we know that the components of the
product of such matrices are denominators of the convergents. By the uniform distri-
bution which follows from Theorem B we can represent any such denominator as well
as the numerator and hence its ratio.) Another way to derive Theorem iteratively
applies to Corollary [61] below but this way gives worse dependence on k in o (1).

Theorem 52. Let A C F, be a set |A| > p°, ¢ > 0. Then for any k > C'/¢, where
C > 0 is an absolute constant and for any x € F), one has
A"
Hx =la1,a2,...,a1] : a; € A} = 7(1 +or(1)).

Now we can formulate our “counting lemma”. Here S can be any set of matrices
satisfying (I20), (I2I). Having a function f : F,, — C by (f) denote erFp f(x).

Lemma 53. Let fi, fo : F, — C be functions and |S| > p°. The number of the solutions
to the equation

(122) sa; = az,

counting with weights fi(a1), f2(az2), and with the restriction s € S is
S 1 /ok+2

(12) BRI+ a0l sl ol

where |0] <1 and k = k(e).
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Proof. Denote by o the number of the solutions to equation (I22)). In terms of the
generalized convolution, we have

U—Zf2 (S fi)().

Let f(x) = fi(z) — (f1)/p. Then
(124) o = 11t (f) f2 +Zf fa) = IS

Using the Cauchy-Schwarz inequality, we get

of < If2l3) (S * f*(x) = 1f2ll3 ) F@) (ST * S * f)().
Here p(z) := (S7'«S)(x) : SL2(F,) — R is the usual convolution on the group SL o(F,).
Notice that u(z) = u(z~') and that u(z) is not a probability measure (but of course can
easily be normalized). Also, ||f||3 = |/f1l3 — (f1)*/p < ||f1]|3. Thus

o1 =02 ||f2‘|22f (b f) ()

further by the Cauchy—Schwarz

o < ||f2||4||f||§Z< £2@) < | 131 £13 Z (n* f)?
= || f2l3 ||f1||22f ) px f)(x)

and we obtain by the iteration of the previous arguments (also, one can consult the proof
of Corollary BTl) that for any k one has
k41 _
LAlE 72D f@) o o (@),
xr

2k+1

k
(125) of < fll3

where in p *gr p the convolution on SLo(F,) is taken 2% — 1 times (so, we have written
the function u exactly 2% times). Now applying Lemma 22 we get

k+1 k+1
(126)  on < [Ifall2llfallz - (2pllixor )2 = [ Fillall foll2 (20T 40 (S
Here

Tou(S) = [{s1 sy ..s; sy = witwl . owg twp 2 sy, 8wy, w) € S

J?
Trivially, we have ||u||oo = |S|~!. Suppose that p is sufficiently large such that |S| > p¢ >
60, say, and hence in view of Lemma [5I] we avoid all subgroups (1)—(3) from Theorem
23 in the sense that the conditions of Theorem [0 take place with K = |S|'/2/8. Thus
by Theorem B0, we find some k = k() such that

T, (S) < 2|5]

2k+1

Hence in view of (I26]), we get
- k42
. < 2| fullz]l follolSIp2,

as required. 0

Remark 54. From the proof of Theorem [B0, it follows that the optimal choice of k is
k ~logp/log|S|. On the other hand, bound ([[23)) is non-trivial if k¥ < loglogp. So, one
can check that the assumption |S| > p° can be relaxed to log|S| > logp/loglogp and
under this condition we obtain a non-trivial bound in (I23)).
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Now we obtain an interesting consequence of Lemma [53] to sets with small doubling
(another result of the same sort about the products of sets with small doubling is con-
tained in [32]). Combining Corollary 55 and Lemma[I4] from Section B we derive Theorem
[ from the introduction.

Corollary 55. Let Ay, As, BCTF,, |B|>p°, >0, and |A1 + B| < K1|A4], |[A2+B| <
K5|As|. Then the number of the solutions to the equation

1 1
(127) TAII_AZ’l(l):‘{a__a_:l : aleAl,GQEAQ}’
1 2
is at most
K1 Ks|Aq|lA
(128) R S AT IR

p
where k = k(e).

Proof. Clearly, the number of the solutions to the equation (I27) does not exceed

B~

1 1
{ - —1:x€A1+B,y€A2+B,b,c€B}
r—b y-—c

In other words, we have
zy—(b+1)y—(c—1)z+(b+1)(c—-1)+1=0

or, equivalently, in terms of SL5(IF,,) actions s_(y11) .12 = y, where

c—1 —-1—-(b+1)(c—-1
S—(b+1),e—1 = < 1 E(b+)1() ) ) €s.
Applying Lemma B3] to sets —(B 4+ 1), C — 1, we obtain the required bound. This
completes the proof. O

Thus when K, Ko are small and sizes of A, As are close to p our upper bound (I28)
is close to the right asymptotic formula for r ATloap (1). The same can be proved in the
case of I—invariant sets Q1, Q2 for its intersection |@1 N (Q2 + z)|, where = # 0 is an
arbitrary, see Section @l So, these two phenomena are parallel to each other.

