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BIFURCATIONS OF THE ‘HEART’ POLYCYCLE IN GENERIC

2-PARAMETER FAMILIES

A. V. DUKOV

Abstract. The paper concerns the ‘heart’ polycycle. We show that the set of vector
fields containing a ‘heart’ polycycle form a Banach submanifold of codimension two
in the space of smooth vector fields on a two-dimensional sphere. The bifurcation
diagram of a generic family containing such a polycycle is constructed and surgery
on the phase portrait is described.

1. Introduction

We consider a vector field on a sphere which contains a ‘heart’ polycycle (see Figure
1.1) consisting of two saddle points joined by separatrix connections.

L

M

Figure 1.1. The ‘heart’ polycycle.

We will investigate the question of semilocal bifurcation of such a ‘heart’ in a generic
2-parameter family. The bifurcation being semilocal means that it is studied only in a
small neighbourhood of the polycycle. Consider the bifurcation diagram of the family.
Under a ‘natural’ choice of parameters described below, interesting bifurcations only
occur in the first quadrant, for positive values of the parameters. Possible bifurcation
diagrams are shown in Figures (1.2a) and (1.2b).

The curves SL1 and SL2 correspond to the separatrix loops. In Figure (1.2a), the
curve PC corresponds to a parabolic cycle. The countable set of curves accumulating
at PC and SL1 corresponds to the so-called sparkling separatrix connections. The bi-
furcation under scrutiny is the simplest semilocal bifurction where sparkling separatrix
connections occur.

A sparkling separatrix connection in a one-parameter family is a parameter-depen-
dent sequence of separatrix connections between the same two saddles, each one making
a greater number of turns than the previous one. They were discovered by Malta and
Palis in 1981. In [2] they described a one-parameter family in which a bifurcation of
the parabolic limit cycle occurs. The separatrices of the saddles wind around this limit
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Figure 1.2. Two possible bifurcation diagrams.

cycle from both sides, forming sparkling separatrix connections when the cycle breaks
up. Recently it was shown in [4] that sparkling connections are not only of independent
interest: the simultaneous appearance of several series of connections in a family can
lead to the appearance of a numerical invariant, a quantity which does not change when
passing to equivalent families. The only cases that have been looked at up to now have
been global bifurcations, where the sparkling connections are due to external saddles
(remote from the bifurcating polycycle or cycle). In 2015, Yu.S. Il’yashenko raised the
question: Are sparkling separatrix connections to be found in generic semilocal families?
This article gives a positive answer to this question.

Recall that the characteristic exponent of a saddle is the ratio of its eigenvalues taken
with a minus sign and with the negative eigenvalue on the numerator. The saddle is called
dissipative if its characteristic exponent is greater than 1. There exist two qualitatively
different scenarios of the ‘heart’ polycycle bifurcation, depending on the dissipativity of
the saddle points. The key result of this paper is presented in the following two theorems.

Theorem 1. For dissipative and non-dissipative saddles, the bifurcation diagram of a
generic 2-parameter family which perturbs a vector field with a ‘heart’ polycycle is the
union of curves approaching the origin comprising two curves corresponding to the vector
fields with a separatrix loop, one curve corresponding to the vector field with a parabolic
limit cycle and two infinite sets of curves corresponding to the sparkling separatrix con-
nections.

The bifurcation diagram for this case is shown in Figure 8.1.

Theorem 2. The bifurcation diagram for a generic 2-parameter family perturbing a
vector field with a ‘heart’ polycycle is, in the case of two non-dissipative saddles, is a
union of curves tending to the origin, comprising two curves corresponding to the vector
fields with separatrix loops and two infinite series of curves corresponding to the sparkling
separatrix connections.

The bifurcation diagram in this case is shown in Figure 8.2. All the necessary def-
initions are given in Section 2, together with all the main concepts and notation used
throughout the paper. The main object of study is a generic 2-parameter family of vector
fields on a sphere. Each parameter of the family is defined as the unlocking threshold of
the respective connection. The vector field contains a ‘heart’ polycycle when the param-
eters are zero. This section also contains the definition of the Poincaré map which we
need to find the limit cycles.



BIFURCATIONS OF THE ‘HEART’ POLYCYCLE IN 2-PARAMETER FAMILIES 211

Section 3 is devoted to the geometry of vector fields with a ‘heart’ polycycle in the
space of all vector fields. Such fields form a smooth Banach submanifold of codimension
2.

Sections 4–7 are mainly concerned with giving a description of the bifurcation diagram
of the family. We will show that on the diagram there is a countable set of curves going
out from the origin of the coordinate base of the parameters. These curves correspond
to vector fields with separatrix connections or a semistable limit cycle. In particular, we
will prove the existence of sparkling separatrix connections.

2. The ‘heart’ polycycle and its Poincaré map

Consider a C1-smooth 2-parameter family V of vector fields on a sphere with param-
eters ε and δ. Suppose that for any values of the parameters the vector fields of the
family contain two saddles M(ε, δ) and L(ε, δ). Exactly how the parameters are defined
is described below.

Let μ and λ be the characteristic exponents of the saddles M and L, respectively; these
depend on the parameters of the family. We assume that the vector field corresponding
to zero parameters is generic:

μ(0), λ(0) /∈ Q, λ(0)μ(0) �= 1.(1)

We also assume that when both parameters are zero there are two separatrix con-
nections between the saddles which constitute a polycycle, that is, in this case, a digon
with vertices at the saddle points M and L and the separatrices as the edges. Moreover,
the free separatrices (not involved in its formation) are located on different sides of the
polycycle. In what follows, we will use the term ‘separatrix’ only for those separatrices
which participate in the formation of the polycycle, that is, those that constitute the
separatrix connection when the parameters are zero (see Figure 1.1).

