Skip to Main Content

Transactions of the Moscow Mathematical Society

This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.

ISSN 1547-738X (online) ISSN 0077-1554 (print)

The 2024 MCQ for Transactions of the Moscow Mathematical Society is 0.79.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Control with point observation for a parabolic problem with convection
HTML articles powered by AMS MathViewer

by I. V. Astashova, D. A. Lashin and A. V. Filinovskii
Translated by: A. V. Domrin
Trans. Moscow Math. Soc. 2019, 221-234
DOI: https://doi.org/10.1090/mosc/296
Published electronically: April 1, 2020

Abstract:

We consider a control problem related to the mathematical model of temperature control in industrial hothouses. It is based on a one-dimensional non-selfadjoint parabolic equation with variable coefficients. Defining an optimal control as a minimizing function for a quadratic functional, we study its qualitative properties and the structure of the set of admissible temperature functions. We prove controllability for a certain family of control functions.
References
  • I. V. Astashova and A. V. Filinovskiy, On properties of minimizers of a control problem with time-distributed functional related to parabolic equations, Opuscula Math. 39 (2019), no. 5, 595–609. MR 4009314, DOI 10.7494/opmath.2019.39.5.595
  • I. V. Astashova, A. V. Filinovskii, V. A. Kondratiev, and L. A. Muravei, Some problems in the qualitative theory of differential equations, J. Nat. Geom. 23 (2003), no. 1-2, x+126. MR 1938762
  • I. V. Astashova (ed.), Qualitative properties of solutions of differential equations and related questions in spectral analysis, Unity-Dana, Moscow, 2012. (Russian)
  • I. V Astashova, A. V. Filinovskiy, and D. A. Lashin, On maintaining optimal temperatures in greenhouses, WSEAS Trans. on Circuits and Systems 15 (2016),198–204.
  • I. Astashova, A. Filinovskiy, and D. A. Lashin, On a model of maintaining the optimal temperature in greenhouse, Funct. Differ. Equ. 23 (2016), no. 3-4, 97–108. MR 3683782
  • T. E. Simos, Editorial [International Conference on Numerical Analysis & Applied Mathematics (ICNAAM 2004)], Appl. Numer. Anal. Comput. Math. 1 (2004), no. 3, 341. Held at the Technological Educational Institute of Chalkis, Psahna, September 10–14, 2004. MR 2158186, DOI 10.1002/anac.200410001
  • Irina V. Astashova and Alexey V. Filinovskiy, On the dense controllability for the parabolic problem with time-distributed functional, Tatra Mt. Math. Publ. 71 (2018), 9–25. MR 3939420, DOI 10.2478/tmmp-2018-0002
  • A. G. Butkovskiĭ, Optimum processes in systems with distributed parameters, Automat. Remote Control 22 (1961), 13–21. MR 0149987
  • A. G. Butkovsky, A. I. Egorov, and K. A. Lurie, Optimal control of distributed systems (a survey of Soviet publications), SIAM J. Control 6 (1968), 437–476. MR 0252074
  • A. I. Egorov, Optimal′noe upravlenie teplovymi i diffuzionnymi protsessami, Teoreticheskie Osnovy Tekhnicheskoĭ Kibernetiki. [Theoretical Foundations of Engineering Cybernetics], “Nauka”, Moscow, 1978 (Russian). MR 508306
  • Ju. V. Egorov, Some problems in the theory of optimal control, Ž. Vyčisl. Mat i Mat. Fiz. 3 (1963), 887–904 (Russian). MR 157821
  • Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
  • M. H. Farag, T. A. Talaat, and E. M. Kamal, Existence and uniqueness solution of a class of quasilinear parabolic boundary control problems, Cubo 15 (2013), no. 2, 111–119 (English, with English and Spanish summaries). MR 3114870, DOI 10.4067/s0719-06462013000200011
  • A. Friedman Optimal control for parabolic equations, J. Math. Anal. Appl. 18 (1967), no. 3, 479–491.
  • A. M. Il′in, A. S. Kalašnikov, and O. A. Oleĭnik, Second-order linear equations of parabolic type, Uspehi Mat. Nauk 17 (1962), no. 3 (105), 3–146 (Russian). MR 0138888
  • O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968 (Russian). Translated from the Russian by S. Smith. MR 0241822
  • O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Applied Mathematical Sciences, vol. 49, Springer-Verlag, New York, 1985. Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]. MR 793735, DOI 10.1007/978-1-4757-4317-3
  • J.-L. Lions, Optimal control of systems governed by partial differential equations. , Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971. Translated from the French by S. K. Mitter. MR 0271512
  • J.-L. Lions, Contrôle des systèmes distribués singuliers, Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science], vol. 13, Gauthier-Villars, Montrouge, 1983 (French). MR 712486
  • K. A. Lurie, Applied optimal control theory of distributed systems, Mathematical Concepts and Methods in Science and Engineering, vol. 43, Plenum Press, New York, 1993. MR 1211415, DOI 10.1007/978-1-4757-9262-1
  • L. A. Liusternik and V. J. Sobolev, Elements of functional analysis, Russian Monographs and Texts on Advanced Mathematics and Physics, Vol. 5, Hindustan Publishing Corp., Delhi; Gordon and Breach Science Publishers, Inc., New York, 1961. MR 0141967
  • S. Mazur, Über convexe Mengen in linearen normierte Räumen, Studia Math. 4 (1933), no. 1, 70–84.
  • Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1990. Translated from the second French edition by Leo F. Boron; Reprint of the 1955 original. MR 1068530
  • Jean-Claude Saut and Bruno Scheurer, Unique continuation for some evolution equations, J. Differential Equations 66 (1987), no. 1, 118–139. MR 871574, DOI 10.1016/0022-0396(87)90043-X
  • E. C. Titchmarsh, The Zeros of Certain Integral Functions, Proc. London Math. Soc. (2) 25 (1926), 283–302. MR 1575285, DOI 10.1112/plms/s2-25.1.283
  • Fredi Tröltzsch, Optimal control of partial differential equations, Graduate Studies in Mathematics, vol. 112, American Mathematical Society, Providence, RI, 2010. Theory, methods and applications; Translated from the 2005 German original by Jürgen Sprekels. MR 2583281, DOI 10.1090/gsm/112
Similar Articles
  • Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 35K20, 35Q93, 49J20
  • Retrieve articles in all journals with MSC (2010): 35K20, 35Q93, 49J20
Bibliographic Information
  • I. V. Astashova
  • Affiliation: Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia, 119234; and Economical and Mathematical Faculty, Plekhanov Russian University of Economics, Moscow, Russia 113054
  • Email: ast.diffiety@gmail.com
  • D. A. Lashin
  • Affiliation: FITO-AGRO, Moskovsky 35-12, Moscow, Russia
  • Email: dalashin@gmail.com
  • A. V. Filinovskii
  • Affiliation: Department of Fundamental Sciences, Bauman Moscow State Technical University, Moscow, Russia 105005; and Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia 119234
  • Email: flnv@yandex.ru
  • Published electronically: April 1, 2020

  • Dedicated: On the jubilee of A. A. Shkalikov
  • © Copyright 2020 American Mathematical Society
  • Journal: Trans. Moscow Math. Soc. 2019, 221-234
  • MSC (2010): Primary 35K20, 35Q93, 49J20
  • DOI: https://doi.org/10.1090/mosc/296
  • MathSciNet review: 4082870