NOTICES

AMERICAN MATHEMATICAL SOCIETY

Special Issue on Women in Mathematics page 701

1991 AMS Election
Special Section page 755

Calendar of AMS Meetings and Conferences

This calendar lists all meetings approved prior to the date this issue went to press The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have been assigned. Programs of the meetings will appear in the issues indicated below. First and supplementary announcements of the meetings will have appeared in earlier issues. Abstracts of papers presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meeting, insofar as
is possible. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the headquarters office of the Society. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadine given below for the meeting. The abstract deadlines listed below should be carefully reviewed since an abstract deadline may expire before publication of a first announcement. Note that the deadline for abstracts for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information, consult the meeting announcements and the list of specia sessions.

Meetings

Conferences

January 6-7, 1992: AMS Short Course on New Scientific Applications of Geometry and Topology, Baltimore, Maryland.

June 13-July 24, 1992: Joint Summer Research Conferences in the Mathematical Sciences, Mount Holyoke College, South Hadley, Massachusetts.

Deadlines

	November Issue	December Issue	January Issue	February Issue
Classified Ads*	September 30, 1991	November 7, 1991	December 12, 1991	January 30, 1992
News Items	September 20, 1991	October 24, 1991	December 4, 1991	December 31, 1991
Meeting Announcements**	September 23, 1991	October 28, 1991	December 4, 1991	January 6, 1992

* Please contact AMS Advertising Department for an Advertising Rate Card for display advertising deadlines.
** For material to appear in the Mathematical Sciences Meetings and Conferences section.

AMERICAN MATHEMATICALSOCIETY

ARTICLES

701 Special Issue on Women in Mathematics

This issue of Notices has a special focus on women in mathematics. From statistical reports to personal sketches to historical perspectives, these articles present a range of viewpoints on this timely topic.

FEATURE COLUMNS

778 Computers and Mathematics Keith Devlin
Computer algebra systems are examined this month in articles by David Stoutemyer, of the University of Hawaii and Soft Warehouse, Inc., and Charles Livingston, of Indiana University. Stoutemyer writes from the perspective of a system developer while Livingston writes from the perspective of a system user.

789 Inside the AMS

This month Gerald J. Janusz discusses reviewing at Mathematical Reviews, and an update on e-MATH is also included.

DEPARTMENTS

755	1991 AMS Elections
774	Forum
792 News and Announcements	
797	Funding Information for the
Mathematical Sciences	
798	Acknowledgment of
Contributions	
816 Meetings and Conferences of	
the AMS	
Philadelphia, PA	
October 12-13, 816	
Fargo, ND	
October 25-26, 818	
Santa Barbara, CA	
November 9-10, 820	
Invited Speakers, 823	
Baltimore, MD	
January 8-11, 827	
International Congress of	
Mathematical Education, 829	
832 Mathematical Sciences Meetings	
and Conferences	
841 New AMS Publications	
844 AMS Reports and	
Communications	
Recent Appointments, 844	
Statistics on Women, 844	
Officers of the Society, 846	
856 Miscellaneous	
Personal Items, 856	
Deaths, 856	
857 New Members of the AMS	
858 Visiting Mathematicians	
859 Classified Advertising	
875 Forms	

NOTICES

EDITORIAL COMMITTEE

Michael G. Crandall
Amassa Fauntleroy
Robert M. Fossum (Chairman)
Carolyn S. Gordon (Forum Editor)
D. J. Lewis
L. Ridgway Scott

Robert E. L. Turner (Letters Editor)

MANAGING EDITOR

Donovan H. Van Osdol

associate editors

Ronald L. Graham, Special Articles
Jeffrey C. Lagarias, Special Articles

SUBSCRIPTION INFORMATION

Subscription prices for Volume 38 (1991) are \$121 list; \$97 institutional member; \$73 individual member. (The subscription price for members is included in the annual dues.) A late charge of 10% of the subscription price will be imposed upon orders received from nonmembers after January 1 of the subscription year. Add for postage: Surface delivery outside the United States and India-\$15; to India-\$27; expedited delivery to destinations in North America-\$28; elsewhere-\$67. Subscriptions and orders for AMS publications should be addressed to the American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 02901-1571. All orders must be prepaid.

