On some properties of a Riesz potential in grand-Lebesgue and grand-Sobolev spaces
HTML articles powered by AMS MathViewer
- by
Z. A. Kasumov and N. R. Akhmedzade;
Translated by: Christopher Hollings - Trans. Moscow Math. Soc. 2022, 67-74
- DOI: https://doi.org/10.1090/mosc/333
- Published electronically: September 23, 2024
- PDF | Request permission
Abstract:
This article considers a Riesz-type potential in non-standard grand-Lebesgue and grand-Sobolev spaces. The classical facts concerning Lebesgue and Sobolev spaces carry over to this case. The established properties play an important role in studying the solvability of boundary value problems for an elliptic-type equation in grand-Sobolev spaces.References
- David R. Adams, Morrey spaces, Lecture Notes in Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, 2015. MR 3467116, DOI 10.1007/978-3-319-26681-7
- N. Ahmedzade and Z. Kasumov, On the solvability of the Dirichlet problem for the Laplace equation with the boundary value in grand-Lebesgue space, Nakhchivan State University Scientific Works, Series of Physical, Mathematical and Technical Sciences, no. 5(106) (2020), 62–69.
- B. T. Bilalov, On the basis property of a perturbed system of exponents in Morrey type spaces, Sibirsk. Mat. Zh. 60 (2019), no. 2, 323–350 (Russian, with Russian summary); English transl., Sib. Math. J. 60 (2019), no. 2, 249–271. MR 3951150, DOI 10.33048/smzh.2019.60.206
- Bilal Bilalov, Telman Gasymov, and Aida Guliyeva, On the solvability of the Riemann boundary value problem in Morrey-Hardy classes, Turkish J. Math. 40 (2016), no. 5, 1085–1101. MR 3570818, DOI 10.3906/mat-1507-10
- B. T. Bilalov and Z. G. Guseĭnov, A criterion for the basis property of a perturbed system of exponentials in Lebesgue spaces with a variable summability exponent, Dokl. Akad. Nauk 436 (2011), no. 5, 586–589 (Russian); English transl., Dokl. Math. 83 (2011), no. 1, 93–96. MR 2848753, DOI 10.1134/S1064562411010248
- Bilal T. Bilalov and Zafar G. Guseynov, Basicity of a system of exponents with a piecewise linear phase in variable spaces, Mediterr. J. Math. 9 (2012), no. 3, 487–498. MR 2954503, DOI 10.1007/s00009-011-0135-7
- B. T. Bilalov, A. A. Huseynli, and S. R. El-Shabrawy, Basis properties of trigonometric systems in weighted Morrey spaces, Azerb. J. Math. 9 (2019), no. 2, 200–226. MR 3980405
- Bilal T. Bilalov and Aida A. Quliyeva, On basicity of exponential systems in Morrey-type spaces, Internat. J. Math. 25 (2014), no. 6, 1450054, 10. MR 3225578, DOI 10.1142/S0129167X14500542
- Bilal T. Bilalov and Sabina R. Sadigova, Frame properties of a part of an exponential system with degenerate coefficients in Hardy classes, Georgian Math. J. 24 (2017), no. 3, 325–338. MR 3692037, DOI 10.1515/gmj-2016-0051
- B. T. Bilalov and S. R. Sadigova, On solvability in the small of higher order elliptic equations in grand-Sobolev spaces, Complex Var. Elliptic Equ. 66 (2021), no. 12, 2117–2130. MR 4354749, DOI 10.1080/17476933.2020.1807965
- Bilal Bilalov and Fidan Seyidova, Basicity of a system of exponents with a piecewise linear phase in Morrey-type spaces, Turkish J. Math. 43 (2019), no. 4, 1850–1866. MR 3992656, DOI 10.3906/mat-1901-113
- L. Caso, R. D’Ambrosio, and L. Softova, Generalized Morrey spaces over unbounded domains, Azerb. J. Math. 10 (2020), no. 1, 193–208. MR 4060589
- René Erlín Castillo and Humberto Rafeiro, An introductory course in Lebesgue spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, [Cham], 2016. MR 3497415, DOI 10.1007/978-3-319-30034-4
- Yemin Chen, Regularity of the solution to the Dirichlet problem in Morrey spaces, J. Partial Differential Equations 15 (2002), no. 2, 37–46. MR 1909284
- David V. Cruz-Uribe and Alberto Fiorenza, Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. Foundations and harmonic analysis. MR 3026953, DOI 10.1007/978-3-0348-0548-3
- Giuseppe Di Fazio, Dian K. Palagachev, and Maria Alessandra Ragusa, Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal. 166 (1999), no. 2, 179–196. MR 1707751, DOI 10.1006/jfan.1999.3425
- G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal. 112 (1993), no. 2, 241–256. MR 1213138, DOI 10.1006/jfan.1993.1032
- Petteri Harjulehto and Peter Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019. MR 3931352, DOI 10.1007/978-3-030-15100-3
- D. M. Israfilov and N. P. Tozman, Approximation in Morrey-Smirnov classes, Azerb. J. Math. 1 (2011), no. 1, 99–113. MR 2776101
- Vakhtang Kokilashvili, Alexander Meskhi, Humberto Rafeiro, and Stefan Samko, Integral operators in non-standard function spaces. Vol. 1, Operator Theory: Advances and Applications, vol. 248, Birkhäuser/Springer, [Cham], 2016. Variable exponent Lebesgue and amalgam spaces. MR 3559400, DOI 10.1007/978-3-319-21015-5
- Vakhtang Kokilashvili, Alexander Meskhi, Humberto Rafeiro, and Stefan Samko, Integral operators in non-standard function spaces. Vol. 2, Operator Theory: Advances and Applications, vol. 249, Birkhäuser/Springer, [Cham], 2016. Variable exponent Hölder, Morrey-Campanato and grand spaces. MR 3559401, DOI 10.1007/978-3-319-21018-6_{1}
- S. G. Mikhlin, Linear partial differential equations, High School, Moscow, 1977 (in Russian).
- Dian K. Palagachev, Maria Alessandra Ragusa, and Lubomira G. Softova, Regular oblique derivative problem in Morrey spaces, Electron. J. Differential Equations (2000), No. 39, 17. MR 1764709
- Dian K. Palagachev and Lubomira G. Softova, Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s, Potential Anal. 20 (2004), no. 3, 237–263. MR 2032497, DOI 10.1023/B:POTA.0000010664.71807.f6
- Idris I. Sharapudinov, On direct and inverse theorems of approximation theory in vector Lebesgue and Sobolev spaces, Azerb. J. Math. 4 (2014), no. 1, 55–72. MR 3167901
- Lubomira G. Softova, The Dirichlet problem for elliptic equations with VMO coefficients in generalized Morrey spaces, Advances in harmonic analysis and operator theory, Oper. Theory Adv. Appl., vol. 229, Birkhäuser/Springer Basel AG, Basel, 2013, pp. 371–386. MR 3060425, DOI 10.1007/978-3-0348-0516-2_{2}1
Bibliographic Information
- Z. A. Kasumov
- Affiliation: Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
- Email: zaur@celt.az
- N. R. Akhmedzade
- Affiliation: Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
- Email: nigar_sadigova11@mail.ru
- Published electronically: September 23, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Moscow Math. Soc. 2022, 67-74
- MSC (2020): Primary 35A01, 35J05, 35K05
- DOI: https://doi.org/10.1090/mosc/333