We draw transversals Γ+
1 ,Γ

−
1 ,Γ

+
2 ,Γ

−
2 to the polycycle as follows. We assume that Γ+

1

and Γ−
1 are located within a neighbourhood UM of the saddle M which will be defined

below, and the separatrix approaching the saddle M intersects Γ+
1 , while the one leaving

it intersects Γ−
1 . The transversals Γ+

2 ,Γ
−
2 are located near the saddle L in a similar way.

We choose coordinates on these transversals, with the origin at the point of intersec-
tion of the separatrix from the nearest saddle with the transversal and such that the
orientation of the transversals Γ+

1 ,Γ
−
1 is opposite to the orientation of the transversals

Γ+
2 ,Γ

−
2 with respect to the polycycle (see Figure 2.1).

g f

M

L

Δλ

Δμ

Γ−

Γ+Γ−

Γ+

δ ε

Figure 2.1. A perturbed ‘heart’ polycycle.
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According to [1] (Chapter 9, 1.2) and the genericity condition (1), for certain neig-
bourhoods UM and UL of the saddles M and L there exist finitely-smooth coordinates
on the transversals such that the transition maps in a neighbourhood of zero are of the
form:

Δλ : Γ+
2 → Γ−

2 , Δλ(x, ε, δ) = xλ(ε,δ);(2)

Δμ : Γ+
1 → Γ−

1 , Δμ(x, ε, δ) = xμ(ε,δ).(3)

In these coordinates, the point x = 0 corresponds to the intersection point of the
transversal and separatrix of the corresponding saddle.

We now introduce the parameter-dependent Poincaré map Δ of a circuit around the
whole polycycle:

Δ : Γ−
1 → Γ−

1 , Δ(x) = Δ(x, ε, δ) = Δμ ◦ g ◦Δλ ◦ f(x).(4)

It is defined near the point x = 0 for appropriate nonzero values of the parameters and
is the composition of the functions (2), (3) with two regular maps, f : Γ−

1 → Γ+
2 and

g : Γ−
2 → Γ+

1 both of which are C1-smooth in a neigbourhood of zero.
Consider an annulus U ⊂ S2, which is a neighbourhood of the polycycle for zero values

of the parameters, and such that its closure Ū does not contain any limit cycles or other
singular points. We suppose that the boundary of U consists of arcs of phase curves of
the vector field for zero values of the parameters and of transversals to separatrices that
do not form the polycycle. In addition, we assume that the annulus U is sufficiently
narrow, so the Poincaré map is defined at each point U ∩ Γ−

1 . Our goal is to study the
behaviour of the vector field in this annulus (see Figure 2.2). Notice that the separatrices
which do not participate in the formation of the polycycle leave the neighbourhood U
(see Figure 2.2).

U

M

L

Figure 2.2. The neighbourhood U .

We assume that the family with parameters ε and δ is generic in the sense that

det

(
∂f(0)
∂ε

∂f(0)
∂δ

∂g(0)
∂ε

∂f(0)
∂δ

)∣∣∣∣∣
ε=0,δ=0

�= 0.

This inequation is invariant under changes in the parameters. Once we have shown in
Section 3 that H is a Banach manifold, this condition implies that the family intersects
H transversally. Then without loss of generality we can assume that the maps f and g
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are of the form

f : Γ−
1 → Γ+

2 , f(x) = ε− f̃εδ(x);(5)

g : Γ−
2 → Γ+

1 , g(x) = g̃εδ(δ − x),(6)

where f̃εδ(0) = g̃εδ(0) = 0. Thus, the parameters being zero corresponds to the vector
field with locked separatrix connections (see Figure 2.1). Since f and g are diffeomor-
phisms with respect to x and depend smoothly on ε and δ, there exist positive smooth
functions a(ε, δ) and b(ε, δ) such that

f̃εδ(x) = a(ε, δ)x(1 + o(1)),

g̃εδ(x) = b(ε, δ)x(1 + o(1))(7)

as x → 0. Moreover, their derivatives satisfy the following relations:

f̃ ′
εδ(x) = a+ o(1); g̃′εδ(x) = b+ o(1) ;(8)

∂f̃εδ
∂ε (x) = ∂a

∂εx(1 + o(1)); ∂g̃εδ
∂ε (x) = ∂b

∂εx(1 + o(1));(9)

∂f̃εδ
∂δ (x) = ∂a

∂δx(1 + o(1)); ∂g̃εδ
∂δ (x) = ∂b

∂δx(1 + o(1));(10)

as x, ε, δ → 0. Here, a, b, ∂a
∂ε ,

∂b
∂ε ,

∂a
∂δ ,

∂b
∂δ denote the values at ε = δ = 0 of the functions

a(ε, δ) and b(ε, δ) and of their respective partial derivatives.
Moreover, as the maps f and g depend smoothly on the parameters, the following

relations are true:

a(ε, δ) = a+O(ε) +O(δ);

b(ε, δ) = b+O(ε) +O(δ);

λ(ε, δ) = λ+O(ε) +O(δ);(11)

μ(ε, δ) = μ+O(ε) +O(δ).