ADVERTISING

Notices publishes situations wanted and classified advertising, and display advertising for publishers and academic or scientific organizations.
Copyright (c) 1991 by the American Mathematical Society. All rights reserved. Printed in the United States of America.
The paper used in this journal is acid-free and falls within the guidelines established to ensure permanence and durability. © Most of this publication was typeset using the $T_{E} X$ typesetting system.
[Notices of the American Mathematical Society is published monthly except bimonthly in May, June, July, and August by the American Mathematical Society at 201 Charles Street, Providence, Rl 029042213. Second class postage paid at Providence, Rl and additional mailing offices. POSTMASTER: Send address change notices to Notices of the American Mathematical Society, Customer Service Department, American Mathematical Society, P. O. Box 6248, Providence, Rl 02940-6248.] Publication here of the Society's street address, and the other information in brackets above, is a technical requirement of the U.S. Postal Service. All correspondence should be mailed to the Post Office Box, NOT the street address. Tel: 401-455-4000.

From the Executive Director ...

COMING INTO THE CHILL

Many women pursuing professional careers in mathematics encounter an atmosphere of subtle and elusive inequalities, an atmosphere referred to as a "chilly climate." This "chill" leaves very talented and creative individuals feeling undervalued, ignored, and alienated. For these women, choosing a career as a professional mathematician means "coming into the chill." This issue of Notices is devoted to a number of articles about women in mathematics. The "chill" is very clear in many of the articles. Yet, there is also a positive message, one that recognizes the value and contributions of women to the profession, pointing to the devotion of many women and men to change the atmosphere and to nurture mathematical talent wherever it is found.

The articles present a statistical and historical perspective of women in mathematics, as well as personal reflections. The statistical information provides a quantitative basis from which one can reflect on the issues, and, in some cases, the numbers are quite revealing. The qualitative articles provide a more personal perspective on the statistics. Many of the issues raised may at first appear to be unique to women, but, in fact, recognizing and addressing the difficulties women face will contribute to eliminating barriers that cause other talent to be lost to mathematics.

One of the articles presents an informative history of the formation and development of the Association for Women in Mathematics (AWM). The early years of AWM are marked by frustration at not having a forum in which to be heard. In twenty years, AWM has earned a proud record and made progress. Many of the early issues are still present, but AWM has raised the consciousness of the mathematical community and enlisted the support and respect of many individuals.

These articles reinforce what I have read elsewhere, that women are more likely than men to lack self-confidence about their ability in mathematics. This is not peculiar to mathematics-more generally, lack of confidence rather than lack of ability is reported to be the major reason that women drop out of careers in science and engineering. Reading the personal accounts of some of the writers also brought to mind some of the most profitable experiences of my graduate studies, the social relationships with young faculty members. We often had marathon sessions in talking mathematics and about mathematicians and the profession. I suspect these experiences were not so easily available to my women colleagues. Missing out on socializing means missing out not only on the full experience of one's education but also on the inside information. Even when included in social situations, it is clear that many women often feel undervalued and exposed to condescension. It is all part of the "chill."

However, the articles also speak to progress and the future. The tone and openness of the discussions have changed over the years, and the climate seems to be improving. Some may say that focusing on these issues could be discouraging to young women. Indeed, how can one encourage any woman to enter a career in mathematics if she is to face such obstacles? However, I believe that the openness of the discussion is essential to making progress toward an awareness of the issues, an understanding, and an eventual solution.

The participation of women and underrepresented minorities in disciplines with a strong mathematical component was identified in the Society's strategic planning as one of the major issues facing the AMS and the community. The Society will aggressively address this issue as one of its identified goals and will work with other professional organizations and the mathematics community to enhance the participation of women and underrepresented minorities in mathematics. It is a tragedy that many talented individuals are being lost to mathematics. Mathematics is losing the creativity and productivity of these individuals and the individuals are missing a rewarding career and being denied the enjoyment of discovering and understanding mathematics. Let's work together and with vigor to remove the "chill."

