Relaxation autowaves in a bi-local neuron model
HTML articles powered by AMS MathViewer
- by S. D. Glyzin, A. Yu Kolesov and N. Kh. Rozov
- Trans. Moscow Math. Soc. 2020, 33-70
- DOI: https://doi.org/10.1090/mosc/305
- Published electronically: March 15, 2021
- PDF | Request permission
Abstract:
A so-called bi-local neuron model is considered, which is a system of two identical nonlinear delay equations linked by means of linear diffusion terms. It is shown that for an appropriate choice of parameters there exist two stable relaxation cycles in this system, which transform one into the other after interchanging the coordinate variables.References
- S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, On a method for mathematical modeling of chemical synapses, Differ. Equ. 49 (2013), no. 10, 1193–1210. Translation of Differ. Uravn. 49 (2013), no. 10, 1227–1244. MR 3216442, DOI 10.1134/S0012266113100017
- S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, Relaxation auto-oscillations in networks of impulse neurons, Uspekhi Mat. Nauk 70 (2015), no. 3(423), 3–76 (Russian, with Russian summary); English transl., Russian Math. Surveys 70 (2015), no. 3, 383–452. MR 3400564, DOI 10.4213/rm9659
- G. E. Hutchinson, Circular causal systems in ecology, Ann. N. Y. Acad. of Sci. 50 (1948), 221–246.
- A. Yu. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, On a modification of the Hutchinson equation, Zh. Vychisl. Mat. Mat. Fiz. 50 (2010), no. 12, 2099–2112 (Russian, with Russian summary); English transl., Comput. Math. Math. Phys. 50 (2010), no. 12, 1990–2002. MR 2760072, DOI 10.1134/S0965542510120031
- I. Antoniou, I. Prigogine, V. Sadovnichii, and S. A. Shkarin, Time operator for diffusion, Chaos Solitons Fractals 11 (2000), no. 4, 465–477. MR 1739331, DOI 10.1016/S0960-0779(99)00052-1
- Yu. S. Kolesov, Relaxation autowaves, Differ. Uravn. 45 (2009), no. 6, 772–787 (Russian, with Russian summary); English transl., Differ. Equ. 45 (2009), no. 6, 789–804. MR 2588769, DOI 10.1134/S0012266109060020
- A. Yu. Kolesov and N. Kh. Rozov, Auto-wave processes in chains of diffusion-linked delay equations, Uspekhi Mat. Nauk 67 (2012), no. 2(404), 109–156 (Russian, with Russian summary); English transl., Russian Math. Surveys 67 (2012), no. 2, 297–343. MR 2978068, DOI 10.1070/RM2012v067n02ABEH004788
- S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, Stable relaxation cycle in a bilocal neuron model, Differ. Equ. 54 (2018), no. 10, 1285–1309. Translation of Differ. Uravn. 54 (2018), no. 10, 1313–1337. MR 3878537, DOI 10.1134/s0012266118100026
Bibliographic Information
- S. D. Glyzin
- Affiliation: Demidov Yaroslavl’ State University
- Email: glyzin.s@gmail.com
- A. Yu Kolesov
- Affiliation: Demidov Yaroslavl’ State University
- Email: kolesov@uniyar.ac.ru
- N. Kh. Rozov
- Affiliation: Lomonosov Moscow State University
- Email: fpo.mgu@mail.ru
- Published electronically: March 15, 2021
- Additional Notes: This research was carried out with the financial support of the Russian Foundation for Basic Research, grant no. 18-29-10055.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Moscow Math. Soc. 2020, 33-70
- MSC (2020): Primary 34C26, 34K20, 35Q92, 92C20
- DOI: https://doi.org/10.1090/mosc/305
- MathSciNet review: 4232234