We recall that a saddle is called dissipative (non-dissipative) if its characteristic ex-
ponent is strictly greater (less) than 1. Depending on the values of the characteristic
exponents of the saddles, six cases are possible:

(1) μ > 1, λ < 1, λμ < 1
(2) μ > 1, λ < 1, λμ > 1
(3) μ < 1, λ > 1, λμ > 1
(4) μ < 1, λ > 1, λμ < 1
(5) μ > 1, λ > 1
(6) μ < 1, λ < 1

To help the reader appreciate the differences between these 6 cases, we make the following
observations. 1) The dissipativity of a saddle determines the behaviour of trajectories
passing close to that saddle; in particular, it affects the appearance of limit cycles when
the separatrix loops break. 2) The sign of the product λμ determines the behaviour of
the trajectories near both saddles; in particular, it affects the order of the appearance of
loops of the separatrices of the saddles.

In what follows we will consider only case (1) (the case of a dissipative and non-
dissipative saddle) and case (6) (the case of two non-dissipative saddles), since the re-
maining cases can be reduced to these two. Indeed, if time is reversed, then case 1 goes
to case 3, and case 6 to case 5. Cases 1 and 4 are obtained from each other by renaming
λ to μ and vice versa. Cases 2 and 3 are obtained from each other in a similar way. Case
1 corresponds to the bifurcation diagram in Figure 1.2a and case 6 to Figure 1.2b.

We now give the definitions that are necessary to understand Theorems 1 and 2, which
we stated in the first section.
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Definition 1. Two vector fields are called orbitally topologically equivalent if there exists
a homeomorphism of phase spaces preserving the orientation that takes the trajectories
of one vector field to the trajectories of the other.

Definition 2. A vector field is called structurally stable if there exists a neighbourhood
of it in the space of smooth vector fields in which any vector field is orbitally topologically
equivalent to the given vector field.

Definition 3. The bifurcation diagram of a family is the set of all points in the spaces
of parameters corresponding to structurally unstable vector fields.

3. Vector fields with a ‘heart’ polycycle as a Banach manifold

Consider a Cr-smooth vector field v ∈ Vectr(S2) which contains a separatrix con-
nection γ of two saddles. Let SC ⊂ Vectr(S2) denote the set of Cr-vector fields with
a separatrix connection and SCγ denote the set of vector fields w ∈ SC for which the
separatrix γw is close to γ.

Theorem 3 (Sotomayor[3]). The set SCγ is a Banach manifold of codimension 1 in
the space Vectr(S2), that is, for any point w ∈ SCγ there exist a neighbourhood W ⊂
Vectr(S2) and a Cr−1-smooth function F : W → R such that

• F−1(0) = SCγ ∩W ,
• DF (p) is a surjection for any point w ∈ SCγ .

The ‘heart’ polycycle appears as a result of the formation of two separatrix connec-
tions. We let H̃ denote the intersection of two surfaces SCγ1

and SCγ2
corresponding to

vector fields with one of these separatrix connections (see Figure 3.1).

Proposition 1. H̃ is a Banach manifold of smoothness class Cr−1 and codimension 2.

Proof. According to Sotomayor’s Theorem, for any vector field w ∈ H̃ there exist a
neighbourhood W and Cr−1 functions F1, F2 : W → R such that F−1

1 (0) = SCγ1
∩W

and F−1
2 (0) = SCγ2

∩ W . We have H̃ ∩ W = SCγ1
∩ SCγ2

∩ W = F−1
1 (0) ∩ F−1

2 (0).

Therefore H̃ is the zero set of the function F = (F1, F2) : W → R2. In the proof of
his theorem, Sotomayor chose as F1 and F2 functions which put into correspondence
with each vector field the unlocking threshold of the separatrix connections on a certain
transversal. For the family V with the ‘heart’ polycycle which is described in later
sections, a suitable choice of F1 and F2 is to take the functions f and g.

γ

H�

γ

Figure 3.1. The set of vector fields with the ‘heart’ polycycle is the
intersection of two Banach submanifolds.

We will prove that dF is surjective. To do this it is sufficient to find two vectors
h1, h2 ∈ TwVect

r(S2) such that dF (h1) and dF (h2) are linearly independent.
First, we will construct h1. We choose a point x0 ∈ S on the separatrix of the vector

field w which defines the surface SCγ1
. We straighten the vector field in some neigh-

bourhood Ox0 of this point. We take an infinitely smooth vector field h1 = (0, ρ(x, y)),
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Figure 3.2. a) The offset vector field h; b) The resulting vector field w + εh.

where ρ(x, y) ≥ 0, which vanishes identically on the whole sphere apart from on Ox0. In
this neighbourhood the vector fields h and w are orthogonal. We consider a 1-parameter
family of vector fields w + ξh, where ξ ∈ (R, 0) (see Figure 3.2). In the straightening
chart this family is given by {

ẋ = 1,
ẏ = ξρ(x, y).

(12)

y(x)= const
x0

xOx0

y(x)

Figure 3.3. The vector field w+ξh1 defined by (12) in the straightening
chart for ξ �= 0.

The phase curves yξ(x) of this system depend on the parameter ξ (see Figure 3.3).
When ξ = 0, all phase curves of the system (12) are given by equation y0(x) = const.
Therefore,

F1(w + ξh) = yξ(x)− y0(x) = ξ

x∫
−∞

ρ(x, yξ)dx− y0(x).(13)

Thus,

∂

dξ
F1(w + ξh) =

x∫
−∞

ρ(x, yξ)dx+ ξ

x∫
−∞

∂

∂ξ
ρ(x, yξ)dx.