William Jaco

AMERICAN MATHEMATICAL SOCIETY

ASSOCIATE TREASURER

The American Mathematical Society is seeking applications and nominations for candidates for the position of Associate Treasurer of the Society.

The Associate Treasurer is an officer of the Society. The Associate Treasurer is appointed by the Council of the Society for a term of two years beginning on 31 January of each odd numbered year.

The primary responsibilities of the Associate Treasurer are to know and understand the budget of the Society, to monitor the financial condition of the Society, and to advise the Board of Trustees concerning the financial consequences of its decisions. The Associate Treasurer works in close cooperation with the Treasurer, and serves as Treasurer when necessary.

The Associate Treasurer is a member of the Board of Trustees, the Council, the Agenda and Budget Committee, and the Investment Committee and serves on several other committees of the Society. As a member of the Council, the Associate Treasurer serves a liaison function between the Board of Trustees and the Council and offers advice to the Council on the financial aspects of its deliberations.

There are two other areas of major responsibility: (1) The Associate Treasurer is delegated by the Board of Trustees to monitor staff appointments and promotions and to review staff raises. (2) The Associate Treasurer serves as liaison Trustee for Mathematical Reviews and, in this capacity, monitors the budget of Mathematical Reviews.

While the term of office is two years, it is anticipated that the person filling this office will be reappointed biennially for a number of terms, to insure continuity.

Applications and nominations can be sent to the chair of the search committee, Ronald L. Graham, or the Secretary of the Society, Robert M. Fossum.

Dr. Ronald L. Graham	Professor Robert M. Fossum
AT\&T Bell Labs	Department of Mathematics
600 Mountain Avenue	University of Illinois
Murray Hill, NJ 07974	1409 West Green St.
	Urbana, IL 61801
rlg@research.att.com	robert@math.uiuc.edu

Applications or nominations received by 30 September 1991 will be assured full consideration. The newly appointed Associate Treasurer will take office formally on 31 January 1993, but should be appointed by the Council as early in 1992 as possible to permit a smooth transition.

All necessary expenses incurred by the Associate Treasurer in the performance of duties for the Society are reimbursed, including travel and communications.

American Mathematical Society

Mathematical Reviews EXECUTIVE EDITOR

Applications and nominations are invited for the position of Executive Editor of Mathematical Reviews (MR).

The Executive Editor is the chief executive officer at $M R$ and is responsible for all phases of its operations. These duties include:

> - direction of the editorial and consulting staff and the administration of the non-editorial staff
> - relations with reviewers and authors
> - maintaining scientific and editorial standards
> - budget planning and control

The Executive Editor is assisted in administration by an Associate Executive Editor; the Executive Editor reports to the Executive Director of the American Mathematical Society. The MR Editorial Committee provides Society overview and support in maintaining the scientific and editorial standards of $M R$.

The MR editorial office is located in Ann Arbor, Michigan, near the campus of the University of Michigan, and the editors enjoy many faculty privileges at the University. MR employs twelve associate editors, several consultants, and over sixty-five other full-time personnel. It publishes Mathernatical Reviews, Current Mathematical Publications, and various Indexes. The major activity is the creation and maintenance of the MR database from which these publications and the online and CD-ROM service, MathSci, are produced.

The appointment will be for a negotiable period of from two to five years and should commence by August 21, 1992. The appointment has the possibility of renewal. Applications are welcomed from individuals taking leaves of absence from other positions; however, the Executive Editor position is full-time. Salary is negotiable and will be commensurate with experience. Generous benefits are available including study leave.

Nominations and applications (including curriculum vitae, bibliography, data on experience and names and addresses of at least three references) should be sent on or before October 1, 1991 to:

Dr. William Jaco, Executive Director
American Mathematical Society
P.O. Box 6248
Providence, RI 02940

[^0]
Notices Special Issue

In Her Own Words: Six Mathematicians Reflect on Their Lives and Careers
 p. 702

In short personal sketches, six prominent women researchers discuss how being a woman in mathematics affected their lives and careers.

The Past, Present, and Future of Academic Women in the Mathematical Sciences
p. 707 Lynne Billard

This article brings together a wealth of interesting statistics on the education, employment, rank, salaries, and performance of women in the mathematical sciences.