Now let us obtain an application to estimates for some exponential sums.

Corollary 56. For any functions f,g : F, — C, (f) = 0, and for any set B with
|B| > p°, € > 0 one has

S (v +te) ) < lalolavpinPo.

b1,b2€B

(1200 3 fa)gly)

Further, for any non-trivial multiplicative character x, we get

0 Y f@ew) ¥ x(y+b2+#) < | fllallgllzv/BIBI2p~?

r+b
b1,b2€B o

and for |Y'| > p®, one has

1/2-6)) 112\ €
(131) S @Y Y x(y+bz+;> <. ||f||1BQ|Y|~(p7|f”2> _

e P HE

Here § = 6(e) > 0.
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Proof. Using the Cauchy—Schwarz inequality, we obtain
2

;f(a:)g(y) > e (y (x—ibl +b2)>

b1,b2€B

< Nglp- 3" F(=) F @) - b = sy’ b1, by € —B, b, by € B} := gl3p- o
z,x’
Applying the arguments of the proof of Lemma B3] and the assumption ) f(z) = 0, we
have oo
o' <2 fI3IBI*p~E = 2| fII B,
as required.
To obtain ([I30)), we use the usual properties of multiplicative characters (see, e.g.,

[3]), namely, for any a # 0
Z x(@)x(x+a)=-1

to derive )
1
~ > @) x<y+bz+x+b)
zy b1,ba€B 1
<Nlgl3p—1) -3 Fa) Fa) - Hsman® = spqay2’ : b1,b € —B, by, by € BY|
x,x!
—HgHsz F(=") - (IBI* = {56, 0,7 = 505" : b1,b] € =B, by, b € BY)
30 Y f(=2) f(=2') - {80, 0, = sy 40" 1 b1, by € =B, by, b} € BY|
z,z’

and repeat the arguments.
Now let us use the usual Burgess’ method; see, e.g., [24]. Namely, by the Holder
inequality and Weil’s result (see [24, Theorem 11.23]), we get for any positive integer k

< (IF L1 B*2- > f(@)

z,x’

1 1

by + —— = bt : by, by, b, b5 € B

{ 2 + e o+ —F—— Y 1,071,02,09
X ((2k)"plY |* + 2k /pIY ) .

Here as usual the term (2k)*p|Y|* corresponds to the case when yi,. ..,y is a permu-

tation of yi,...,y in

MDY xy+ )P = > > X +2) - x(we + 2)x (1 +2) - x(ve + 2)
z  yey YooYk Yo YR €Y 2

and the term 2k,/p|Y|?* arises from the Weil’s bound (see, e.g., [24] again). By Lemma
B3 we find | = I(g) such that

(132)

ety 1 1 142
§ b =V 4+ ———— : by, b, by, b, e BY| <2 B|*p~1/?
xx/f }{ 2 + +b1 2—’—33/_’_13/1 1,%1,02,Ug }‘ Hf” | |

Taking constant k = [1/2¢] such that [Y[* >, (2k)*,/p, we obtain

1/2k 1/2-8) £/12\ €
_1/kolt3 plf13 p I/
o< lsp o (VPR ) <y (P
1 1

Here we have denoted 1/2/*2 as 6. This completes the proof. |
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Remark 57. The results above are non-trivial (suppose for simplicity that f(z) = X (z)
for some set X) if | X| > p'/?79 and the restriction to the lower bound for size of B can
be extended to log |B| > logp/ loglog p.

Now we consider some one-parametric families of matrices in SLo(F,,) for which the
above methods can be applied.

Lemma 58. Let B CF, and S,, ,, C SL2(F,) be a set of the form

o 1 Tl(b)
5= ( sty 14 ety ) € S L),

where r1 = p1/q1, 72 = P2/q2 are non—constant rational functions such that
{P1p2, 192, P2q1, 0102} {p1(J1Q2,p1p2(J1,p%p2,(J%fh,(ﬁpz}
are linearly independent over IF,,. Put
M := max{deg(p1), deg(p2), deg(q1), deg(qz2)} -
Then for any g1, g2 € SLo(F,) and the standard Borel subgroup B one has
(133) l91Bg2 N Sy iy | < 2M .
Moreover, for any dihedral subgroup T' one has
(134) [g1Tg2 N Sy ry| < 12M .
The same holds when {1,r1,72} are linearly dependent.