By the theorem which states that the solution depends continuously on the parameter,
the second term after the equals sign tends to zero as ξ → 0. Since ρ is nonnegative and
is not identically zero on Ox0, hence

∂
dξF1(w + ξh) �= 0. This inequation is preserved on

passing to the original (not straightened) chart. Moreover, ∂
dξF2(w + ξh1) = 0, because,

by construction, the second separatrix does not unlock.
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In a similar fashion, we choose a point on the other separatrix and construct the vector
field h2. This satisfies

∂
dξF2(w + ξh2) �= 0 and ∂

dξF1(w + ξh2) = 0. Therefore, the image

of the differential F = (F1, F2) contains two independent vectors ( ∂
dξF1(w+ ξh1), 0) and

(0, ∂
dξF2(w + ξh2)), as required. �

4. Passage to the first quadrant

A neighbourhood of any saddle is divided into four hyperbolic sectors. When the
parameters are both zero, one of the sectors for both the saddle M and L lies in the
connected component of the complement of the polycycle which is distinct from the
component containing the other three. We call this sector the main sector and the two
adjoining it adjacent sectors (see Figure 4.1). Notice, that if for small enough values of
the parameters, some separatrix enters an adjacent sector of one of the saddles, then it
leaves the neighbourhood U of the polycycle. This follows from the construction of the
neighbourhood.

U

M

L



 



 

Figure 4.1. For the saddle L, the main sector is 1, and the adjacent
sectors are 2 and 3. For the saddle M , the main sector is 4, and the
adjacent sectors are 5 and 6.

Proposition 2. If both the parameters ε and δ are non-zero and at least one of them
is negative, then the break-up of the ‘heart’ polycycle does not lead to the appearance of
separatrix connections.

Proof. 1) Let ε < 0, δ < 0. The separatrix leaving the saddle M reaches the neighbour-
hood UL of the saddle L, enters an adjacent sector and therefore leaves the neighbourhood
U of the polycycle (see Figure 4.2). Reversing time, the incoming separatrix of the sad-
dle L reaches the neighbourhood UM of the saddle M and arguing analoguously it also
leaves the neighbourhood of the polycycle. The reasoning for the separatrix coming in
to M and the separatrix leaving L is exactly the same reversing the time. Therefore, all
separatrices leave the neighbourhood U .

2) Let ε < 0, δ > 0. As above, if ε < 0 then the separatrix leaving M and the
separatrix entering L both leave U . The separatrix leaving L reaches the neighbourhood
UM of the saddle M , comes into an adjacent sector of it and leaves the neigbourhood
of the polycycle. Reversing time, the separatrix entering the saddle M meets UL and
‘moves’ along the incoming separatrix of the saddle L until it reaches UM and leaves the
neighbourhood U of the polycycle.

3) Let ε > 0, δ < 0. The proof follows the same lines as in paragraph 2). Thus,
we conclude that outside the first quadrant the bifurcation diagram contains only the
coordinate axes. �
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L

M

δ ε

Δλ

g

Figure 4.2. The vector field in the case when one of parameters is negative.

Corollary 1. If at least one of the parameters is negative, then there are no limit cycles
for the corresponding vector field.

Proof. Assume that the vector field contains a limit cycle. Both saddle points cannot
be on the same side of the cycle, because each saddle has only one sector such that
the trajectories passing through it do not leave the neighbourhhood U . Moreover, these
sectors are located in the polycycle so that the limit cycle passing through them leaves
the saddles in different connected components. Therefore, the saddles are separated by
the limit cycle and no separatrix of one saddle can reach an adjacent sector of the other
saddle, as described in the proof of Proposition 2. Thus, if a limit cycle exists, then both
parameters are positive. �

Next we will study the part of the bifurcation diagram inside the first quadrant.

5. Separatrix loops

In this section we will describe all the separatrix loops that arise, that is, the homo-
clinic orbits to the saddles.

Proposition 3. Curves on the bifurcation diagram corresponding to separatrix loops
divide the germ of the first quadrant at the origin into three connected components.

We let SLM denote the curve in the space of parameters corresponding to vector fields
with a separatrix loop of the saddle M and SLL the one corresponding to the separatrix
loop of the saddle L. Henceforth we will call the sector between the ordinate axis and
the curve SLM the upper sector, the sector between the axis of abscissas and SLL the
lower sector, and the remaining sector the middle sector.

Proof. The following relation is necessary for the birth of a loop near the saddle M (see
Figure 5.1b):

g ◦Δλ ◦ f(0) = 0.(14)

Denote the expression on the left hand side of (14) by Φ(ε, δ). Note that Φ(0, δ) = g(0) =
g̃0δ(δ) > 0 for all δ > 0, while Φ(ε, 0) = g̃ε0(Δλ(ε)) < 0 for all ε > 0. Therefore, by
continuity, the inequality Φ(ε, δ) < 0 holds on the line joining the points (ε, 0) and (ε, δ)
for some small δ > 0. Consider an arbitrarily small rectangle R with vertices (0, 0),
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(ε0, 0), (ε0, δ0) and (0, δ0). For any fixed δ, the function Φ(ε, δ) takes values of opposite
signs at the ends of the section δ = const of the rectangle R. By continuity, any such
section contains a point (δ, ε) such that Φ(ε, δ) = 0. The vector field corresponding to
this point contains a separatrix loop of the saddle M . Now we prove that on each section
this point is unique if δ > 0 is sufficiently small. To do this, it suffices to verify that the
rectangle R can be chosen small enough, so that inside it the function Φ(ε, δ) is strictly
decreasing with respect to ε, that is ∂Φ

∂ε (ε, δ) < 0. We will make use of the following
lemma.