Top Producers of Women Mathematics Ph.D.s
 p. 715 Allyn Jackson

Which schools do the best job of producing women mathematics doctorates? This article provides some interesting and surprising statistics.

Mathematics and Women: The Undergraduate School and Pipeline
p. 721 D. J. Lewis

The chair of one of the top mathematics departments discusses a recent literature survey his department conducted on why women drop out of mathematics.

Merging and Emerging Lives: Women in Mathematics
 Claudia Henrion

Drawing on extensive interviews with contemporary women mathematicians, this article discusses the "timelines" of the careers of women mathematicians and provides some recommendations for change.

The Escher Staircase
p. 730

Jenny Harrison
What kind of social atmosphere do women face in college, in graduate school, and as faculty members? This article paints a vivid picture of the "chilly environment" in mathematics.

Mathematics and Women: Perspectives and Progress
 Alice T. Schafer

A former AWM president shares some of her perspectives on women in mathematics and provides information on several exemplary programs to encourage women and girls in mathematics.

A Brief History of the Association for Women in Mathematics: The Presidents' Perspectives p. 738

Lenore Blum

At times chatty, at times sobering, at times poignant, this lively trek through the "good old days" (or was it the "bad old days"?) chronicles the history of AWM, one of the most influential organizations for promoting women in mathematics.

Forum: What Still Needs to Change (for the Good of Women in Mathematics, and for the Good of Mathematics)
 p. 774
 Judith Roitman
 With candor and spirit, this Forum opinion piece explores some of the problems that women encounter in mathematics.

In Her Own Words

Six Mathematicians
Comment on Their Lives and Careers

Joan S. Birman
 Columbia University

In her acceptance speech for the Satter Prize, Dusa Mcduff wrote about the crooked path she followed before she found her creative voice. I wandered along other crooked paths and would like to share some of my experiences with you.

I was forty-one when I received my Ph.D. and began a career as a research mathematician in academia. A plausible explanation might be that (like some of today's students) I did not discover the beauties of mathematics until I was past the traditional age, but that was not the case. Some of my earliest pre-school memories are of fascination with patterns and the way things "fit together." Moreover, in elementary and high school, I excelled in mathematics and even had some excellent teachers who encouraged and challenged me. What went wrong, and, even more, was it "wrong"?

The simple truth is that at some point during college, and more particularly at age twenty-one, when I graduated from college, the deep commitment which was required to become a professional mathematician did not seem so appealing to me. While I knew I wanted more from life than the traditional woman's role as a homemaker, I was less clear about the precise alternatives. When the opportunity came to take a math-related job which would not require the kind of total involvement which I knew must go with a full-time graduate program, I veered off to the side, beginning what stretched into a fifteen-year detour. I worked in what was called "Systems Analysis" in the aircraft industry. Later, as my three children were born, my work went down to two days a week, then one, and finally (briefly), none. I didn't have to do it that way, but it was pleasant to be with my children as they grew and developed. Moreover, it did not feel right to me to hand over a matter as important as the day-to-day supervision of my children's growth and development to strangers.

I was thirty-six when I found myself in an evening graduate course at the Courant Institute. My initial goal had been to maintain some small level of competence in preparation for an eventual return to full-time work, but I was actually unclear about where I was heading and simply did what seemed interesting and possible at the time. To my pleasure and surprise, the challenge of graduate work was wonderful! To be sure, I was rusty, but that did not seem
insurmountable because, as a compensation, maturity had given me an ability to focus and to concentrate in a way which had seemed impossible fifteen years earlier. Also, I could set my own pace, taking on more as I could handle more. Eventually, I did need help at home, but that was an easier matter once children were in school all day. Also, I did much of my work at home.

