On a class of degenerate hypoelliptic polynomials
HTML articles powered by AMS MathViewer
- by
H. G. Kazaryan and V. N. Margaryan;
Translated by: Kristian B. Kiradjiev - Trans. Moscow Math. Soc. 2022, 151-181
- DOI: https://doi.org/10.1090/mosc/337
- Published electronically: September 23, 2024
- PDF | Request permission
Abstract:
This work is devoted to finding conditions on “lower-order terms”, the addition of which does not violate the hypoellipticity of a given operator (of the characteristic polynomial of this operator). Necessary and sufficient conditions for the hypoellipticity of “two-layered polynomials” are obtained. In terms of comparing strength, power, and the upper bound of the ratio of comparable polynomials, conditions are obtained under which the added polynomials preserve the hypoellipticity of the original polynomial. Examples are given that illustrate the obtained results.References
- F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9) 81 (2002), no. 11, 1135–1159 (English, with English and French summaries). MR 1949176, DOI 10.1016/S0021-7824(02)01264-3
- V. I. Burenkov, An analogue of Hörmander’s theorem about hypoellipticity of functions tending to zero at infinity, Collection of reports of the VII Soviet-Czechoslovak seminar, Yerevan University, 1982, 63–67 (Russian).
- Lamberto Cattabriga, Su una classe di polinomi ipoellittici, Rend. Sem. Mat. Univ. Padova 36 (1966), 285–309 (Italian). MR 206500
- Lamberto Cattabriga, Uno spazio funzionale connesso ad una classe di operatori ipoellittici, Symposia Mathematica, Vol. VII (Convegno sulle Problemi di Evoluzione, INDAM, Rome, 1970 & Convegno sulle Equazioni Ipoellittiche e Spazi Funzionali, INDAM, Rome, 1971) Academic Press, London-New York, 1971, pp. 547–558 (Italian). MR 342841
- M. Chaleyat-Maurel, La condition d’hypoellipticité d’Hörmander, Astérisque 84–85 (1981), 189–202.
- Jöran Friberg, Multi-quasielliptic polynomials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 21 (1967), 239–260. MR 221090
- O. R. Gabrielyan, On the prevalence degree of degenerate polynomials and their hypoellipticity, Izv. Nats. Akad. Nauk Armenii Mat. 38 (2003), no. 6, 63–82 (Russian, with English and Russian summaries); English transl., J. Contemp. Math. Anal. 38 (2003), no. 6, 42–61 (2004). MR 2133946
- L. Gȧrding and B. Malgrange, Opérateurs différentiels partiellement hypoelliptiques et partiellement elliptiques, Math. Scand. 9 (1961), 5–21 (French). MR 126070, DOI 10.7146/math.scand.a-10619
- H. G. Ghazaryan and V. N. Margaryan, On increase at infinity of almost hypoelliptic polynomials, Eurasian Math. J. 4 (2013), no. 4, 30–42. MR 3382901
- S. G. Gindikin, Energy estimates connected with the Newton polyhedron, Trudy Moskov. Mat. Obšč. 31 (1974), 189–236 (Russian). MR 382831
- S. Gindikin and L. R. Volevich, The method of Newton’s polyhedron in the theory of partial differential equations, Mathematics and its Applications (Soviet Series), vol. 86, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the Russian manuscript by V. M. Volosov. MR 1256484, DOI 10.1007/978-94-011-1802-6
- E. A. Gorin, Asymptotic properties of polynomials and algebraic functions of several variables, Uspekhi Mat. Nauk 16(1) (1961), 91–118; English translation in Russian Math. Surveys 16(1) (1961), 93–119.