Lemma 1. Let h1(x, τ1, τ2), h2(x, τ1, τ2) : (R
3, 0) → (R3, 0) be C1-smooth functions and

let Δν(x, τ1, τ2) = xν(τ1,τ2), where ν(τ1, τ2) ∈ C1(R2, 0), 0 < ν(0, 0) < 1. Suppose that
for x, τ1, τ2 → 0:

∂hi

∂τj
(x, τ1, τ2) → cij, where cij �= 0 ⇔ i = j;

∂hi

∂x
(x, τ1, τ2) → ai < 0;(15)

hi(x, τ1, τ2) → 0.

Then

∂

∂τ1
h2 ◦Δν ◦ h1(x, τ1, τ2) → −∞

for x, τ1, τ2 → 0, where composition is with respect to the variable x.

Proof. We have:

∂

∂τ1
h2 ◦Δν ◦ h1 =

∂h2

∂τ1
+

∂h2

∂x

(
∂Δν

∂τ1
+

∂Δν

∂x

∂h1

∂τ1

)
.(16)

By condition, ∂h1

∂τ1
(x) → c11 �= 0 and h1(x) → 0; hence the expression in parentheses in

(16) is

∂Δν

∂τ1
(h1(x)) +

∂Δν

∂x
(h1(x))

∂h1

∂τ1
(x) =

∂ν

∂τ1
h1(x)

ν lnh1(x) + νh1(x)
ν−1∂h1

∂τ1
(x) → +∞

for x, τ1, τ2 → 0. Therefore, according to (15), expression (16) tends to −∞ as x, τ1,
τ2 → 0. �

Now we return to the proof of Proposition 3. From now on we divide it into the
following two stages: proving the existence of a curve in the space of parameters which
corresponds to the vector fields a) with the loop of the saddle M , and b) with the
loop of the saddle L. The latter stage subdivides further into two: b1) saddles with
different dissipativity, which was denoted in Section 2 by case 1; b2) saddles with the
same dissipativity, which was denoted by case 6.

a) Set h1 = f , h2 = g, Δν = Δλ, τ1 = ε and τ2 = δ; according to (8)–(10), for
λ < 1 the relation (14) is valid both in case 1 (dissipative and non-dissipative saddles)
and in case 6 (two dissipative saddles) and the function Φ from this equation satisfies the
conditions of the lemma. Therefore, ∂Φ

∂ε → −∞ �= 0 as ε, δ → 0. Thus, for any section
δ = const of R there exists a unique point (ε(δ), δ) such that Φ(ε(δ), δ) = 0. Moreover,
applying the implicit function theorem to the equation Φ(ε, δ) = 0 at the point (ε(δ), δ),
for small δ > 0 the function ε(δ) is seen to be smooth. Since R can be chosen arbitrarily
small, ε(δ) → 0 as δ → 0. Therefore, according to (11), equation (14) can be written as

ε(δ) = Δ−1
λ (δ) = δ

1
λ(ε(δ),δ) = δ

1
λ+o(1) as δ → 0,

ln ε(δ) = 1
λ (1 + o(1)) ln δ as δ → 0.(17)
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b) Similarly, for the other saddle (see Figure 5.1d):

f ◦Δμ ◦ g(0) = 0.(18)

Denote the expression on the left-hand side of (18) by Ψ(ε, δ). We note that Ψ(0, δ) =

−f̃0δ ◦Δμ ◦ g̃0δ(δ) < 0 for δ > 0 and Ψ(ε, 0) = ε > 0. There exists a small rectangle R,
such that the function Ψ(ε, δ) has opposite signs at the endpoints of the section ε = const.
Therefore, by the continuity of Ψ(ε, δ), there exists a point on any such section such that
the corresponding vector field contains a separatrix loop of the saddle L.

b1) Set h1 = g, h2 = f , Δν = Δμ, τ1 = δ and τ2 = ε; then, according to
(8)–(10), for μ < 1 (which is true only in case 6, of two dissipative saddles) the function
Ψ from equation (18) satisfies the conditions of the lemma. Therefore, ∂Ψ

∂δ → −∞ �= 0 as
ε, δ → 0. Thus, by the implicit function theorem applied to the equation Ψ(ε, δ) = 0 at
any point where the solution exists, for small values of the parameters the curve on the
bifurcation diagram corresponding to vector fields with the separatrix loop of the saddle
L is the graph of a function δ(ε) which is smooth for ε > 0. Since the rectangle R is
arbitrarily small, then δ(ε) → 0 as ε → 0. Therefore, using (11) we can write equation
(18) in the form:

δ(ε) = g̃−1
εδ ◦Δ−1

μ ◦ f̃−1
εδ (ε) = 1

b

(
ε
a

) 1
μ(ε,δ(ε)) (1 + o(1)),

ln δ(ε) = 1
μ (ln ε− ln a)(1 + o(1))− ln b+ o(1)(19)

as ε → 0.
b2) Set h1 = f−1, h2 = g−1, Δν = Δ−1

μ , τ1 = ε and τ2 = δ; then, according to

(8)–(10) from the equation Ψ−1(0) = 0, obtained from (18) for μ > 1 (which is only
true in case 1 for dissipative and non-dissipative saddles), Ψ−1 function satisfies the
hypotheses of the lemma. By similar reasoning we conclude that there is a smooth curve
in the diagram corresponding to vector fields with separatrix loops of the saddle L. We
can verify immediately that the asymptotics in this case coincide exactly with (19).

Thus, the bifurcation diagram contains two curves which divide the first quadrant into
three sectors. Since 1

μ > λ, comparing relations (17) and (19), we can conclude that the

curve SLM lies above SLL on the bifurcation diagram. Proposition 3 is proved. �
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Figure 5.1. The phase portrait of the vector field in the a) upper;
c) middle; e) lower sectors, as well as at the moment of the birth of
the separatrix loops. It shows the processes of birth and death for the
separatrix loops as we go from the upper to the lower sector in the order
a-b-c-d-e.