I think there was lots of good luck in my subsequent experiences. I found fellow students who were tolerant of the middle-aged lady in their midst, and we worked together. When I was stuck on a difficult point, I sought and obtained the help I needed, and it was gratifying when sometimes my insights helped others. As for the faculty, most paid attention to my work and not to my age or sex. Later, my thesis topic was immediately absorbing, and when the creative ideas came and I solved the problem, it was deeply satisfying. When I received my Ph.D., the job prospects seemed dim, but with incredible good fortune, I stumbled into an excellent job at the Stevens Institute of Technology. There I found a colleague with whom I did joint work (the first of many such collaborators) and enough good students to make the teaching worthwhile. From that point on it was easy. Conferences and seminar invitations broadened my world, the research problems began to suggest themselves, and my career was on its way.

What I did was natural to my life as a woman, yet at this time I would hesitate to advise other women to follow the same route, because I tend to think my good luck was atypical. I have wondered whether, if the mathematical community welcomed older women as graduate students in a serious and non-patronizing way, and if women rejected the myth that mathematics is a young man's game, we might not see real changes in those discouragingly low numbers.

Deborah Haimo

University of Missouri at St. Louis

Two events in my life significantly influenced my career choice.

Since I dutifully complied with all that was expected of me, I was generally regarded as a good student. I did well in mathematics in first year algebra because I could follow rules, but found them very rigid, and I resented the fact that
we were penalized if we attempted to reach a result by some different approach. Originality or creativity were strongly discouraged.

In my sophomore year, however, something new and very exciting happened. We started studying Euclidean geometry. Here, we had a set of axioms-self-evident truths-and based on these, and some hypotheses, we were able to establish a variety of fascinating theorems. It was all reasonable and logical, and no one was requiring that I follow some rules I didn't understand. I loved the subject and tried to obtain results beyond those assigned.

One day, we came to a theorem for which an indirect proof was given. I wondered why we couldn't prove the result directly, tried to do so, and found a proof that worked, except when the geometric figures involved were positioned in a certain way. I decided that I had found the reason for the indirect proof and didn't feel a need to raise the question further.

Some time later, we had a similar problem involving the same geometric figures, where, again, an indirect proof was given. This time, the teacher pointed out that the problem could also be solved directly, and outlined a proof that was essentially the one I had discovered earlier. I then raised the question of the difficulty that arose when the figures were positioned differently. The teacher had an immediate response, "You have an axiom that states that geometric figures can be moved in space without affecting their properties." Incredible! It was an axiom that we had not used and I had forgotten all about it. What a beautiful subject! Everything fell into place so neatly!

I entered college with great uncertainty about a major. I didn't know what I could do with mathematics. About the only career option in that area, as far as I was aware, was school teaching, and I knew I didn't want to be a school teacher-if for no other reason than the fact that, as a woman, I would not be allowed to marry and remain a teacher-at least in public schools in my area, and I knew no other.

Physics was suggested to me as a subject with greater career options and a good alternative to mathematics. My select high school, restricted to girls, did not offer physics. In college, however, I enrolled in a freshman physics course to consider it as a possible major.

In one of our early labs, we were to do the standard experiment of scattering iron filings on the lab table, placing a magnet in their midst, and noting how the filings align about each pole. Everyone in the class did the experiment very readily-everyone, that is, except for me. My iron filings refused to follow the expected pattern, and instead, kept arranging themselves in bizarre formations. One after another of my classmates, realizing what I was experiencing, came over to offer advice, and to watch the strange results. Finally, the entire class, including the instructor, was gathered around, with everyone trying to explain why my iron filings were so uncooperative. One observant girl finally solved the mystery. She pulled out a drawer that was directly under my work space, and, believe it or not, it was full of magnets!

That episode brought to mind my experience in the geometry class. I concluded that, in mathematics, we have control over our assumptions-if they are poor, our results will not be good, but we know what we are working with; in physics, there may be factors that are completely unknown to us, but can distort our results and unbeknownst to us, make them invalid.

That drawer of magnets determined for me that I loved mathematics and it would be my major, regardless of my need to be practical and to select a field with a greater number of more reasonable career options.

Susan Landau

University of Massachusetts, Amherst

My husband and I married while I was a graduate student in computer science at MIT. "Don't have children until you finish," cautioned a friend, the wife of a history professor. I nodded easily. I was then twenty-five. At twenty-eight I completed my doctoral thesis. "Don't have children until you get tenure," warned a member of the faculty. I was leaving to become an assistant professor at Wesleyan University. This time the nod didn't come so easily. My husband and I wanted a family. I didn't want to wait until I was thirty-five to begin one.