Proof. Take a,b € B and consider the equation

xr qr4y/r \ [z vy roq (1 1 X Y
2r qz4w/r )\ z w 0 vt ) 7 \ra 1+4mrm z W
o X+T'12 Y-|—7’1W
T\ X+ A+rmr)Z Y + (14 rr)W )

(22) w0 (Zw)

are g; and ggl, respectively. From xr = X +r1Z, zr = roX + (1 + r17r2)Z, we have

Here

(135) 2 X + 11272 =rexX + a2 +rirex” .

If Z = 0, then from XW — Y Z = 1 one derives X # 0 and we arrive at xry = z.
Since zw — yz = 1, it follows that x, z cannot be zero simultaneously and hence 5 is a
constant. Similarly, we see that x # 0. By assumption p1p2, p1go, P2q1, q1q2 are linearly
independent. Hence multiplying (I35]) by ¢1¢2, we obtain a non—zero polynomial (with
the non—vanishing term = Zp1ps) of degree at most 2M. Thus equation (I33]) has at most
2M solutions.

Now consider any dihedral subgroup which is just a product of a cyclic group of order
4 (of order 2 in PSL,(F,)) and a cyclic group of order (p & 1)/2. It is easy to see that
the conjugate class of any element of SLo(F,) is the set of elements having the same
trace and that an element with trace 42 is conjugated to £ (}7); see [55, (6.3)]. We
have considered the case of elements with trace +2 already. As for the remaining case
take any matrix of trace 2« and of the form r.(«, 8) = (g Ef), where o? — 8% =1 and
a # £1 (hence € # 0). One can check that for any n the element r2(«, 8) has the same
form, i.e., (v, B) = r<(an, By) for some ay,, B, € Fp, and a2 — 82 = 1. Then as above
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ar+ Py efxrt+ay \ [T vy a €8\ 1 1 X Y
az+pw eBz4+aw )]\ 2z w B a ) \re l4mrmr z W
. X+nrmZ Y+rW
ro X + (1 + T‘1T2)Z roY + (1 +T17'2)W

From this we have X + 1 Z = az + By, Y + W = B8z + ay. Hence we can find «, 8
via r1, provided ex? # y2. After that, we get

(136) Z=az+pw—ro(X +r172).

Since «, 8 can be linearly expressed via ry, we obtain a contradiction with the linear
independence of p1pa, p1¢2,P2¢1, g1g2 provided Z # 0 (the term Zpips does not vanish).
If Z =0, then W # 0 and

(137) efz+aw=rY + (1 +rire)W.

We know that «, 8 can be found via r;. It gives us a contradiction with linear indepen-
dence of p1p2, p1ge, p2q1, ¢1G2 (the term Wpips does not vanish).
It remains to consider the case ez? = y?. Then we obtain an analogue of (I30)

(138) W=efz+aw—r(Y +112).

If £22 # w?, then from az+pBw = ro X +(1+71712) Z, eBz+aw = rY +(1+717r9) W we can
find «, 8 which depends linearly on Z +ro(X +712), W +ro(Y + 7, W) and substituting
them into X 4+ rZ = ax + Py, we obtain a contradiction with linear independence of
P1P2, P1q2, P2q1, q1q2, provided Z # 0. More precisely, we get a dependence of the form

Aryro + Bro+ Zr1 +C =0,

where A, B,C € I, are some constants. If A # 0, then in the linear dependence be-
tween pi1ps,P1G2,P2q1,q1g2 we have the non—vanishing term Apyps. Now if A = 0,
then {1,r1,r2} are linearly dependent. Let w = X + r1Z. Then from az + fy = w,
az+ pw = Z + raw, we obtain o = w(w —yre) — yZ, B = w(xre — z) + xZ. It gives us
in view of ex? = 32 that
1=0a?—¢ef% = (w(w—yre) —yZ)? — e(w(ary — 2) + 22)?

=W ((w —yra)? — 2e(wry — 2)?) — 2wZ (y(w — yra) + ex(ary — 2))
(139) =W (w? — 2% — ro(yw — w2¢)) — 2wZ(yw — x2¢) .
Since €22 # w?, further yw — xze # 0, 72 depends linearly on r; and w = X +mZ, Z #0
it follows that (I39) gives a non-trivial equation on 7 of degree three. Now if Z = 0,
then w = X # 0 and from (I39) we have a linear equation on rs.

Finally, consider the case ex? = y? and €22 = w?. Put Q1 = X + 7 Z and Qy =
Z+ro(X +1mZ) = Z+r:Qy. Then from Q1 = azx + By, Q2 = az + fw, we obtain
a=w@Q —yQa,B = —2Q1 + Q2. Hence using e2? = y? and €22 = w?, we have

1=a%—¢ef% = (wQ — yQ2)? — e(—2Q1 + 2Q2)* = 2Q1Q2(cx2 — wy)
=2(Q1Z +ro(X +112)?)(cxz — wy) .
If Z # 0, then the last identity gives us a contradiction with linear independence of
{P101G2, P1P2q1, PID2, G2 G2, G52} because the term 2Z%(sxz — wy)p?pe does not vanish.
If Z = 0, then from the same equation we obtain 1 = 2X?(ezz — wy)ry and hence ro is
a constant.