6. Dissipative and non-dissipative saddles. The bifurcation diagram

δ

ε

�

�
∼ελ

∼ε /μ

Figure 6.1. Curves of the bifurcation diagram which correspond to the
separatrix loops. Here B, C and H denote the upper, middle and lower
sectors, respectively.
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In this section we will look closely at case 1, for which the characteristic exponents of
the saddles satisfy the inequalities

μ > 1, λμ < 1.(20)

We will show that the bifurcation diagram of the family is as given in Fig. (1.2a).
Henceforth we take the diagram to be just its germ at zero in the base (R2, 0).

6.1. Limit cycles.

Proposition 4. Parameter values in the upper sector of the bifurcation diagram corre-
spond to vector fields which contain zero, one or two limit cycles in the neighbourhood
U . In the middle sector there is exactly one limit cycle. Vector fields corresponding to
parameter values in the lower sector contain no limit cycles.

Proof. We will find fixed points of the Poincaré map for the ‘heart’ polycycle (these
depend on the parameters). These points correspond to the limit cycles which appear
when the polycycle is destroyed. We obtain the equation Δ(x) = x which, due to (4),
can be written

Δλ ◦ f(x) = (Δμ ◦ g)−1(x).

The maps on both sides of the equality act from the transversal Γ−
1 to the transversal

Γ−
2 . Using (2), (3), (5) and (6) we obtain

Δλ(ε− f̃εδ(x)) = δ − (Δμ ◦ g̃εδ)−1(x).(21)

In view of (20) and (8), the x-derivative of the left-hand side of (21) is equal to

− ∂

∂y
Δλ(y)

∣∣∣
y=ε−f̃εδ(x)

∂f̃εδ(x)

∂x
= −

(
ε− ax(1 + o(1))

)λ−1

a(λ+ o(1))(22)

as x, ε, δ → 0. This derivative tends to −∞ as x tends to the zero of the function
ε− ax(1 + o(1)) from the left. The x-derivative of the right-hand side of (21) is equal to

− ∂

∂y
g̃−1
εδ (y)

∣∣∣
y=Δ−1

μ (x)

∂Δ−1
μ (x)

∂x
= − (1 + o(1))

bμ
x

1
μ−1(23)

as x, ε, δ → 0. It tends to −∞ as x tends to zero from the right. It follows that on the
segment [0, ε] for ε sufficently small, the derivative (22) is decreasing and the derivative
(23) is increasing. Therefore, on this segment the function on the left-hand side of (21)
is convex upward and the function on the right-hand side is convex downwards.

Thus, the graphs of the functions from the left- and right-hand sides of equation (21)
can intersect in at most two points (this follows from Rolle’s theorem). If the intersection
takes place on the axis of abscissas, then both functions map some point on the transversal
Γ−
1 into zero on the transversal Γ−

2 (see Fig. 6.2d). Therefore, there is a separatrix loop
of the saddle L. If the intersection takes place on the ordinate axis, then we conclude
that both functions map a zero on the transversal Γ−

1 into one and the same point on
the transversal Γ−

2 (see Fig. 6.2b). Therefore there is a loop of the saddle M . Thus,
Fig. 6.2a corresponds to the upper sector, Fig. 6.2c to the middle and Fig. 6.2e to the
lower sector. The vector fields corresponding to Figures 6.2 a, b, c, d, e, are shown on
the corresponding Figures 5.1 a, b, c, d, e.

We conclude that there are no limit cycles in the lower sector (see Fig. 6.2e), there
is exactly one limit cycle in the middle sector (see Fig. 6.2c), and the number of limit
cycles in the upper sector can vary between 0 to 2 (see Fig. 6.2a). Indeed, if the function
on the right-hand side of equation (21) behaves like curve 1 in Fig. 6.2a, that is, has
two intersection points with the graph of the other function, then the vector field has
two limit cycles. If it behaves like curve 2, that is, it is tangent to the other graph at a
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Figure 6.2. Plots of two convex functions from the left- and right-
hand sides of equation (21) in the sectors: a) lower (no limit cycles);
c) middle (one cycle); e) upper (from 0 to 2 cycles). Plots b) and d)
correspond to the moment of birth of the separatrix loops of the saddles
M and L. The values on the axis of abscissas are given up to a factor
(1 + o(1)) as ε, δ → 0. All five pictures demonstrate the appearance of
the intersection points of the plots in the process of transition from the
upper sector to the lower one in the order a-b-c-d-e.

Figure 6.3. Limit cycles: a) unstable for a vector field corresponding to
parameters from the middle sector; b) stable and unstable for parameters
from the upper sector; c) semistable for a vector field corresponding to
parameters from the upper sector.

point, then there is one limit cycle. Finally, if it behaves like curve 3, that is, it does not
intersect the graph of the other function, then there are no limit cycles. �
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δ

∼ελ

∼ε1/μ
�

�
В

В
С

Н

ε

Figure 6.4. Upper, middle and lower sectors on the bifurcation dia-
gram and the number of limit cycles of the corresponding vector fields
(denoted by Roman numerals).

We conclude that changing the parameter along the vertical line ε = ε0 so that δ
increases leads to the following evolution of the phase portrait. In the lower sector there
are no cycles, but after the loop of the saddle L breaks down an unstable cycle arises.
Then the separatrix loop of the saddle M collapses and a stable limit cycle arises. These
cycles approach one another, and eventually merge, momentarily forming a semi-stable
limit cycle that disappears as a result of the saddle-node bifurcation.

