On determinant representations of Hermite–Padé polynomials
HTML articles powered by AMS MathViewer
- by
A. P. Starovoitov and N. V. Ryabchenko;
Translated by: Anastasia Frantsuzova - Trans. Moscow Math. Soc. 2022, 15-31
- DOI: https://doi.org/10.1090/mosc/341
- Published electronically: September 23, 2024
- PDF | Request permission
Abstract:
In this work we introduce new concepts: weakly normal index, weakly perfect system of functions. With these concepts for an arbitrary system of power series we formulate and prove criteria for the uniqueness of solutions to two Hermite–Padé problems, and obtain explicit determinant representations of Hermite–Padé types 1 and 2 polynomials. Proven statements complement well-known results in Hermite–Padé approximation theory.References
- A. I. Aptekarev (ed.), Rational approximations of Euler’s constant and recurrence relations. Collection of articles, Modern Problems in Mathematics, no. 9, Moscow: MIAN, 2007 (Russian).
- Alexander I. Aptekarev, Pavel M. Bleher, and Arno B. J. Kuijlaars, Large $n$ limit of Gaussian random matrices with external source. II, Comm. Math. Phys. 259 (2005), no. 2, 367–389. MR 2172687, DOI 10.1007/s00220-005-1367-9
- A. I. Aptekarev, A. Branquinho, and W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3887–3914. MR 1990569, DOI 10.1090/S0002-9947-03-03330-0
- A. I. Aptekarev, V. A. Kalyagin, and E. B. Saff, Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials, Constr. Approx. 30 (2009), no. 2, 175–223. MR 2519660, DOI 10.1007/s00365-008-9032-0
- A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkel′shteĭn, and S. P. Suetin, Padé approximants, continued fractions, and orthogonal polynomials, Uspekhi Mat. Nauk 66 (2011), no. 6(402), 37–122 (Russian, with Russian summary); English transl., Russian Math. Surveys 66 (2011), no. 6, 1049–1131. MR 2963451, DOI 10.1070/RM2011v066n06ABEH004770
- A. I. Aptekarev, V. G. Lysov, and D. N. Tulyakov, Random matrices with an external source and the asymptotics of multiple orthogonal polynomials, Mat. Sb. 202 (2011), no. 2, 3–56 (Russian, with Russian summary); English transl., Sb. Math. 202 (2011), no. 1-2, 155–206. MR 2798785, DOI 10.1070/SM2011v202n02ABEH004142
- George A. Baker, Jr. and Peter Graves-Morris, Padé approximants, Reading, MA: Addison-Wesley Publishing Co., 1981; Russian translation: Moscow: Mir, 1986.
- Bernhard Beckermann, Valeriy Kalyagin, Ana C. Matos, and Franck Wielonsky, How well does the Hermite-Padé approximation smooth the Gibbs phenomenon?, Math. Comp. 80 (2011), no. 274, 931–958. MR 2772102, DOI 10.1090/S0025-5718-2010-02411-1
- P. M. Bleher and A. B. J. Kuijlaars, Random matrices with external source and multiple orthogonal polynomials, Int. Math. Res. Not. 3 (2004), 109–129. MR 2038771, DOI 10.1155/S1073792804132194
- John P. Boyd, Chebyshev expansion on intervals with branch points with application to the root of Kepler’s equation: a Chebyshev-Hermite-Padé method, J. Comput. Appl. Math. 223 (2009), no. 2, 693–702. MR 2478872, DOI 10.1016/j.cam.2008.02.007
- G. V. Chudnovsky, Hermite-Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi$, The Riemann problem, complete integrability and arithmetic applications (Bures-sur-Yvette/New York, 1979/1980) Lecture Notes in Math., vol. 925, Springer, Berlin-New York, 1982, pp. 299–322. MR 659875
- E. Daems and A. B. J. Kuijlaars, Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions, J. Approx. Theory 146 (2007), no. 1, 91–114. MR 2327475, DOI 10.1016/j.jat.2006.12.001
- C. Hermite, Sur la généralisation des fractions continues algébriques, Ann. Mat. Pura Appl. Ser. 2A 21 (1893), 289–308.
- C. Hermite, Sur la fonction exponentielle, C. R. Acad. Sci. (Paris) 77 (1973), 18–293.