Choosing which came first was not hard for me. If I had tenure at thirty-five, but was then unable to have children, the pain would have been unbearable. I knew I could handle the opposite situation. I had my first child at thirty-one, my second at thirty-three. At thirty-four I have my family even if I don't have academic permanence.

All along I felt that the choices were more mine than my husband's. We both raise the children. I'm the one who's pregnant. I have the fuzzy brain for nine months; I'm the one who can't go off to conferences during the late months of pregnancy and the early months of nursing. My work suffers, my energy flags, my batteries fade. I've lost about two years of research in the first five years after my Ph.D. (What I've gained is immeasurable-but not the subject of this essay.) So I get 51% of the vote. As it turns out, we both voted for children first, tenure second, so it was no contest. But there's a price I may yet pay in my career.

I didn't know I'd be in a state of torpor for nine months of pregnancy, but I also didn't expect the burst of creative energy that followed the birth of each child. That energy more than made up for those lost nine months. Every academic mother has a different experience, but all of us face the ticking of those simultaneous clocks of tenure and the childbearing years.

Academia doesn't help. Few universities have maternity leave. Those that do ignore what happens next. For example, my university has an excellent maternity policy (one semester's leave at two-thirds salary), but no child care facilities, despite over a decade's lobbying by male and female faculty. Thus my kids are at a center forty-five minutes away. I can't attend late afternoon colloquia or faculty meetings. Last year my husband and I were both invited to spend our sabbaticals at a university where we
would have great research opportunities. Lack of day care there meant we couldn't go.

There's a touch of the priesthood in the academic world, a sense that a scholar should not be distracted by the mundane tasks of day-to-day living. I used to have great stretches of time to work. Now I have research thoughts while making peanut butter and jelly sandwiches. Sure it's impossible to write down ideas while reading "Curious George" to a two-year-old. On the other hand, as my husband was leaving graduate school for his first job, his thesis advisor told him, "You may wonder how a professor gets any research done when one has to teach, advise students, serve on committees, referee papers, write letters of recommendation, interview prospective faculty. Well, I take long showers."

When I decided to become a professor, it was because I loved mathematics. I wasn't married, wasn't thinking of children or timing, or any of the issues that are now so crucial. Had I been, my decision might have been different.

The tenure process was established in an era when men had professions and women had babies. Women now have professions as well as babies, but the academic world hasn't changed. My two maternity leaves in two years seemed like a lot to several of my colleagues. I see it as two maternity leaves over a lifetime. Even if a faculty member chooses to work half-time for ten years, that still leaves thirty years for full-time scholarship and teaching. Universities can afford to be farsighted. My university's generous maternity policy gave me time after childbirth to catch up on the research that I had been unable to do while pregnant. A National Science Foundation mathematics postdoc has just given me more time during the years when my children are young.

There are any number of complex reasons why women have not reached the top echelons in a variety of sectors. This is a simple, avoidable one. Fellowships, maternity leaves, and on-site child care can make a huge difference. Universities should be leading society on this one. As long as they make it difficult for us to be professors and mothers, they are engaging in a policy which effectively keeps a significant segment of women off the faculty.
(This piece was written in 1988 when the author was a faculty member at Wesleyan University. Wesleyan has since acquired an on-site child care facility and the author has since moved to the University of Massachusetts.)

Bhama Srinivasan

University of Illinois at Chicago

I grew up in Madras, India in a liberal and progressive family where books and education were taken for granted. There were precedents in my family for higher education in the West. My father and uncle had studied at Oxford, and a cousin did brilliantly at Cambridge, where she later became a don at Newnham College. Her brother became a radio astronomer and worked at Cambridge, Stanford, and Sydney. (A byproduct of this environment was that I learned English as a child and grew up bilingual.) However, behind the expectations of doing well at school was an unspoken
assumption: education for a woman was not intended to lead to a career. Rather, the highest fulfillment for a woman came through marriage and children; her education was intended to help her be an intelligent partner to her husband and well-informed mother to her children.