Finally, a careful analysis of the proof shows that the same arguments work in the
case when {1,71,7r2} are linearly dependent. This completes the proof. O

Example 59. Let rational functions 71,73 be just non—constant polynomials. Then
q1 = g2 = 1 and our independency conditions are satisfied.
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Remark 60. By a similar argument Lemma [58 takes place for rational functions r1,ro of
several variables. Thus ideologically Lemma[51] follows from Lemma 58 (up to constants).

Corollary 61. Let p1,p2 € Fp[z] be any non—constant polynomials. Then for any A, B C
F,, |B| > p°, € > 0 one has

1 1 ERER
b+ —— = b’+4:a,a/eA,b,b’eBH—7
le() a+ pa(b) pi(t) a’ + pa(b') P
(140) < 2|A||BPPp~ /2,

where k = k(e,degpy,degps). In particular,

1 k+2
141 b)+ ——— : a€AbeB in{p, [A|p"/* "} .
gy [0 g e ave Bl mingap )

Proof. Indeed, in terms of the set S, ,, the number of the solutions to (I40) is

/W) li /
sa=sd", a,a’ € A,s,5 € Sp,py,

or, equivalently, (s)"'sa = a’ (we can assume that a-+ps and ap; +1+p;1ps are non-zero).

Using Lemma [53] combining with Lemma B8, we obtain the required result. a

Of course Corollary 61l does not hold if either p; or ps has zero degree. Using the same
arguments as in the proof of Corollary B8, we derive the following.

Corollary 62. Let B CF, and p1,p2,q1, 2 € Fplz] such that
{p1, @1}, {p2: 2} {p1p2, P12, P21, 142} {P101G2, 1241, PID2, 412, G po}

are linearly independent over F,,. Put

M := max{deg(p1), deg(pz), deg(q1), deg(g2)} -
For any functions f,g : F, — C, > f(x) =0, and for any set B with |B| > p*, € > 0

one has
(142)

0 (D0a0)z + 1 (D)ot ;
510000 e (3 (a1 ol BB

beB

Further, for any non-trivial multiplicative character x and X # 0, we get
(143)

0 (B)a2(Da +pr(D)aa(0) »
2 f@al) 3 _x (14 o O OB ) <o el vEIBl

Here 6 = 6(e, M) > 0.

Again, using the usual Burgess method one can obtain a non—trivial bound for sum
([I43) in the regime when (let f(z) = X(z), g(y) = Y(y) for simplicity) |Y| > p7,
|B| > p®, and | X| >. p*/?7%; see Remark [57] and the proof of Corollary

The same method, combining with the results from [33] concerning rich lines (not rich
hyperbolas) in F,, x [F,, allows us to prove the following.

Theorem 63. For any functions f,g : F, — C and any sets A, B with |B| > p°,
|A| < p'=¢, e > 0 one has

S @) S elyla+biba) < gl vBIBIE

b1,b2€B

where 6 = () >0
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Again the result is non-trivial (suppose for simplicity that f(z) = X (z) for some set
X) if | X| > p'/?7% and the restriction to the lower bound for size of B can be extended
to log |B| > logp/ loglog p.

9. ON GL o(FF,)-ACTIONS

In this section we consider the set of all non—degenerate matrices GL o(F,) with co-
efficients from [F), and acting on the projective line. Also, let G be its subset. By det G
denote the set detG := {detg : g € G} C F, and because GL2(F,) is acting on I,
we can consider G(A4) = {ga : g € G,a € A} for any A C F,. Of course there is
no expanding result similar to Theorem [24] in GL o(IF,,) but nevertheless one can easily
obtain the following.

Proposition 64. Let G C GLo(F,) be a set of matrices, A C Fp,, and let € > 0 be a real
number. Suppose that

o |G >p°,

o |det Gl < |Gl

0 Y er(GTHxG)(x) < p° ZmSLz(FP)(G*l x G)(x) for any proper subgroup T' C
SLo(F,), s € SLo(F,).

Then there is 6 = 6(¢) > 0 such that

IG(A)] > min{p, |A|p°} .

