Chebyshev–Padé approximants for multivalued functions
HTML articles powered by AMS MathViewer
- by
E. A. Rakhmanov and S. P. Suetin;
Translated by: Carl-Frederik Nyberg Brodda - Trans. Moscow Math. Soc. 2022, 269-290
- DOI: https://doi.org/10.1090/mosc/339
- Published electronically: September 23, 2024
- PDF | Request permission
Abstract:
The paper discusses the connection between the linear Chebyshev–Padé approximants for an analytic function $f$ and diagonal type I Hermite–Padé polynomials for the set of functions $[1, f_1, f_2]$, where the pair of functions $f_1, f_2$ forms a Nikishin system. Both problems can ultimately be reduced to certain convergence problems for multipoint Padé approximants. On the other hand, the denominators of multipoint Padé approximants are non-Hermitian orthogonal polynomials with analytical weights. Thus, to study all the above problems, the general method created by Herbert Stahl can be applied. Stahl’s method is not yet sufficiently developed to obtain general results on these problems. In particular, many key convergence problems for Chebyshev–Padé approximants for functions with arbitrary configurations of branch points remain open. In this paper, we consider several important general and particular results related to this case, some already well known, and also formulate two general hypotheses in the indicated direction.References
- A. I. Aptekarev, Asymptotics of Hermite-Padé approximants for a pair of functions with branch points, Dokl. Akad. Nauk 422 (2008), no. 4, 443–445 (Russian); English transl., Dokl. Math. 78 (2008), no. 2, 717–719. MR 2475084, DOI 10.1134/S1064562408050207
- Alexander I. Aptekarev, Arno B. J. Kuijlaars, and Walter Van Assche, Asymptotics of Hermite-Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0), Int. Math. Res. Pap. IMRP , posted on (2008), Art. ID rpm007, 128. MR 2470572, DOI 10.1093/imrp/rpm007
- Jared L. Aurentz and Lloyd N. Trefethen, Chopping a Chebyshev series, ACM Trans. Math. Software 43 (2017), no. 4, Art. 33, 21. MR 3638570, DOI 10.1145/2998442
- George A. Baker Jr. and Peter Graves-Morris, Padé approximants, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 59, Cambridge University Press, Cambridge, 1996. MR 1383091, DOI 10.1017/CBO9780511530074
- John P. Boyd, Chebyshev and Fourier spectral methods, 2nd ed., Dover Publications, Inc., Mineola, NY, 2001. MR 1874071
- V. I. Buslaev, Convergence of multipoint Padé approximants of piecewise-analytic functions, Mat. Sb. 204 (2013), no. 2, 39–72 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 1-2, 190–222. MR 3087097, DOI 10.1070/SM2013v204n02ABEH004297
- V. I. Buslaev, On the convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions, Mat. Sb. 206 (2015), no. 2, 5–30 (Russian, with Russian summary); English transl., Sb. Math. 206 (2015), no. 1-2, 175–200. MR 3354969, DOI 10.4213/sm8428
- V. I. Buslaev, On a lower bound for the rate of convergence of multipoint Padé approximants of piecewise analytic functions, Izv. Ross. Akad. Nauk Ser. Mat. 85 (2021), no. 3, 13–29 (Russian, with Russian summary); English transl., Izv. Math. 85 (2021), no. 3, 351–366. MR 4265365, DOI 10.4213/im9047
- V. I. Buslaev, A. Martines-Finkel′shteĭn, and S. P. Suetin, The method of interior variations and the existence of $S$-compact sets, Tr. Mat. Inst. Steklova 279 (2012), no. Analiticheskie i Geometricheskie Voprosy Kompleksnogo Analiza, 31–58 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 279 (2012), no. 1, 25–51. MR 3086756, DOI 10.1134/s0081543812080044
