The Gonchar–Chudnovskies conjecture and a functional analogue of the Thue–Siegel–Roth theorem
HTML articles powered by AMS MathViewer
- by
A. I. Aptekarev and M. L. Yattselev;
Translated by: Kristian B. Kiradjiev - Trans. Moscow Math. Soc. 2022, 251-268
- DOI: https://doi.org/10.1090/mosc/336
- Published electronically: September 23, 2024
- PDF | Request permission
Abstract:
This article examines the Gonchar–Chudnovskies conjecture about the limited size of blocks of diagonal Padé approximants of algebraic functions. The statement of this conjecture is a functional analogue of the famous Thue–Siegel–Roth theorem. For algebraic functions with branch points in general position, we will show the validity of this conjecture as a consequence of recent results on the uniform convergence of the continued fraction for an analytic function with branch points. We will also discuss related problems on estimating the number of “spurious” (“wandering”) poles for rational approximations (Stahl’s conjecture), and on the appearance and disappearance of defects (Froissart doublets).References
- A. I. Aptekarev, Sharp constants for rational approximations of analytic functions, Mat. Sb. 193 (2002), no. 1, 3–72 (Russian, with Russian summary); English transl., Sb. Math. 193 (2002), no. 1-2, 1–72. MR 1906170, DOI 10.1070/SM2002v193n01ABEH000619
- A. I. Aptekarev and A. V. Klimov, Decomposing the cube root of two into a continued fraction, unpublished manuscript, 1975 (Russian).
- A. I. Aptekarev and M. L. Yattselev, Approximations of algebraic functions by rational ones — functional analogues of Diophantine approximations, Keldysh Institute of Applied Mathematics Preprint No 84, Russian Academy of Sciences, 2016 (Russian).
- Alexander I. Aptekarev and Maxim L. Yattselev, Padé approximants for functions with branch points—strong asymptotics of Nuttall-Stahl polynomials, Acta Math. 215 (2015), no. 2, 217–280. MR 3455234, DOI 10.1007/s11511-016-0133-5
- A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkel′shteĭn, and S. P. Suetin, Padé approximants, continued fractions, and orthogonal polynomials, Uspekhi Mat. Nauk 66 (2011), no. 6(402), 37–122 (Russian, with Russian summary); English transl., Russian Math. Surveys 66 (2011), no. 6, 1049–1131. MR 2963451, DOI 10.1070/RM2011v066n06ABEH004770
- Ahmad Barhoumi and Maxim L. Yattselev, Asymptotics of polynomials orthogonal on a cross with a Jacobi-type weight, Complex Anal. Oper. Theory 14 (2020), no. 1, Paper No. 9, 44. MR 4052435, DOI 10.1007/s11785-019-00962-7
- A. D. Brjuno, The expansion of algebraic numbers into continued fractions, Ž. Vyčisl. Mat i Mat. Fiz. 4 (1964), 211–221 (Russian). MR 163884
- D. V. Chudnovsky and G. V. Chudnovsky, The Wronskian formalism for linear differential equations and Padé approximations, Adv. in Math. 53 (1984), no. 1, 28–54. MR 748895, DOI 10.1016/0001-8708(84)90016-1
- G. V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. (2) 117 (1983), no. 2, 325–382. MR 690849, DOI 10.2307/2007080
- P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), no. 11, 1335–1425. MR 1702716, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1
- N. I. Fel′dman, Priblizheniya algebraicheskikh chisel, Moskov. Gos. Univ., Moscow, 1981 (Russian). MR 646065
- M. Froissart, Approximation de Padé application à la physique des particules élémentaires, Recherche Coopérative sur Programme, 9 (25) (1969), 1–13.
- Y. L. Geronimus, On some finite-difference equations and corresponding systems of orthogonal polynomials, Notes Kharkov Math. Soc. 25 (1957), 87–100 (Russian).
- A. A. Gonchar, 5.6. Rational approximation of analytic functions. Studies in Linear Operators and Function Theory. Leningrad: Nauka, 1978, 182–185. (Zap. Nauchn. Sem. LOMI 81); English translation in J. Soviet Math. 26(5) (1984), 2218–2220.
- E. R. Kolchin, Rational approximation to solutions of algebraic differential equations, Proc. Amer. Math. Soc. 10 (1959), 238–244. MR 107641, DOI 10.1090/S0002-9939-1959-0107641-6
- Serge Lang and Hale Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972). MR 306131, DOI 10.1007/978-1-4612-2120-3_{5}
- A. Martínez-Finkelshtein and E. A. Rakhmanov, Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials, Comm. Math. Phys. 302 (2011), no. 1, 53–111. MR 2770010, DOI 10.1007/s00220-010-1177-6
- E. M. Nikishin and V. N. Sorokin, Ratsional′nye approksimatsii i ortogonal′nost′, “Nauka”, Moscow, 1988 (Russian). MR 953788
- J. Nuttall, The convergence of Padé approximants to functions with branch points, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York-London, 1977, pp. 101–109. MR 613842
- J. Nuttall, Hermite-Padé approximants to functions meromorphic on a Riemann surface, J. Approx. Theory 32 (1981), no. 3, 233–240. MR 641959, DOI 10.1016/0021-9045(81)90118-0
- E. A. Perevoznikova and E. A. Rakhmanov, Variation of the equilibrium energy and the S-property of a compactum of minimal capacity, unpublished manuscript, 1994 (Russian).
- Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710
- Herbert Stahl, Extremal domains associated with an analytic function. I, II, Complex Variables Theory Appl. 4 (1985), no. 4, 311–324, 325–338. MR 858916, DOI 10.1080/17476938508814117
- Herbert Stahl, The structure of extremal domains associated with an analytic function, Complex Variables Theory Appl. 4 (1985), no. 4, 339–354. MR 858917, DOI 10.1080/17476938508814119
- Herbert Stahl, Orthogonal polynomials with complex-valued weight function. I, II, Constr. Approx. 2 (1986), no. 3, 225–240, 241–251. MR 891973, DOI 10.1007/BF01893429
- H. Stahl, Conjectures around the Baker-Gammel-Wills conjecture, Constr. Approx. 13 (1997), no. 2, 287–292. MR 1437216, DOI 10.1007/s003659900044
- S. P. Suetin, Distribution of the zeros of Padé polynomials and analytic continuation, Uspekhi Mat. Nauk 70 (2015), no. 5(425), 121–174 (Russian, with Russian summary); English transl., Russian Math. Surveys 70 (2015), no. 5, 901–951. MR 3438556, DOI 10.4213/rm9675
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, RI, 1975. MR 372517
- Saburô Uchiyama, Rational approximations to algebraic functions, J. Fac. Sci. Hokkaido Univ. Ser. I 15 (1961), 173–192 (1961). MR 132035, DOI 10.1007/BF01221545
Bibliographic Information
- A. I. Aptekarev
- Affiliation: Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
- MR Author ID: 192572
- Email: aptekaa@keldysh.ru
- M. L. Yattselev
- Affiliation: Indiana University – Purdue University Indianapolis; Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
- MR Author ID: 789878
- Email: maxyatts@iupui.edu
- Published electronically: September 23, 2024
- Additional Notes: The work of the second author was supported by Simons Foundation grant CGM-354538.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Moscow Math. Soc. 2022, 251-268
- MSC (2020): Primary 41A21, 30B40
- DOI: https://doi.org/10.1090/mosc/336
Dedicated: Dedicated to the 90$^{\text {th}}$ anniversary of Andrei Aleksandrovich Gonchar