Quantum representation theory and Manin matrices I: The finite-dimensional case
HTML articles powered by AMS MathViewer
- by
A. V. Silantyev;
Translated by: Carl-Fredrik Nyberg Brodda - Trans. Moscow Math. Soc. 2022, 75-149
- DOI: https://doi.org/10.1090/mosc/340
- Published electronically: September 23, 2024
- PDF | Request permission
Abstract:
We construct a theory that describes a quantum (non-commutative) analogue of representations within the framework of “non-commutative linear geometry” set out in the work of Manin [Quantum groups and noncommutative geometry, Univ. Montréal, Centre de Recherches Mathématiques, Montréal, QC, 1988]. For this purpose, the concept of an internal $\hom$-functor is generalized to the case of parameterized adjunctions, and we construct a general approach to representations of monoids for a symmetric monoidal category with a parameter subcategory. A quantum theory of representations is then obtained by applying this approach to the monoidal category of a certain class of graded algebras with the Manin product, where the parameterizing subcategory consists of connected finitely generated quadratic algebras. We formulate this theory in the language of Manin matrices. We also obtain quantum analogues of the direct sum and tensor product of representations. Finally, we give some examples of quantum representations.References
- Daniel Arnaudon, Alexander Molev, and Eric Ragoucy, On the $R$-matrix realization of Yangians and their representations, Ann. Henri Poincaré 7 (2006), no. 7-8, 1269–1325. MR 2283732, DOI 10.1007/s00023-006-0281-9
- Francis Borceux, Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994. Categories and structures. MR 1313497
- A. Chervov and G. Falqui, Manin matrices and Talalaev’s formula, J. Phys. A 41 (2008), no. 19, 194006, 28. MR 2452180, DOI 10.1088/1751-8113/41/19/194006
- A. Chervov, G. Falqui, and V. Rubtsov, Algebraic properties of Manin matrices. I, Adv. in Appl. Math. 43 (2009), no. 3, 239–315. MR 2549578, DOI 10.1016/j.aam.2009.02.003
- A. Chervov, G. Falqui, V. Rubtsov, and A. Silantyev, Algebraic properties of Manin matrices II: $q$-analogues and integrable systems, Adv. in Appl. Math. 60 (2014), 25–89. MR 3256747, DOI 10.1016/j.aam.2014.06.001
- A. V. Chervov and A. I. Molev, On higher-order Sugawara operators, Int. Math. Res. Not. IMRN 9 (2009), 1612–1635. MR 2500972, DOI 10.1093/imrn/rnn168
- Pierre Deligne and John W. Morgan, Notes on supersymmetry (following Joseph Bernstein), Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 41–97. MR 1701597
- V. G. Drinfel′d, Quantum groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), no. Differentsial′naya Geometriya, Gruppy Li i Mekh. VIII, 18–49, 193 (Russian, with English summary); English transl., J. Soviet Math. 41 (1988), no. 2, 898–915. MR 869575, DOI 10.1007/BF01247086
- B. Eckmann and P. J. Hilton, Structure maps in group theory, Fund. Math. 50 (1961/62), 207–221. MR 132776, DOI 10.4064/fm-50-2-207-221
- Dominique Foata and Guo-Niu Han, A new proof of the Garoufalidis-Lê-Zeilberger quantum MacMahon master theorem, J. Algebra 307 (2007), no. 1, 424–431. MR 2278064, DOI 10.1016/j.jalgebra.2006.04.032
- Dominique Foata and Guo-Niu Han, A basis for the right quantum algebra and the “$1=q$” principle, J. Algebraic Combin. 27 (2008), no. 2, 163–172. MR 2375489, DOI 10.1007/s10801-007-0080-5
- William Fulton, Algebraic curves, Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. An introduction to algebraic geometry; Notes written with the collaboration of Richard Weiss; Reprint of 1969 original. MR 1042981
- Stavros Garoufalidis, Thang T. Q. Lê, and Doron Zeilberger, The quantum MacMahon master theorem, Proc. Natl. Acad. Sci. USA 103 (2006), no. 38, 13928–13931. MR 2270337, DOI 10.1073/pnas.0606003103
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- A. Isaev and O. Ogievetsky, Half-quantum linear algebra, Symmetries and groups in contemporary physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., vol. 11, World Sci. Publ., Hackensack, NJ, 2013, pp. 479–486. MR 3221505, DOI 10.1142/9789814518550_{0}066
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145, DOI 10.1007/978-1-4612-0783-2
- Sergej M. Khoroshkin, Central extension of the Yangian double, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995) Sémin. Congr., vol. 2, Soc. Math. France, Paris, 1997, pp. 119–135 (English, with English and French summaries). MR 1601127
- Serge Lang, Differential and Riemannian manifolds, 3rd ed., Graduate Texts in Mathematics, vol. 160, Springer-Verlag, New York, 1995. MR 1335233, DOI 10.1007/978-1-4612-4182-9
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Yu. I. Manin, Lectures on algebraic geometry. Part I: Affine schemes, Izdat. Moskov. Univ., Moscow, 1970 (Russian).