- E. M. Chirka, Potentials on a compact Riemann surface, Tr. Mat. Inst. Steklova 301 (2018), no. Kompleksnyĭ Analiz, Matematicheskaya Fizika i Prilozheniya, 287–319 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 301 (2018), no. 1, 272–303. MR 3841675, DOI 10.1134/S0371968518020218
- E. M. Chirka, Capacities on a compact Riemann surface, Tr. Mat. Inst. Steklova 311 (2020), no. Analiz i Matematicheskaya Fizika, 41–83 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 311 (2020), no. 1, 36–77. MR 4223982, DOI 10.4213/tm4151
- J. S. R. Chisholm and A. K. Common, Generalisations of Padé approximation for Chebyshev and Fourier series, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser Verlag, Basel-Boston, Mass., 1981, pp. 212–231. MR 661067
- C. W. Clenshaw and K. Lord, Rational approximations from Chebyshev series, Studies in numerical analysis (papers in honour of Cornelius Lanczos on the occasion of his 80th birthday), Roy. Irish Acad., Dublin, 1974, pp. 95–113. MR 356444
- J. Fleischer, Nonlinear Padé approximants for Legendre series, J. Mathematical Phys. 14 (1973), 246–248. MR 322230, DOI 10.1063/1.1666303
- A. A. Gonchar and E. A. Rakhmanov, Equilibrium distributions and the rate of rational approximation of analytic functions, Mat. Sb. (N.S.) 134(176) (1987), no. 3, 306–352, 447 (Russian); English transl., Math. USSR-Sb. 62 (1989), no. 2, 305–348. MR 922628, DOI 10.1070/SM1989v062n02ABEH003242
- A. A. Gonchar, E. A. Rakhmanov, and S. P. Suetin, On the convergence of Padé approximants of orthogonal expansions, Trudy Mat. Inst. Steklov. 200 (1991), 136–146 (Russian); English transl., Proc. Steklov Inst. Math. 2(200) (1993), 149–159. MR 1143363
- A. A. Gonchar, E. A. Rakhmanov, and S. P. Suetin, Padé-Chebyshev approximants for multivalued analytic functions, variation of equilibrium energy, and the $S$-property of stationary compact sets, Uspekhi Mat. Nauk 66 (2011), no. 6(402), 3–36 (Russian, with Russian summary); English transl., Russian Math. Surveys 66 (2011), no. 6, 1015–1048. MR 2963450, DOI 10.1070/RM2011v066n06ABEH004769
- A. A. Gonchar, E. A. Rakhmanov, and S. P. Suetin, On the rate of convergence of Padé approximants of orthogonal expansions, Progress in approximation theory (Tampa, FL, 1990) Springer Ser. Comput. Math., vol. 19, Springer, New York, 1992, pp. 169–190. MR 1240782, DOI 10.1007/978-1-4612-2966-7_{7}
- Peter Henrici, An algorithm for analytic continuation, SIAM J. Numer. Anal. 3 (1966), no. 1, 67–78. MR 201047, DOI 10.1137/0703005
- Jonas T. Holdeman Jr., A method for the approximation of functions defined by formal series expansions in orthogonal polynomials, Math. Comp. 23 (1969), 275–287. MR 251412, DOI 10.1090/S0025-5718-1969-0251412-1
- O. L. Ibryaeva, A sufficient condition for the uniqueness of a linear Chebyshev-Padé approximant, Izv. Chelyabinsk. Nauchn. Tsentra 4(17) (2002), 1–5 (Russian, with English and Russian summaries). MR 2191831
- N. R. Ikonomov and S. P. Suetin, Scalar equilibrium problem and the limit distribution of zeros of Hermite-Padé polynomials of type II, Tr. Mat. Inst. Steklova 309 (2020), no. Sovremennye Problemy Matematicheskoĭ Teoreticheskoĭ Fiziki, 174–197 (Russian, with Russian summary). English version published in Proc. Steklov Inst. Math. 309 (2020), no. 1, 159–182. MR 4133451, DOI 10.4213/tm4080
- N. R. Ikonomov and S. P. Suetin, A Viskovatov algorithm for Hermite-Padé polynomials, Mat. Sb. 212 (2021), no. 9, 94–118 (Russian, with Russian summary); English transl., Sb. Math. 212 (2021), no. 9, 1279–1303. MR 4324077, DOI 10.4213/sm9410
- N. R. Ikonomov and S. P. Suetin, HEPAComp: Hermite–Padé approximant computation, Version 1.3/15.10.2020, 2020, http://justmathbg.info/hepacomp.html.