Remark. In section 4.2, when discussing the separatrix loop of the saddle M no mention
was made of the fact that the vector field in Figure 5.1b is not shown in its entirety.
Enhancing the picture by adding the unstable limit cycle, we obtain the final phase
portrait shown in Figure 6.5.

6.2. The emergence of sparkling separatrix connections.

Definition 4. Let V be a local k-parameter family of vector fields on the sphere. We
consider the separatrix leaving one saddle and the separatrix entering the other saddle
and note in the parameter base the set of points at which these separatrices form a
separatrix connection. We say that a series of sparkling separatrix connections is observed
in the family if the germ at the origin of this set is divided into an infinite number of
connected components.

In order to describe the sparkling separatrix connections that arise in the family V
under study, we prove the following proposition.

Proposition 5. Consider a 1-parameter family W = {wε|ε ∈ (R, 0)}. Suppose that the
vector field w0 has a parabolic limit cycle. Suppose that the Poincaré map Δε, depending
on the parameter ε, defined on a transversal Γ to this cycle has no fixed points for ε > 0.
Suppose that the vector field w0 has two saddle points, E and I, located on different sides
of the cycle and that the separatrix leaving the saddle E (separatrix entering the saddle
I) winds round the cycle in positive (negative) time (see Figure 6.6).

Then for small ε > 0 separatrix connections appear in the family W : that is, there
exists a sequence εn → 0 such that the vector field wεn contains a common separatrix of
saddles E(εn) and I(εn) close to E and I.

This result is more general than the Malta–Palis theorem [2] as it does not require
that the parabolic cycle be twofold.

Proof. Suppose that the transversal Γ intersects the cycle at the point 0, intersects the
separatrix leaving the saddle E at the point x1(ε), and the separatrix of the saddle I
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L

M

Δμ

g f

Δλ

Figure 6.5. Phase portrait of the vector field in the case of a separatrix
loop of the saddle M .

at the point x2(ε), and assume that x1(0) > 0 > x2(0). Let ε > 0 be arbitrarily small.
Since there are no fixed points, Δε(x) < x for any x ∈ [x2, x1]. Therefore, there exists
n such that Δ◦n

ε (x1(ε)) < 0 and Δ◦−n
ε (x2(ε)) > 0. But if ε = 0, then the inequalities

Δ◦m
0 (x1) > 0 and Δ◦−m

0 (x2) < 0 hold for any m. Therefore, for any n large enough there
exists εn such that Δ◦n

εn (x1(εn)) = Δ◦−n
εn (x2(εn)). �

I

E

Γ



x1 x2

Figure 6.6. Semistable limit cycle.

Proposition 6. Consider a 1-parameter family W = {wε|ε ∈ (R, 0)}. Suppose that the
vector field w0 has saddle points M and I, with a separatrix loop attached to M and with
I inside this loop, and suppose that the separatrix leaving the saddle I winds around the
loop from inside in positive time. Suppose that the transversal Γ intersects the separatrix
leaving the saddle I and the separatrix entering the saddle M at points whose coordinates
along the transversal are equal to x1(ε) and 0 respectively, and that x1(0) > 0 (see Figure
6.7). Suppose that the parameter-dependent Poincaré map Δε on the half-transversal Γ
to this loop has no fixed points for ε > 0.

Then separatrix connections appear in W for small ε > 0. That is, there exists a
sequence εn → 0 such that for every n the vector field wεn has saddles I(εn) and M(εn)
close to I and M , for which I(εn) and M(εn) have a common separatrix.

Proof. Let ε > 0 be arbitrarily small. Since the Poincaré map Δε has no fixed points
for ε > 0, then Δε(x) < x for any x ∈ [0, x1]. It follows that there exists n for which
Δ◦n

ε (x1(ε)) < 0. But, for ε = 0 the inequality Δ◦m
0 (x1) > 0 is true for any m. Therefore,

for any n large enough, εn exists such that Δ◦n
εn (x1(εn)) = 0. �
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Figure 6.7. Separatrix loop.

Theorem 4. For a generic family containing a vector field with the ‘heart’ polycycle, in
case ( 20) two series of sparkling separatrix connections appear.

Proof. In the middle sector the saddles M and L are separated by a limit cycle, therefore
separatrix connections cannot arise. In the upper sector, with the disappearance of the
semi-stable limit cycle, there is a Malta–Palis bifurcation [2]. In the lower sector sparkling
separatrix connections appear when the separatrix loop of the saddle L breaks up.

In fact, take any curve γ1 in the parameter space that intersects the curve correspond-
ing to a semi-stable limit cycle transversally. It determines a 1-parameter family of vector
fields. For those values of the parameter for which the curve is above the curve corre-
sponding to the semi-stable limit cycle, there are no limit cycles, and hence this family
satisfies the hypotheses of Proposition 5. Thus, when the ‘heart’ polycycle breaks, the
Malta–Palis bifurcation occurs (see Figure 6.8).

Similarly, draw a curve γ2 that intersects SLL transversally. Then it also defines a
family satisfying the hypotheses of Proposition 6.