Proof. Put L =logp, X = G(A). For any A € I consider Gy = {g € G : detg = \}.
Using the Dirichlet principle, we find A C IF; and a number A such that A < |G| < 2A
on the set A and

(144) pi= Y (GG (@)= |G\P< LY |Gs* =Lp:.
z€SL »(Fp) A AEA

Using the assumption |[A| < |det G| < |G|p~¢ and the Cauchy—Schwarz inequality, we
see that

2
. GJ? )
p > [ det(C)| (ch) — e 2 6
A

and hence A > p®/L. By the definition of the set A and the Cauchy—Schwarz inequality,

we obtain
2 2
|A]2AZ|AP? < <Z |GA||A|> = <Z Z(GA*A)(I)>

AEA AEA zEX
(145) <JA[IX] DY (GaxA)2(a) = [A[[X] DY (G +Gax A) (@) Alz) = A X]o .
AEAN =z AEA =z

Further, consider f(z) = Y, 5 (Gy' * Gi)(z) with || f|l1 = p1 and the measure p(z) =
f(z)/p1 and notice that
o= (f+A) ().
r€A
Moreover,
Inlloe < IAJA/(JAJA%) = A™! < Lp~®,
and by the assumption we see that for any proper subgroup I' C SLo(F,), s € SL2(F,)
the following holds:

T =pr* 37 (GG @) <pr ' Y (GG (@) < Lot Y (GG (2) < Lp ™.

zes AeEA zesl zesl
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Using the arguments as in the proof of Lemma (3] we see that for some 6 = d(¢) > 0 one
has

Al? _
3 Y (GR # Ga e A)@)A) ~ AP <y,
AEA p
Hence, returning to (I4H), we obtain

aparial < ax (B4 ) e < sz (B 4 )
AEA
It follows that
| X | > min{p, |A\p5} )
This completes the proof. O

Remark 65. One can see from the proof that the condition |det G| < |G|p~¢ can be
refined to Y, |Ga]? > |G|p°.

Now we give the proof of a simple consequence of the theorem above (the constants
100 in ([I46), (I47) are not really important and can certainly be decreased).

Lemma 66. Let By, By, B3 CF, and S C GL(F,) be a set of the form

1 0
Sby,ba,bs = ( by b; ) eqd.

Let M = max{|B1|,|B2|,|Bs|}. Then for any g1,g92 € GL2(F,) one has
(146) OB go(S) < 100M*.

Moreover, for any dihedral subgroup T' one has

(147) 0giTg, (S) < 100M*.

Proof. Take any r9,r1,72,73 € I, and consider the equation

xr qx+y/r T Yy r q (o ™M XY
zr qz+w/r z w 0 r— )" \ra 7y Z W
. ( 7"0X+7“12 ’1"0Y+T'1W )

roX +1r3Z roY +rsW
From zr = rqg X + 112, 2r = roX + r3Z, we have

(148) rozX +1r12Z = roxX +r3x”Z.

If Z =0, then from XW — Y Z # 0 one obtains X # 0 and we arrive to xry = zrp.
Since zw — yz # 0, it follows that either x or z does not vanish and hence either rq or ro
can be found uniquely. Similarly, one can consider the case x = 0 (Z is zero or not) and
arrive at 19X = —r1Z. Hence either rg or r; can be found uniquely. Finally, if Z # 0
and z # 0, then we can find r3 from ([48). Now our matrix from SL(F,) N G~'G has
the form

/ol \—2 bé _b/1 1 bl (B BB 2 b/g—b/le blb/g_b/163
(bS b1b2) ( —b/2 1 b2 b3 - (b3 b1b2) b2 _ b/2 b3 _ blb/z

and such that

<

(149) by — biby = by — biby # 0.
We need to estimate the number of the solutions to (I49) with some restrictions as
xre = 219, 10X = —r1Z, and so on. The appeared systems of two polynomial equations

are rather concrete, so it is not a difficult task (another way is to use the Bézout Theorem).
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First of all notice that fixing a variable of equation (I49)), we obtain the contribution at
most M? into the sum oy, B 4,(S). Second, if one expression among rg, 72, 3 is fixed, then
we substitute one appropriate variable into (I49) and obtain the contribution at most
M* into the sum Og1 B g5 (S). If 71 is a constant, then we consider two cases: by =0 and
by # 0. The last case allows us to substitute b5 into (I49)) and obtain a linear equation
relatively to b3 with the main coefficient (by — b}). Totally it gives the contribution at
most 4M*%. Now if rg = Cry for some C' # 0, then we substitute b} into (IZ9), obtain a
linear equation relatively to by, and get the contribution at most 2M*. If ro = Cry, then
either by = C~! (contribution M?) or by # C~! and hence the substitution b4 into (I49)
gives us an equation of degree at most three and with five variables from B;. Similarly,
in the case when we find r3 from (I48)) one obtains an equation degree at most three and
with five variables from B;. It gives at most 3M 4 solutions and the total contribution
into the sum o, B 4,(S) can be estimated roughly as 100M*.