- Yu. I. Manin, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 4, 191–205 (English, with French summary). MR 927397, DOI 10.5802/aif.1117
- Yu. I. Manin, Quantum groups and noncommutative geometry, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988. MR 1016381
- Yu. I. Manin, Multiparametric quantum deformation of the general linear supergroup, Comm. Math. Phys. 123 (1989), no. 1, 163–175. MR 1002037, DOI 10.1007/BF01244022
- Yuri I. Manin, Topics in noncommutative geometry, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1991. MR 1095783, DOI 10.1515/9781400862511
- Yu. I. Manin, Notes on quantum groups and quantum de Rham complexes, Teoret. Mat. Fiz. 92 (1992), no. 3, 425–450 (English, with English and Russian summaries); English transl., Theoret. and Math. Phys. 92 (1992), no. 3, 997–1023 (1993). MR 1225788, DOI 10.1007/BF01017077
- A. I. Molev, Sugawara operators for classical Lie algebras, MCCME 2018 (electronic edition), https://www.mccme.ru/free-books/Molev-Sugavara.pdf (Russian).
- A. I. Molev and E. Ragoucy, The MacMahon master theorem for right quantum superalgebras and higher Sugawara operators for $\widehat {\mathfrak {gl}}_{m|n}$, Mosc. Math. J. 14 (2014), no. 1, 83–119, 171 (English, with English and Russian summaries). MR 3221948, DOI 10.17323/1609-4514-2014-14-1-83-119
- Bodo Pareigis, A noncommutative noncocommutative Hopf algebra in “nature”, J. Algebra 70 (1981), no. 2, 356–374. MR 623814, DOI 10.1016/0021-8693(81)90224-6
- Daniel Perrin, Algebraic geometry, Universitext, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2008. An introduction; Translated from the 1995 French original by Catriona Maclean. MR 2372337, DOI 10.1007/978-1-84800-056-8
- Hans-E. Porst, On categories of monoids, comonoids, and bimonoids, Quaest. Math. 31 (2008), no. 2, 127–139. MR 2529129, DOI 10.2989/QM.2008.31.2.2.474
- N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989), no. 1, 178–206 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 1, 193–225. MR 1015339
- Vladimir Rubtsov, Alexey Silantyev, and Dmitri Talalaev, Manin matrices, quantum elliptic commutative families and characteristic polynomial of elliptic Gaudin model, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 110, 22. MR 2591896, DOI 10.3842/SIGMA.2009.110
- Alexey Silantyev, Manin matrices for quadratic algebras, SIGMA Symmetry Integrability Geom. Methods Appl. 17 (2021), Paper No. 066, 81. MR 4283705, DOI 10.3842/SIGMA.2021.066
- D. V. Talalaev, The quantum Gaudin system, Funktsional. Anal. i Prilozhen. 40 (2006), no. 1, 86–91 (Russian); English transl., Funct. Anal. Appl. 40 (2006), no. 1, 73–77. MR 2223256, DOI 10.1007/s10688-006-0012-5
Bibliographic Information
- A. V. Silantyev
- Affiliation: Joint Institute for Nuclear Research, Bogoliubov LTF, Dubna, Russia; and Dubna State University, Russia
- Email: aleksejsilantjev@gmail.com
- Published electronically: September 23, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Moscow Math. Soc. 2022, 75-149
- MSC (2020): Primary 15B33, 16T20, 20G42, 81R50
- DOI: https://doi.org/10.1090/mosc/340