The curves γ1 and γ2 can come arbitrarily close to the origin, and hence any neigh-
bourhood of the origin contains a value of the parameter corresponding to a vector field
having a separatrix connection and making any sufficiently large number of windings. For
small parameter values, the separatrix connections do not extend beyond the neighbour-
hood U , and the saddles M and L do not extend outside UM and UL. Each separatrix
connection intersects any transversal several times. We take the segment of the separa-
trix between the first and last points of its intersection with some transversal and add on
the corresponding segment of that transversal. Then we obtain a loop that lies entirely
in the neighbourhood U . But U is homeomorphic to an annulus and its fundamental
group is nontrivial. Consequently, it is impossible to change the winding number of the
separatrix connection by a continuous transformation without breaking it. Therefore, by
Definition 4, two series of sparkling separatrix connections appear in the family V (see
Figure 6.9): in the upper and lower sectors, respectively. �
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Figure 6.8. Sparkling separatrix connections in the upper sector. The
separatrix makes a) one b) two windings.

Figure 6.9. Sparkling separatrix connections in the lower sector. The
separatrix makes a) one b) two windings.

7. Two non-dissipative saddles. The bifurcation diagram

Now consider the case when the saddles have the same dissipativity. In Section 2 we
showed that we only have to investigate saddles with characteristic exponents satisfying
the following inequalities:

μ < 1, λ < 1.(24)

7.1. Limit cycles.

Proposition 7. Suppose that the inequalities ( 24) hold. Then vector fields corresponding
to parameter values in the upper and lower sectors do not have limit cycles. Vector fields
corresponding to parameter values in the middle sector have exactly one limit cycle.

Proof. Equation (21) determines the fixed points of the Poincaré map corresponding to
limit cycles. If there were a parabolic limit cycle in the family, then there would exist
a point x0 such that the equation obtained from (21) by differentiating with respect
to x and then setting x = x0 has a solution. We will prove that this equation has no
solutions. Differentiating (21) with respect to x and using the expressions (22) and (23)
for the derivatives we obtain
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a(λ+ o(1))
(
ε− ax(1 + o(1))

)λ−1

=
x

1
μ−1

bμ
(1 + o(1)) as x, ε, δ → 0.

Hence

ε = ax(1 + o(1)) +
1

(abλμ)
1

λ−1

x
1−μ

μ(λ−1) (1 + o(1)) at as x, ε, δ → 0.(25)

Notice that 1−μ
μ(λ−1) < 0 by (24). The left-hand side of equation (25) tends to zero as

ε → 0. The right-hand side is the sum of two positive functions and if x → 0, then the
second term tends to infinity. Therefore, equation (25) does not have a solution for small
x, ε and δ.

If x, ε and δ are small then the functions on the left- and right-hand sides of (21) are
convex upward (see Figure 7.1a). Notice that equation (21) cannot have two solutions
(Fig. 7.1b) because, by Rolle’s Theorem applied to the difference of these functions, there
would exist a point where the values of their derivatives coincide. But this is not possible,
because equation (25) for the derivatives has no solution.

Figure 7.1. Graphs of the functions from equation (21): a) in the upper
sector; b) in the lower sector; c) possible case in the middle sector; d)
impossible case in the middle sector.

Thus, vector fields corresponding to parameter values in the upper and lower sectors
do not have limit cycles. For parameters in the middle sector, when one of the separatrix
loops breaks up, an unstable limit cycle is born according to (24) and it disappears to
form a separatrix loop of the other saddle. �

7.2. The emergence of sparkling separatrix connections. Sparkling separatrix
connections appear in the upper and lower sectors (see Figures 6.8 and 6.9). In both
cases, the connections appear because of the breakup of the separatrix loop. Their
appearance is justified by Theorem 4 and similar arguments in the previous section.
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Figure 8.1. Bifurcation diagram in case (20). Roman numerals denote
the number of limit cycles, Arabic numerals refer to the figure where the
corresponding vector field is represented.

8. The bifurcation diagram

We will prove Theorems 1 and 2.

Proof. According to Proposition 2 and Corollary 1 there are no points, apart from the
coordinate axes, outside the first quadrant of the bifurcation diagram which correspond
to vector fields with separatrix connections or parabolic limit cycles.

According to Proposition 3, the first quadrant is divided into three sectors by two
curves which correspond to vector fields with separatrix loops. According to Proposition
4, in the case of a dissipative or non-dissipative saddle (case 1), in the upper sector
there is a curve going out from zero that corresponds to vector fields having a parabolic
limit cycle. In the case of two non-dissipative saddles (case 6), there are no parabolic
limit cycles. By Theorem 4 and Propositions 5 and 6, there are two series of an infinite
number of curves going out from the origin, which correspond to two series of sparkling
separatrix connections. Curves of the series in the upper sector accumulate to a curve
corresponding to vector fields with a parabolic cycle (case 1) or a separatrix loop of the
saddle M (case 6). The curves of the series in the lower sector accumulate to a curve
corresponding to vector fields with a separatrix loop of the saddle L (in both cases).

It only remains to show that at all other points in the parameter space the vector
fields are structurally stable. Indeed, by the Andronov–Pontryagin Theorem [6], a vector
field on a two-dimensional sphere is structurally unstable if and only if there is either a
separatrix connection, or a parabolic limit cycle, or a singular point that has an eigenvalue
whose real part vanishes. Separatrix connections and limit cycles were considered above.
In the neighbourhood U , there are no nondegenerate singular points apart from M and
L. Thus, Theorems 1 and 2 are proved. �

The bifurcation diagram is illustrated in case 1 by Fig. 8.1 and in case 6 by Fig. 8.2.

Remark 1. In this paper, the question of the smoothness of curves on the bifurcation dia-
gram corresponding to fields with sparkling separatrix connections has not been touched
on. This question, posed in a more general case for arbitrary polycycles, may become
the subject of a future paper.
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Figure 8.2. Bifurcation diagram for case (24).
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