A translation of “classification of four-vectors of an 8-dimensional space”, by Antonyan, L. V., with an appendix by the translator
HTML articles powered by AMS MathViewer
Abstract:
We give a translation of the entitled paper by Antonyan [Trudy Sem. Vektor. Tenzor. Anal. 20 (1981), pp. 144–161]. We include an appendix that shows how to produce normal forms for each nilpotent orbit.References
- L. V. Antonyan, Classification of four-vectors of an eight-dimensional space, Trudy Sem. Vektor. Tenzor. Anal. 20 (1981), 144–161.
- L. V. Antonyan and A. G. Èlashvili, Classification of spinors of dimension sixteen, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 70 (1982), 5–23 (Russian, with English summary). MR 701214
- È. B. Vinberg, The classification of nilpotent elements of graded Lie algebras, Dokl. Akad. Nauk SSSR 225 (1975), no. 4, 745–748 (Russian). MR 506488
- È. B. Vinberg, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 3, 488–526, 709 (Russian). MR 430168
- È. B. Vinberg and A. G. Èlašvili, A classification of the three-vectors of nine-dimensional space, Trudy Sem. Vektor. Tenzor. Anal. 18 (1978), 197–233 (Russian). MR 504529
- È. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. Ser. 2. 6 (1960), 111–244.
- V. L. Popov, The Cone of Hilbert nullforms, Proc. Steklov Inst. Math. 241 (2003), 177–194.
- Claude Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782. MR 72877, DOI 10.2307/2372597
- Willem A. de Graaf, Computing representatives of nilpotent orbits of $\theta$-groups, J. Symbolic Comput. 46 (2011), no. 4, 438–458. MR 2765379, DOI 10.1016/j.jsc.2010.10.015
- Willem Adriaan de Graaf, Computation with linear algebraic groups, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2017. MR 3675415, DOI 10.1201/9781315120140
- W. A. de Graaf, The GAP Team. SLA. Computing with simple Lie algebras. Version 1.5.3. 2019. (Refereed GAP package.)
- W. A. de Graaf, The GAP Team. QuaGroup, Computations with quantum groups. Version 1.8.3. 2022. (Refereed GAP package.)
- W. A. de Graaf, E. B. Vinberg, and O. S. Yakimova, An effective method to compute closure ordering for nilpotent orbits of $\theta$-representations, J. Algebra 371 (2012), 38–62. MR 2975387, DOI 10.1016/j.jalgebra.2012.07.040
- H. Derksen and G. Kemper, Computational invariant theory, Invariant Theory and Algebraic Transformation Groups. I. Berlin: Springer-Verlag, 2002. (Encyclopaedia of Mathematical Sciences; V. 130).
- H. Dietrich, P. Faccin, and W. de Graaf, CoReLG, computing with real Lie algebras. Version 1.56. 2022. (Refereed GAP package.)
- GAP. GAP— Groups, Algorithms, and Programming. Version 4.11.1. The GAP Group, 2021.
- V. Gatti and E. Viniberghi, Spinors of $13$-dimensional space, Adv. in Math. 30 (1978), no. 2, 137–155. MR 513846, DOI 10.1016/0001-8708(78)90034-8
- D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, 2016.
- G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304. MR 59914, DOI 10.4153/cjm-1954-028-3
- R. Stekolshchik, Root systems and diagram calculus. I. Regular extensions of Carter diagrams and the uniqueness of conjugacy classes. arXiv 1005.2768v6 [math.RT], 2010.
Bibliographic Information
- L. Oeding
- Affiliation: Department of Mathematics and Statistics, Auburn University, Auburn, Alabama
- Email: oeding@auburn.edu
- Published electronically: September 23, 2024
- © Copyright 2024 L. Oeding
- Journal: Trans. Moscow Math. Soc. 2022, 227-250
- MSC (2020): Primary 15A72, 17B45, 20G05
- DOI: https://doi.org/10.1090/mosc/332