Transactions of the Moscow Mathematical Society

This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.

ISSN 1547-738X (online) ISSN 0077-1554 (print)

The 2024 MCQ for Transactions of the Moscow Mathematical Society is 0.79.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A translation of “classification of four-vectors of an 8-dimensional space”, by Antonyan, L. V., with an appendix by the translator
HTML articles powered by AMS MathViewer

by L. Oeding;
Trans. Moscow Math. Soc. 2022, 227-250
DOI: https://doi.org/10.1090/mosc/332
Published electronically: September 23, 2024

Abstract:

We give a translation of the entitled paper by Antonyan [Trudy Sem. Vektor. Tenzor. Anal. 20 (1981), pp. 144–161]. We include an appendix that shows how to produce normal forms for each nilpotent orbit.
References
  • L. V. Antonyan, Classification of four-vectors of an eight-dimensional space, Trudy Sem. Vektor. Tenzor. Anal. 20 (1981), 144–161.
  • L. V. Antonyan and A. G. Èlashvili, Classification of spinors of dimension sixteen, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 70 (1982), 5–23 (Russian, with English summary). MR 701214
  • È. B. Vinberg, The classification of nilpotent elements of graded Lie algebras, Dokl. Akad. Nauk SSSR 225 (1975), no. 4, 745–748 (Russian). MR 506488
  • È. B. Vinberg, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 3, 488–526, 709 (Russian). MR 430168
  • È. B. Vinberg and A. G. Èlašvili, A classification of the three-vectors of nine-dimensional space, Trudy Sem. Vektor. Tenzor. Anal. 18 (1978), 197–233 (Russian). MR 504529
  • È. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. Ser. 2. 6 (1960), 111–244.
  • V. L. Popov, The Cone of Hilbert nullforms, Proc. Steklov Inst. Math. 241 (2003), 177–194.
  • Claude Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782. MR 72877, DOI 10.2307/2372597
  • Willem A. de Graaf, Computing representatives of nilpotent orbits of $\theta$-groups, J. Symbolic Comput. 46 (2011), no. 4, 438–458. MR 2765379, DOI 10.1016/j.jsc.2010.10.015
  • Willem Adriaan de Graaf, Computation with linear algebraic groups, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2017. MR 3675415, DOI 10.1201/9781315120140
  • W. A. de Graaf, The GAP Team. SLA. Computing with simple Lie algebras. Version 1.5.3. 2019. (Refereed GAP package.)
  • W. A. de Graaf, The GAP Team. QuaGroup, Computations with quantum groups. Version 1.8.3. 2022. (Refereed GAP package.)
  • W. A. de Graaf, E. B. Vinberg, and O. S. Yakimova, An effective method to compute closure ordering for nilpotent orbits of $\theta$-representations, J. Algebra 371 (2012), 38–62. MR 2975387, DOI 10.1016/j.jalgebra.2012.07.040
  • H. Derksen and G. Kemper, Computational invariant theory, Invariant Theory and Algebraic Transformation Groups. I. Berlin: Springer-Verlag, 2002. (Encyclopaedia of Mathematical Sciences; V. 130).
  • H. Dietrich, P. Faccin, and W. de Graaf, CoReLG, computing with real Lie algebras. Version 1.56. 2022. (Refereed GAP package.)
  • GAP. GAP— Groups, Algorithms, and Programming. Version 4.11.1. The GAP Group, 2021.
  • V. Gatti and E. Viniberghi, Spinors of $13$-dimensional space, Adv. in Math. 30 (1978), no. 2, 137–155. MR 513846, DOI 10.1016/0001-8708(78)90034-8
  • D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, 2016.
  • G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304. MR 59914, DOI 10.4153/cjm-1954-028-3
  • R. Stekolshchik, Root systems and diagram calculus. I. Regular extensions of Carter diagrams and the uniqueness of conjugacy classes. arXiv 1005.2768v6 [math.RT], 2010.
Similar Articles
  • Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2020): 15A72, 17B45, 20G05
  • Retrieve articles in all journals with MSC (2020): 15A72, 17B45, 20G05
Bibliographic Information
  • L. Oeding
  • Affiliation: Department of Mathematics and Statistics, Auburn University, Auburn, Alabama
  • Email: oeding@auburn.edu
  • Published electronically: September 23, 2024
  • © Copyright 2024 L. Oeding
  • Journal: Trans. Moscow Math. Soc. 2022, 227-250
  • MSC (2020): Primary 15A72, 17B45, 20G05
  • DOI: https://doi.org/10.1090/mosc/332