I had a grandfather who was an amateur practitioner of mathematics and I was supposed to have taken after him. In any event, as a teenager it was my favorite subject at the all-girls' high school that I attended. I was fortunate to have a good mathematics teacher under whom I studied Euclidean geometry and learned to write proofs. I went on to do my BA in Mathematics at a co-educational college in Madras. The curriculum was old-fashioned and the textbooks were those that had been used in England at least 30 years earlier. I graduated from this uninspiring program and enrolled in a Master's program at the University of Madras, at which point the quality of my education changed dramatically.

An important presence in the mathematical scene at Madras was a Jesuit priest, Father Racine, who headed the Mathematics Department at Loyola College. He was acquainted with the latest mathematical developments in Europe. Several of his undergraduate students later went on to do research at the prestigious Tata Institute of Fundamental Research in Bombay. However, Loyola College did not admit women and thus women students were denied the opportunity of studying under and being noticed by Father Racine. The first piece of good luck I had was that Father Racine gave a course on abstract algebra at the University of Madras, using the great text by van der Waerden based on lectures by Emmy Noether. I also had courses on topology and other subjects from two other excellent professors. Thus I was suddenly thrust into the twentieth century, and this was an exciting experience for me. However, I did not have any ambitions to be a researcher in mathematics at this stage, or, for that matter, to pursue any serious career at all.

After receiving my master's degree I got married, as was expected of me, and followed my husband to Manchester, England, where he, a mechanical engineer, was to receive practical training. This was my second big break, for I enrolled in the Ph.D. program at the University of Manchester and started working with J. A. Green. In spite of the ever-gray skies in Manchester, I enjoyed my first exposure to western intellectual life, both mathematical and otherwise. My husband was totally supportive of my having a mathematical career and sometimes opposed his own family. So now there was no turning back.

My husband returned first to India, and I followed after completing my Ph.D. I got a position at the University of Madras. Though I did not experience overt discrimination, it was quite common for people to say to me "Your husband has a good job; why should you work?" or "Aren't you taking away a job from a breadwinner?" and so on. One well-meaning family friend said "It is a pity you don't have children; but isn't it wonderful that you have something to keep you occupied?".

During my years at Madras I had some contacts with western mathematicians. In particular, I met Armand Borel
when he visited Madras and he invited me to a special year on algebraic groups and finite groups at the Institute for Advanced Study in Princeton. This was another great opportunity for my research and to make further contacts.

In 1970, I emigrated to the U.S. and started teaching at Clark University. (By this time, my husband and I had parted for reasons not connected with my career, but we remained friends.) I plunged into a new life and a new career in the U.S., and made new friends, especially with some women mathematicians in the Boston area. I moved to Chicago in 1980 when I got a position at the University of Illinois at Chicago. While keeping in close contact with my family in India, I am now very happy living and working in America.

If I think back, in midlife, to the early stages of my career, I realize that many of my decisions and advances were due to fortuitous circumstances such as being in the right place at the right time and having the right kind of support at the right moment. My male relatives and friends held as a birthright the idea that they would strive for the best professional life they could attain; for me this was a long time in coming. I welcome the changes in women's expectations that have taken place in the last decade.

Vera Pless

University of Illinois at Chicago

Despite much progress it is still more difficult for women to become mathematicians than for men, and, as I have been concerned about this situation, my history might be useful to others.

I had no ambition to become a mathematician; girls at that time aspired to be wives (of successful men) and mothers. Maybe some "unfortunate" girls never married and pursued careers but, as far as women mathematicians went, I never saw one the whole time I was a student. However, I did know about the work of Emmy Noether and it may have influenced my choice of area, algebra, although I think the teaching of Irving Kaplansky was what really inspired me. I worked for my Ph.D. (under the direction of Alex Rosenberg) because it was a more interesting occupation than the job I had while waiting for my husband to complete his Ph.D. in high-energy experimental physics. After he got his degree, he received an offer from MIT and we moved to Cambridge. I had not finished my thesis but did have a good start. Alex was amenable to my finishing by correspondence. This occurred with many helpful, humorous letters from Alex. I only went back to defend my thesis, which was about two weeks before my first child, a daughter, was born (she was early). Fortunately, everything worked out alright; Alex had warned me not to have the baby during the defense, since it would upset the janitors.