- A. V. Komlov, R. V. Pal′velev, S. P. Suetin, and E. M. Chirka, Hermite-Padé approximants for meromorphic functions on a compact Riemann surface, Uspekhi Mat. Nauk 72 (2017), no. 4(436), 95–130 (Russian, with Russian summary); English transl., Russian Math. Surveys 72 (2017), no. 4, 671–706. MR 3687129, DOI 10.4213/rm9786
- A. Martines-Finkel′shteĭn, E. A. Rakhmanov, and S. P. Suetin, A variation of the equilibrium measure and the $S$-property of a stationary compact set, Uspekhi Mat. Nauk 66 (2011), no. 1(397), 183–184 (Russian); English transl., Russian Math. Surveys 66 (2011), no. 1, 176–178. MR 2841691, DOI 10.1070/RM2011v066n01ABEH004733
- Andrei Martínez-Finkelshtein, Evguenii A. Rakhmanov, and Sergey P. Suetin, Asymptotics of type I Hermite-Padé polynomials for semiclassical functions, Modern trends in constructive function theory, Contemp. Math., vol. 661, Amer. Math. Soc., Providence, RI, 2016, pp. 199–228. MR 3489559, DOI 10.1090/conm/661/13283
- A. Martínez-Finkelshtein and E. A. Rakhmanov, Do orthogonal polynomials dream of symmetric curves?, Found. Comput. Math. 16 (2016), no. 6, 1697–1736. MR 3579720, DOI 10.1007/s10208-016-9313-0
- E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality, Translations of Mathematical Monographs, vol. 92, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Ralph P. Boas. MR 1130396, DOI 10.1090/mmono/092
- J. Nuttall, Asymptotics of diagonal Hermite-Padé polynomials, J. Approx. Theory 42 (1984), no. 4, 299–386. MR 769985, DOI 10.1016/0021-9045(84)90036-4
- E. A. Perevoznikova and E. A. Rakhmanov, Variation of the equilibrium energy and the $S$-property of compact sets of minimal capacity, Preprint, Moscow, 1994.
- E. A. Rakhmanov, Orthogonal polynomials and $S$-curves, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., vol. 578, Amer. Math. Soc., Providence, RI, 2012, pp. 195–239. MR 2964146, DOI 10.1090/conm/578/11484
- E. A. Rakhmanov, Zero distribution for Angelesco Hermite-Padé polynomials, Uspekhi Mat. Nauk 73 (2018), no. 3(441), 89–156 (Russian, with Russian summary); English transl., Russian Math. Surveys 73 (2018), no. 3, 457–518. MR 3807896, DOI 10.4213/rm9832
- Herbert Stahl, Asymptotics of Hermite-Padé polynomials and related convergence results—a summary of results, Nonlinear numerical methods and rational approximation (Wilrijk, 1987) Math. Appl., vol. 43, Reidel, Dordrecht, 1988, pp. 23–53. MR 1005350
- Herbert Stahl, The convergence of Padé approximants to functions with branch points, J. Approx. Theory 91 (1997), no. 2, 139–204. MR 1484040, DOI 10.1006/jath.1997.3141
- H. R. Stahl, Sets of minimal capacity and extremal domains, Preprint, arXiv:1205.3811.