- V. V. Grušin, A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83(125) (1970), 456–473 (Russian). MR 279436
- Lars Hörmander, The analysis of linear partial differential operators. II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257, Springer-Verlag, Berlin, 1983. Differential operators with constant coefficients. MR 705278, DOI 10.1007/978-3-642-96750-4
- L. Khërmander, Analiz lineĭ nykh differentsial′nykh operatorov s chastnymi proizvodnymi. Tom 2, “Mir”, Moscow, 1986 (Russian). Differentsial′nye operatory s postoyannymi koèffitsientami. [Differential operators with constant coefficients]; Translated from the English; Translation edited and with a preface by M. A. Shubin. MR 881605
- G. G. Kazarjan, Estimates of the $L_{p}$ norms of derivatives by a nonregular set of differential operators, Differencial′nye Uravnenija 5 (1969), 911–921 (Russian). MR 244610
- G. G. Kazarjan, A certain family of hypoelliptic polynomials, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 9 (1974), no. 3, 189–211, 249 (Russian, with English and Armenian summaries). MR 364846
- G. G. Kazarjan, The addition of lowest terms to differential polynomials, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 9 (1974), no. 6, 473–485, 511 (Russian, with English and Armenian summaries). MR 377255
- G. G. Kazarjan, The comparison of differential operators and differential operators of constant strength, Trudy Mat. Inst. Steklov. 131 (1974), 94–118, 246 (Russian). MR 358057
- G. G. Kazarjan, Estimates of differential operators, and hypoelliptic operators, Trudy Mat. Inst. Steklov. 140 (1976), 130–161, 287–288 (Russian). MR 454307
- G. G. Kazarjan, Operators of constant strength, with an estimate from below in terms of the derivatives, and formally hypoelliptic operators, Anal. Math. 3 (1977), no. 4, 263–289 (Russian, with English summary). MR 499685, DOI 10.1007/BF01906638
- G. G. Kazarjan, Comparison of the power of polynomials and their hypoellipticity, Trudy Mat. Inst. Steklov. 150 (1979), 143–159, 322 (Russian). MR 544008
- G. G. Kazaryan, On almost hypoelliptic polynomials increasing at infinity, Izv. Nats. Akad. Nauk Armenii Mat. 46 (2011), no. 6, 11–30 (Russian, with English and Russian summaries); English transl., J. Contemp. Math. Anal. 46 (2011), no. 6, 313–325. MR 3287528, DOI 10.3103/s1068362311060057
- G. G. Kazarjan and V. N. Markarjan, Hypoellipticity criteria in terms of power and strength of operators, Trudy Mat. Inst. Steklov. 150 (1979), 128–142, 322 (Russian). MR 544007
- G. G. Kazaryan and V. N. Markaryan, The support of hypoellipticity of linear differential operators, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 21 (1986), no. 5, 453–470, 511 (Russian, with English and Armenian summaries). MR 886792
- G. G. Kazaryan and V. N. Margaryan, A criterion for the hypoellipticity of polynomials in terms of Seidenberg and Tarski, Izv. Nats. Akad. Nauk Armenii Mat. 41 (2006), no. 3, 38–55 (Russian, with English and Russian summaries); English transl., J. Contemp. Math. Anal. 41 (2006), no. 3, 34–51 (2007). MR 2357096
- A. G. Khovanskii, Newton Polyhedra (algebra and geometry), AMS Transl. (2) 153 (1992), 1–15.
- Prem K. Kythe, Fundamental solutions for differential operators and applications, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1395370, DOI 10.1007/978-1-4612-4106-5
- V. N. Markarjan, Addition of lower terms preserving hypoellipticity of an operator, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 15 (1980), no. 6, 443–460, 507 (Russian, with English and Armenian summaries). MR 610198
- Bernard Malgrange, Sur une classe d’opérateurs différentiels hypoelliptiques, Bull. Soc. Math. France 85 (1957), 283–306 (French). MR 106329, DOI 10.24033/bsmf.1490
- V. P. Mihaĭlov, The behavior at infinity of a class of polynomials, Trudy Mat. Inst. Steklov. 91 (1967), 59–80 (Russian). MR 220886
- S. M. Nikol′skiĭ, The first boundary-value problem for a general linear equation, Dokl. Akad. Nauk SSSR 146 (1962), 767–769 (Russian). MR 140823
- E. Pehkonen, Regularität der schwachen Lösungen linearer quasielliptischer Dirichletprobleme, PhD Thesis, Univ. Jyväskylä, 1976.
- Erkki Pehkonen, Ein hypoelliptisches Dirichletproblem, Soc. Sci. Fenn. Comment. Phys.-Math. 48 (1978), no. 3, 131–143 (German, with English summary). MR 509978
- Bruno Pini, Osservazioni sulla ipoellitticità, Boll. Un. Mat. Ital. (3) 18 (1963), 420–432 (Italian). MR 163059
- Bruno Pini, Sulla classe di Gevrey delle soluzioni di certe equazioni ipoellittiche, Boll. Un. Mat. Ital. (3) 18 (1963), 260–269 (Italian). MR 160031
- François Trèves, Opérateurs différentiels hypoelliptiques, Ann. Inst. Fourier (Grenoble) 9 (1959), 1–73 (French). MR 114056, DOI 10.5802/aif.85
- L. R. Volevič and S. G. Gindikin, A certain class of hypoelliptic polynomials, Mat. Sb. (N.S.) 75(117) (1968), 400–416 (Russian). MR 225007
- Claude Zuily, Sur l’hypoellipticité des opérateurs différentiels du second ordre à coefficients réels, J. Math. Pures Appl. (9) 55 (1976), no. 1, 99–129 (French). MR 466931, DOI 10.1070/RM1961v016n01ABEH004100
Bibliographic Information
- H. G. Kazaryan
- Affiliation: Russian-Armenian University; The Institute of Mathematics of National Academy of Sciences of Armenia
- Email: haikghazaryan@mail.ru
- V. N. Margaryan
- Affiliation: Russian-Armenian University
- Email: vachagan.margaryan@yahoo.com
- Published electronically: September 23, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Moscow Math. Soc. 2022, 151-181
- MSC (2020): Primary 12E10, 12D05, 26D05, 35A23
- DOI: https://doi.org/10.1090/mosc/337