Now let us deal with the case of a dihedral subgroup which is just a product of a
cyclic group of order 4 (of order 2 in PSL2(F,)) and a cyclic group of order (p £1)/2.
Then we use arguments from the proof of Lemma B8 and consider r.(«, 3) = (g Ef),
where a? —e%? = 1 and a # £1 (hence ¢ # 0). Again, one can check that for any n the
element 7 («, B) has the same form, i.e., r?(«a, 8) = re(an, Bn) for some ay,, 8, € F, and
a? — %2 = 1. Then as above

"=

ar+py efrt+ay \ [z y a e\ (1o m X Y
az+pw efz4+aw |\ 2z w B o ) \ry 73 Z W
o X +1riZ 1Y +riW
o roX +1r3Z 1Y +r3W ’

From this we have ro X + r1Z = ax + By, 1Y + W = ez + ay. Hence we can find
a, B via 79, 1, provided ex? # y2. After that, we get

(150) Z = Z(rors — rire) = ro(az + pw) — ro(ro X +r1 7).

Since a, 3 can be linearly expressed via rq, 71, we find ro = (by — b%) /(b3 — bybz)? from
the last expression, provided rgX + r1Z # 0. It is easy to check that it gives us a non-
trivial linear equation relatively to b, because rg, 1 do not depend on b5. The possibility
roX +r1Z = 0 was considered above. In any case it gives the contribution at most
3M* +6M* = 9M* into the sum 4,1y, (S).

It remains to consider the case ex? = y2. Then we obtain an analogue of (I50)

(151) W = W(rors —rire) = ro(efz + aw) — ra(roY +rmW).

If £22 # w?, then from az + Bw = ry X + 132, efz + aw = ryY + r3W we can find o, 8
as some linear combinations of r4, 73 and substituting them into ro X + r Z = ax + By,
we find rg or r; uniquely, provided X # 0 or Z # 0 (or use the arguments as above
applying ([I50), (I5I). In any case it gives the contribution at most 18 M* into the sum
04.7g, (S). Finally, consider the case ex? = y? and €22 = w?. Put Q; = roX +r;Z and
Q2 = 19X +13Z. Also, let d = det (“Z” 3,) # 0. Then from @ = ax + By, Q2 = az + Pw,
we obtain a = d~HwQ1 — yQ2), 8 = d ' (—2Q1 + vQ2). Hence

&* = d*(a® — ) = (wQ1 — yQ2)? — e(—2Q1 + 2Q2)* = 2Q1 Q2 (22 — wy)
=2(exz —wy)(roX + 11 Z)(reX +132).
Using the definitions of r; and formula (I49) to exclude b, we have
d? (b — biba)? = 2(exz — wy)((bg — b1y + b)bly — by b2) X + (bybs — b2by
+ b1b1by — b1b3)Z) (b2 — ) X + (b3 — b1b3)Z) .
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It gives us a quadratic equation on by and the leading coefficient of this equation is
d?b? 4 2(exz — wy) X (Zb? + X (b} +b1)) .

If this coefficient does not vanish, then it gives us the contribution at most 2M* into
the sum og,1g,(S). Suppose that by # 0. In this case because d # 0 our coefficient
vanishes iff X # 0 and (2(exz — wy)Z + d2X 1)b3 + 2(exz — wy) X (b) + b1) = 0. Since
(exz —wy) # 0, X # 0, we find b} uniquely. So, it gives us the contribution at most
2M* into the sum o,,r4,(S). This completes the proof. O

Now we are ready to obtain a consequence of Proposition[64l Of course one can replace
an upper bound for |Bs — B1Bs| to a lower bound for Y 7% _p p (); see Remark
and formula (I53) below. Other refinements are possible if one can estimate the number
of the solutions to equation ([49) with a fixed variable and under other restrictions, say,

Co’f'o-l-ClT'l +CQ7"2+037’3 =0, 675 (Co,Cl,Cg,Cg) E]Fﬁ,
more accurately (we need p=¢Y> 7% _p p (x) bound).

Corollary 67. Let A CF,, By1,By,B3 CF,, B :=|By| = |Bs| = |Bs| > p°. Suppose
that |Bs — B1Ba| < B%p~¢. Then there is § = §(¢) > 0 such that

abs + b3

Proof. Let G = Sy, p,.b5, b; € Bj and define G as in Proposition[64l Since |Bs—B;Bs| <
B?p~¢, it follows that |det G| < |G|B~'p~¢. Further, by Lemma for any proper
subgroup I' C SL»(F,), we have

b
(152) ’{“41 L aeAb; ijH > min{p, |A|p°}.

> (G G)(x) < B
zes
and

— B ||B2||B?>D2
153 g Gl*Gm—E r? z>—(| ! > Bp®.
( ) IGSLQ(FP)( )( ) - B, Bng( )— ‘Bg_BlBﬂ = P

Thus all conditions of Proposition [64] take place for sufficiently large p. This completes
the proof. 0

10. APPENDIX

This section contains the proof of Lemma and Theorem Also, we obtain an
upper bound for the energy Ej; see Theorem [68 and Corollary [69] below.