- N. R. Ikonomov and S. P. Suetin, A Viskovatov algorithm for Hermite-Padé polynomials, Mat. Sb. 212 (2021), no. 9, 94–118 (Russian, with Russian summary); English transl., Sb. Math. 212 (2021), no. 9, 1279–1303. MR 4324077, DOI 10.4213/sm9410
- V. A. Kalyagin, Hermite-Padé approximants and spectral analysis of nonsymmetric operators, Mat. Sb. 185 (1994), no. 6, 79–100 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 82 (1995), no. 1, 199–216. MR 1280397, DOI 10.1070/SM1995v082n01ABEH003558
- Felix Klein, Elementary Mathematics from an Advanced Standpoint. Vol. I. Arithmetic, Algebra, Analysis, Dover Publications, New York, 1945. MR 15349
- Arno B. J. Kuijlaars, Multiple orthogonal polynomial ensembles, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., vol. 507, Amer. Math. Soc., Providence, RI, 2010, pp. 155–176. MR 2647568, DOI 10.1090/conm/507/09958
- A. B. J. Kuijlaars, A. Martínez-Finkelshtein, and F. Wielonsky, Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights, Comm. Math. Phys. 286 (2009), no. 1, 217–275. MR 2470930, DOI 10.1007/s00220-008-0652-9
- G. López Lagomasino, S. Medina Peralta, and J. Szmigielski, Mixed type Hermite-Padé approximation inspired by the Degasperis-Procesi equation, Adv. Math. 349 (2019), 813–838. MR 3943369, DOI 10.1016/j.aim.2019.04.024
- V. G. Lysov, Mixed type Hermite-Padé approximants for a Nikishin system, Tr. Mat. Inst. Steklova 311 (2020), no. Analiz i Matematicheskaya Fizika, 213–227 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 311 (2020), no. 1, 199–213. MR 4223990, DOI 10.4213/tm4146
- K. Mahler, Applications of some formulae by Hermite to the approximation of exponentials and logarithms, Math. Ann. 168 (1967), 200–227. MR 205929, DOI 10.1007/BF01361554
- E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality, Translations of Mathematical Monographs, vol. 92, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Ralph P. Boas. MR 1130396, DOI 10.1090/mmono/092
- H. Padé, Mémoire sur les développements en fractions continues de la fonction exponentielle, pouvant servir d’introduction à la théorie des fractions continues algébriques, Ann. Sci. École Norm. Sup. (3) 16 (1899), 395–426 (French). MR 1508972, DOI 10.24033/asens.470
- V. N. Sorokin, Cyclic graphs and Apéry’s theorem, Uspekhi Mat. Nauk 57 (2002), no. 3(345), 99–134 (Russian, with Russian summary); English transl., Russian Math. Surveys 57 (2002), no. 3, 535–571. MR 1918856, DOI 10.1070/RM2002v057n03ABEH000512
- V. N. Sorokin, Hermite-Padé approximants to the Weyl function and its derivative for discrete measures, Mat. Sb. 211 (2020), no. 10, 139–156 (Russian, with Russian summary); English transl., Sb. Math. 211 (2020), no. 10, 1486–1503. MR 4153721, DOI 10.4213/sm8634
- Herbert Stahl, Asymptotics for quadratic Hermite-Padé polynomials associated with the exponential function, Electron. Trans. Numer. Anal. 14 (2002), 195–222. Orthogonal polynomials, approximation theory, and harmonic analysis (Inzel, 2000). MR 1929064
- A. P. Starovoitov and N. V. Ryabchenko, Analogs of Schmidt’s formula for polyorthogonal polynomials of the first type, Mat. Zametki 110 (2021), no. 3, 424–433 (Russian, with Russian summary); English transl., Math. Notes 110 (2021), no. 3-4, 409–417. MR 4324020, DOI 10.4213/mzm12952
- A. P. Starovoitov and N. V. Ryabchenko, On the explicit representation of polyorthogonal polynomials, Izv. Vyssh. Uchebn. Zaved. Mat. 4 (2021), 80–89 (Russian, with English and Russian summaries); English transl., Russian Math. (Iz. VUZ) 65 (2021), no. 4, 72–80. MR 4364091, DOI 10.26907/0021-3446-2021-4-80-89
- A. P. Starovoĭtov, N. V. Ryabchenko, and A. A. Drapeza, On the existence and uniqueness of Hermite-Padé polynomials of the first kind, Probl. Fiz. Mat. Tekh. 3(40) (2019), 100–103 (Russian, with English and Russian summaries). MR 4034518
- S. P. Suetin, Padé approximants and the effective analytic continuation of a power series, Uspekhi Mat. Nauk 57 (2002), no. 1(342), 45–142 (Russian, with Russian summary); English transl., Russian Math. Surveys 57 (2002), no. 1, 43–141. MR 1914542, DOI 10.1070/RM2002v057n01ABEH000475
- S. P. Suetin, Distribution of the zeros of Padé polynomials and analytic continuation, Uspekhi Mat. Nauk 70 (2015), no. 5(425), 121–174 (Russian, with Russian summary); English transl., Russian Math. Surveys 70 (2015), no. 5, 901–951. MR 3438556, DOI 10.4213/rm9675
- S. P. Suetin, Hermite-Padé polynomials and Shafer quadratic approximations for multivalued analytic functions, Uspekhi Mat. Nauk 75 (2020), no. 4(454), 213–214 (Russian); English transl., Russian Math. Surveys 75 (2020), no. 4, 788–790. MR 4153705, DOI 10.4213/rm9954
- Walter Van Assche, Multiple orthogonal polynomials, irrationality and transcendence, Continued fractions: from analytic number theory to constructive approximation (Columbia, MO, 1998) Contemp. Math., vol. 236, Amer. Math. Soc., Providence, RI, 1999, pp. 325–342. MR 1665377, DOI 10.1090/conm/236/03504
Bibliographic Information
- A. P. Starovoitov
- Affiliation: Francisk Skorina Gomel State University
- Email: svoitov@gsu.by
- N. V. Ryabchenko
- Affiliation: Francisk Skorina Gomel State University
- Email: nmankevich@tut.by
- Published electronically: September 23, 2024
- Additional Notes: The work was carried out with financial support from the Ministry of Education of the Republic of Belarus within the framework of the State Scientific Research Program for the years 2016 to 2020.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Moscow Math. Soc. 2022, 15-31
- MSC (2020): Primary 41A21, 41A28
- DOI: https://doi.org/10.1090/mosc/341