- A. P. Starovoĭtov, N. V. Ryabchenko, and A. A. Drapeza, A criterion for the existence and uniqueness of polyorthogonal polynomials of the first type, Probl. Fiz. Mat. Tekh. 3(44) (2020), 82–86 (Russian, with English and Russian summaries). MR 4178445
- S. P. Suetin, The Montessus de Bollore theorem for rational approximations of orthogonal expansions, Mat. Sb. (N.S.) 114(156) (1981), no. 3, 451–464, 480 (Russian). MR 610208
- S. P. Suetin, On the existence of nonlinear Padé-Chebyshev approximants for analytic functions, Mat. Zametki 86 (2009), no. 2, 290–303 (Russian, with Russian summary); English transl., Math. Notes 86 (2009), no. 1-2, 264–275. MR 2584562, DOI 10.1134/S0001434609070281
- E. A. Rakhmanov and S. P. Suetin, Distribution of zeros of Hermite-Padé polynomials for a pair of functions forming a Nikishin system, Mat. Sb. 204 (2013), no. 9, 115–160 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 9-10, 1347–1390. MR 3137137, DOI 10.1070/sm2013v204n09abeh004343
- S. P. Suetin, Distribution of the zeros of Padé polynomials and analytic continuation, Uspekhi Mat. Nauk 70 (2015), no. 5(425), 121–174 (Russian, with Russian summary); English transl., Russian Math. Surveys 70 (2015), no. 5, 901–951. MR 3438556, DOI 10.4213/rm9675
- S. P. Suetin, On the distribution of the zeros of Hermite-Padé polynomials for a complex Nikishin system, Uspekhi Mat. Nauk 73 (2018), no. 2(440), 183–184 (Russian); English transl., Russian Math. Surveys 73 (2018), no. 2, 363–365. MR 3780072, DOI 10.4213/rm9819
- S. P. Suetin, On an example of the Nikishin system, Mat. Zametki 104 (2018), no. 6, 918–929 (Russian, with Russian summary); English transl., Math. Notes 104 (2018), no. 5-6, 905–914. MR 3881781, DOI 10.4213/mzm12181
- S. P. Suetin, On a new approach to the problem of distribution of zeros of Hermite-Padé polynomials for a Nikishin system, Tr. Mat. Inst. Steklova 301 (2018), no. Kompleksnyĭ Analiz, Matematicheskaya Fizika i Prilozheniya, 259–275 (Russian, with Russian summary). English version published in Proc. Steklov Inst. Math. 301 (2018), no. 1, 245–261. MR 3841673, DOI 10.1134/S037196851802019X
- S. P. Suetin, A direct proof of Stahl’s theorem for a generic class of algebraic functions, Mat. Sb. 213 (2022), no. 11, 102–117 (Russian, with Russian summary); English transl., Sb. Math. 213 (2022), no. 11, 1582–1596. MR 4582607, DOI 10.4213/sm9649
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, RI, 1975. MR 372517
- Lloyd N. Trefethen, Approximation theory and approximation practice, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013. MR 3012510
- Lloyd N. Trefethen, Quantifying the ill-conditioning of analytic continuation, BIT 60 (2020), no. 4, 901–915. MR 4179710, DOI 10.1007/s10543-020-00802-7
Bibliographic Information
- E. A. Rakhmanov
- Affiliation: University of South Florida, Tampa
- MR Author ID: 212767
- Email: rakhmano@mail.usf.edu
- S. P. Suetin
- Affiliation: Steklov Institute of Mathematics, Russian Academy of Sciences, Moscow, Russia
- MR Author ID: 190281
- Email: suetin@mi-ras.ru
- Published electronically: September 23, 2024
- Additional Notes: Sections 1–6 of the article were written by E. A. Rakhmanov. Sections 7 and 8 were written by S. P. Suetin. The second author’s research was supported by Russian Science Foundation grant No. 19-11-00316, https://rscf.ru/project/19-11-00316/, held at the Steklov Institute of Mathematics (RAS)
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Moscow Math. Soc. 2022, 269-290
- MSC (2020): Primary 30E10, 41A21
- DOI: https://doi.org/10.1090/mosc/339
Dedicated: Dedicated to the 90th anniversary of Andrei Aleksandrovich Gonchar