The proof of Lemma 22 Having a function f with >__ f(x) = 0, we consider the matrix
M(g,z) = f(g~'x) of size | SL2(F,)| x p and its singular value decomposition [23]

(154) M(g,x) =Y Aju;(g)v; ().

One can assume that Ay > Ag > --- > X, > 0. Let @ = (1,...,1) be the vector having p
ones. Since for any y € F,, one has

(M*Ma)(y) => > M(g.x)M(g,y) =Y > flg~ @) f(g~y)

2

=Y flog ') > flg~ ) =p | SLa(F,)] - =0.

> fa)
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It follows that A\, = 0. Here we have used the fact that for any = € F, the following
holds: |Stab(z)| = p~!|SL2(F,)|. Further,

YN INE=DD Mg )P =)0 I )
J=1 j=1 g =z g =«
(155) = [SL2(F,)|- Y 1f (@) = (0* =)l fII5-

x

It is easy to check that if (z) € F} is an eigenvector of T':= M*M, then for any g €
SL o(F,) the vector ¥(gz) is another eigenvector of T' and moreover T'gt' = gT%. Thus the
following linear operator Y, defined by the formula (Y,h)(x) := h(gz), where h belongs
to any eigenspace defines a representation because, obviously, Yy, Yy, = Yy, 4,. By the
famous Frobenius result [20] the dimension of all non-trivial irreducible representations
of SLo(F,) is at least (p — 1)/2. It follows that for any eigenfunction ¥, ¥ # @ the
multiplicity of the correspondent eigenvalue is at least (p — 1)/2 (see details in [45], [10],
[21]). Hence in view of ([I5Hl), we obtain A\ < 2p||f||. Finally, by formula ([I54), the
orthogonality of the systems of functions u; and v;, the Hélder inequality, as well as our
upper bound for A\;, we have

p—1
Y (Fxfa)pla) =Y M(g,a)F(g)p(x) =Y N(F )0, v5) < 2pl|Fl2|¢ll2]| f ]2 -
x g,x j=1
This completes the proof. O

The proof of Theorem [B0l. Clearly, one can assume that K is sufficiently large because
otherwise (IIT) is trivial. Put s = |SLy(F,)| and write f(z) = u(z) — s~!. Then
>, f(x) =0, f(a=!) = f(z), |flli <1+ 1 =2 and by induction one can check that
(f*1 f)(x) = (u* p)(x) —s~1, 1 € N. Tt gives that

Ton (1) = llpwror plls = 571+ |1 f #or flI3 =571+ Toe(f)

So, our task is to estimate || f *ox f]|3. Clearly, it is enough to prove the following bound:

(156) I1f *u flI3 <\ f %0 flI5- K% o= || f % fl3/M,

where ¢, > 0 is an absolute constant and [ € N. Since

(157) 1 o0 £II5 =D (F %0 F)(@y)(f %2 £)@)(f %2 (),
z,y

it follows that by an analogue of Lemma 22 (applied to the natural action of SL o(F,)
onto SLo(F,); see details in [I8], say) that

1f *2r FII3 < 2011f *20 Fll2llf 2 £113
and this implies
I1f *20 FII3 < 4p°|1f # fll5-

Thus we can assume that
1

2
(158) If* fllz = 107
because otherwise there is nothing to prove. Now put r(x) = (f *; f)(z). Then, clearly,
1
Irlloo < 7l =Y |(p s p)(@) = | < 1+ 1=2.

S
x
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From (IE7), we have
Ta(f) = *a fl3= Y r@)r@)rz)r(w).
TYy=zWw
Put p = To(f)/B||r|3)- Since
> r(@)r(y)r(z)r(w) < plrl < Ta(f)/8,
zy=zw : |r(z)|<p
it follows that
Tou(f) <2 > r(x)r(y)r(z)r(w).
zy=zw : [r(2)],[r(W)],Ir(2)]|r(w)|>p
Put P; = {x € SLo(F,) : p2971 < |r(z)] < p27} and L = 8 + log(2l) - log K. By
the assumption k& < K and hence L < klogK < K°logK. Since > pu(z) =1, it
follows that ||11] s > s~! and we obtain a rough upper bound for K, namely, K < s. So,
choosing ¢, to be sufficiently small, we can suppose that for sufficiently large p one has

L < p° with a given € > 0. Clearly, we can assume that Tor(f) > K% and hence for
any x such that |r(z)| > p one has

27 27 KT ||| < 27 27 T () 1170 = 02 < ()] < Il < 2.
It follows that the possible number of the sets P; does not exceed L. Thus as in the
proof of Theorem 25, we see that there is P = P;,, A = 2%~!p such that
Tau(f) < 2L*(2A)*E(P).
Clearly, A?|P| < T,(f) and if ([I56) does not hold, then it gives us
MTITi(f) < Tau(f) < 2°L*AY PP < 2°L*T(f)| P
On the other hand, by the second assumption of the theorem and K < s, we get

(159) Ti(f) = Tu(p) + 57" < s plloo + 571 < lulloo + 571 <2K71.
Hence, combining the last two bounds, we obtain
K
1 P> —.

