On a probabilistic derivation of the basic particle statistics (Bose–Einstein, Fermi–Dirac, canonical, grand-canonical, intermediate) and related distributions
HTML articles powered by AMS MathViewer
- by Vassili N. Kolokoltsov
- Trans. Moscow Math. Soc. 2021, 77-87
- DOI: https://doi.org/10.1090/mosc/316
- Published electronically: March 15, 2022
Abstract:
Combining intuitive probabilistic assumptions with the basic laws of classical thermodynamics, using the latter to express probabilistic parameters in terms of the thermodynamic quantities, we get a simple unified derivation of the fundamental ensembles of statistical physics avoiding any limiting procedures, quantum hypothesis and even statistical entropy maximization. This point of view also leads to some related classes of correlated particle statistics.References
- Diederik Aerts, Sandro Sozzo, and Tomas Veloz, The quantum nature of identity in human thought: Bose-Einstein statistics for conceptual indistinguishability, Internat. J. Theoret. Phys. 54 (2015), no. 12, 4430–4443. MR 3418316, DOI 10.1007/s10773-015-2620-4
- Boyer T. H. Blackbody radiation in classical physics: A historical perspective, Amer. J. Phys. 2018. Vol. 86, No 7. P. 495–509.
- Cattani M., Bassalo J. M. F. Intermediate statistics, parastatistics, fractionary statistics and gentilionic statistics. https://arxiv.org/ftp/arxiv/papers/0903/0903.4773.pdf.
- Champernowne D. G. A model of income distribution, Econ. J. 1953. Vol. 63, No 250. P. 318–351.
- Domenico Costantini and Ubaldo Garibaldi, A probabilistic foundation of elementary particle statistics. I, Stud. Hist. Philos. Sci. 28 (1997), no. 4, 483–506. MR 1614491, DOI 10.1016/S1355-2198(97)00014-2
- Domenico Costantini and Ubaldo Garibaldi, A probabilistic foundation of elementary particle statistics. II, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 29 (1998), no. 1, 37–59. MR 1621091, DOI 10.1016/S1355-2198(97)00024-5
- Ubaldo Garibaldi and Enrico Scalas, Finitary probabilistic methods in econophysics, Cambridge University Press, Cambridge, 2010. MR 2839542, DOI 10.1017/CBO9780511777585
- Prakash Gorroochurn, The end of statistical independence: the story of Bose-Einstein statistics, Math. Intelligencer 40 (2018), no. 3, 12–17. MR 3851068, DOI 10.1007/s00283-017-9772-4
- Yuji Ijiri and Herbert A. Simon, Some distributions associated with Bose-Einstein statistics, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 1654–1657. MR 386099, DOI 10.1073/pnas.72.5.1654
- A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover Publications, Inc., New York, N.Y., 1949. Translated by G. Gamow. MR 0029808
- Landau L. D., Lifshitz E. M. Statistical physics. Part 1. Amsterdam: Elsevier, 1980.
- V. P. Maslov, On a general theorem of set theory that leads to the Gibbs, Bose-Einstein, and Pareto distributions and to the Zipf-Mandelbrot law for the stock market, Mat. Zametki 78 (2005), no. 6, 870–877 (Russian, with Russian summary); English transl., Math. Notes 78 (2005), no. 5-6, 807–813. MR 2249037, DOI 10.1007/s11006-005-0186-9
- V. P. Maslov, Taking parastatistical corrections to the Bose-Einstein distribution into account in the quantum and classical cases, Theoret. and Math. Phys. 172 (2012), no. 3, 1289–1299. Translation of Teoret. Mat. Fiz. 172 (2012), no. 3, 468–478. MR 3168749, DOI 10.1007/s11232-012-0114-6
- Miller G. A. Some effects of intermittent silence, Am. J. Psychol. 1957. Vol. 70. P. 311–314.
- Robert K. Niven, Exact Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics, Phys. Lett. A 342 (2005), no. 4, 286–293. MR 2151742, DOI 10.1016/j.physleta.2005.05.063
- Persson J. R. Evolution of quasi-history of the Planck blackbody radiation equation in a physics textbook, Amer. J. Phys. 2018. Vol. 86, No 12. P. 887–892.
- Enrico Scalas, Adrian T. Gabriel, Edgar Martin, and Guido Germano, Velocity and energy distributions in microcanonical ensembles of hard spheres, Phys. Rev. E (3) 92 (2015), no. 2, 022140, 11. MR 3535256, DOI 10.1103/PhysRevE.92.022140
- M. V. Simkin and V. P. Roychowdhury, Re-inventing Willis, Phys. Rep. 502 (2011), no. 1, 1–35. MR 2788549, DOI 10.1016/j.physrep.2010.12.004
- Sandy L. Zabell, W. E. Johnson’s “sufficientness” postulate, Ann. Statist. 10 (1982), no. 4, 1090–1099 (1 plate). MR 673645
- Zabell S. L. The continuum of inductive methods revisited, The Cosmos of Science. Univ. Pittsburgh Press, 1997. P. 243–274.
Bibliographic Information
- Vassili N. Kolokoltsov
- Affiliation: University of Warwick, United Kingdom, St.-Petersburg State University, Russia, and Institute of Informatics Problems, Russian Academy of Sciences
- Email: v.kolokoltsov@warwick.ac.uk
- Published electronically: March 15, 2022
- © Copyright 2021 V. N. Kolokoltsov
- Journal: Trans. Moscow Math. Soc. 2021, 77-87
- MSC (2020): Primary 82B03, 60K35, 37A35
- DOI: https://doi.org/10.1090/mosc/316
- MathSciNet review: 4397153