Similarly, we have
MTITy(f) < Ta(f) < 2°LAAYPP < 2°LATi(f)(IP|A)?,

and hence
1
(161) IPIA 2 S5
Also, we have
IPIA<D r(@)] <D Ir@)] = Il
zeP x

So, we see that if (I56) has no place, then
TuU(f)/M < Ta(f) < 2L (20)'E(P)
— B9 L'AYPP(E(P)/|PIP) < 2°LYA[P)*Ti(f)(E(P)/|P).
In other words
E(P)>|P]?-2°L*M Y (A|P|)2>27"L*M~ 1 =(|P]3.

By the Balog—Szemerédi-Gowers Theorem in the non—commutative case (see, e.g., [567]
Corollary 2.46]), we see that there is P, C P, |P,| > (Y|P|, |P.P7 | < (~°|P.|, where
C > 0 is an absolute constant. The fact |P,P!| < (~¢|P,| implies that there is a
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symmetric set H, |H| < ¢~¢'|P,|, containing the identity, and a set |X| < ¢~ such
that P, € X H and

(162) HHCXHCHXX and HHCHX C XXH,

see [57, Proposition 2.43]. Here C’ > 0 is another absolute constant. Clearly, inclusions
([[62) combining with |X| <« ¢~ imply

(163) |H3| = |H - H?| < |H?- X| < |H - X?| < |X|*|H| < ¢"2¢"|H]|.
Further, since P, C X H, we see that there is x € X such that
(164) H| > |, naH]| > [P]/1X] > ¢C|P.

By the inclusion P, C P and the definition of the set P, we have
(165) AP < AP, naH| < > |r(@)| < pleH) + Pl /s < 2u(H)
zeP.NxH
because otherwise in view of our choice of A > p, we obtain
Tu()/@lIrl) =p <A< (s

and hence by ([I58), we derive (M is sufficiently small comparable to p and L < p€ for
sufficiently small €, depending on C’ only)

To(f) < LMY p=% < LY METIT(f) /p < Tu(f) /M,
as required in ([I56]). Thus we see that (IGH) takes place and whence by (I61])
(166) w(zH) > ACY|P,| > AIP|CC > (L 2M Y2 > L7240 ¢
Finally,
(167) [H| < IR < COTI()/A* < COTUN /0P < COTUD T <97
say, because otherwise (just the last inequality should be explained) in view of (I58]) and
sufficiently small M, say, M < p*/12, we get
Tu(f) < P AT () < Tu(f)/M

Using ([I67), lower bound (I60), estimate (I64]), and recalling ([IG3]), we see in view of
Theorem [24] that either our set H belongs to some proper subgroup I' or
(168) ML > (72 s [H|C > (TP > (COHCIP) > K¢

In the last inequality we have used lower bound ([I60). Now suppose that H belongs to
a subgroup. By our assumption u(gI') < K1 for any proper subgroup I' C SL»(F,),
g € SLo(F,). Hence ([I66) gives us

(169) K~ '> pu(al) > p(zH) > L™ M~
Finding M satisfying both ([I68), (I69) and using the assumption k < K, we obtain
the required dependence M on K. This completes the proof. O

Using the same method of the proof (one can check that a non—commutative analogue
of Lemma [I7] takes place and also, see [5I, Theorem 27] and Theorem [27 above), we
obtain the following.

Theorem 68. Let ;1 be a symmetric probability measure on SLo(Fy) such that for a
parameter K > 1 one has

o u(gl') < K= for any proper subgroup I' C SLo(F,), g € SLo(F,) and

o flle < K.

Put f(x) = p(z)—|SLo(F,)| 1. Then there is k < log(||ull5 ")/ log K such that Eqx(f) <

ok+1

2117113
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Theorem [68 immediately implies (see the proof of bound (8@ from Corollary BIl) the
following.

Corollary 69. Let u be a symmetric probability measure on SLo(F,) such that for a
parameter K > 1 one has

o u(gl) < K=t for any proper subgroup T C SLo(F,), g € SLo(F,) and

o oo < K.

Put f(x) = p(x) — |SLo(F,)|~ . Then there is k < log(||ullz ")/ log K such that for an
arbitrary function h : SLo(F,) — C and any set A C SLo(F,) and a positive integer
s < 2F one has

.9/2]”'+2
(170 S g < laiigiss (PR

r€A
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