It never occurred to me to work, not even in the Boston area. Going to another city was inconceivable. My oldest son Ben was born two years later. When Ben was in nursery school at the age of three, I taught two courses at Boston University in order not to forget everything I had learned. It never occurred to me then that I was teaching
the same number of courses, at the same level as full-time faculty, for a graduate student stipend. Of course, I did nothing else except teach these courses, as I still felt my first responsibility was to my small children. Even with my teaching, I found this life stultifying. We had little money, so we could not hire babysitters or household help. My husband was very ambitious, worked long hours and did not feel he should help anyway, which was common then. When the youngest, Ben, was old enough for kindergarten, I decided to take the plunge and get a full-time position-in the Boston area, of course. Naturally, I tried some of the many colleges and universities there. What were they to make of someone who had done no research but some teaching since her degree? Aside from that, I did not feel that the academic atmosphere then was conducive to women. Tufts asked me, "didn't I know that it was a men's school" and that all the calculus instructors graded exams in one room? I thought they considered it improper for a female to also be in that room. I heard at least one person say "I would never hire a woman." Fortunately, there was an Air Force research laboratory, AFCRL, nearby. And fortunately, there were mathematicians there working in a new area, error-correcting codes, who thought my algebra background could be useful. I thought the atmosphere toward women at AFCRL was much better than in the academic institutions I had seen. That was how I started working on error-correcting codes, and I have never stopped.

I had to learn how to handle leaving home-day-care was not so good or widespread then. My relatives said, "What if a child has an accident while you are away at work." Guilt was added to my other concerns. A few of my husband's physicist colleagues were working mothers, and I followed their advice closely. We even formed an organization WISE (Women in Science and Engineering) to help others. I was president of WISE for a few years. Needless to say, I did not have the time for this in addition to my family and job, but I found our "consciousness-raising sessions" valuable in enabling me to regard myself as a professional and to develop confidence in my own work and opinions. When our third child (a son) was born, I only took a few months of maternity leave.

At AFCRL, we hosted monthly workshops in coding which were attended by many coding theorists. Andrew Gleason was a regular member of these sessions, which I found quite stimulating. I stayed at AFCRL for ten years until the Mansfield amendment was passed and the laboratory was unable to continue its basic research work. I decided to return to academic life, even though I found the transition very painful. I spent three years as a research associate in MIT's Project MAC until I got my present position at the University of Illinois at Chicago. So my first regular academic position was full professor. It was wrenching to leave the Boston area as my youngest son stayed there. After five years of separation, my husband and I divorced, and my son came to Chicago to live with me. I enjoy academic life very much now and am pleased that my department contains such good people.

In retrospect, I think I was very lucky. I worked in coding from its beginning and it has developed into a fascinating mathematical topic. I have appreciated the opportunity to work with many wonderful mathematicians, in particular Richard Brualdi, John Conway, and Neil Sloane. I was able to care for my children in their younger years in a low pressure environment. I would find child rearing difficult facing the pressures our assistant professors face. Our discipline is not the only one demanding a great deal. My daughter, a medical resident with a young daughter of her own, has plenty to say about the long hours required of residents. Unfortunately, our society is probably losing valuable contributions from women for these reasons. and many women are paying a great emotional toll either in forfeiting careers or in not devoting as much time to their families as they feel they should.

Jean E. Taylor

Rutgers University
My main message is that things aren't as different now from what they used to be as many people think, in spite of twenty-five years of "women's lib" and twenty years of the Association for Women in Mathematics. Each of the following is something that happened within the past five months.

Item: A recent conversation at Rutgers with the guy in charge of assigning who teaches what in the department. Due especially to an attractive early-retirement package, many faculty members, including two women in the department, are retiring. Rutgers used to employ a large fraction of the women professors in the U.S., but we will be down to four (Barbara Osofsky, Tilla Milnor, Amy Cohen, and myself) next year, with Ingrid Daubechies making it five in 1992. In the conversation, I was bemoaning the loss of this large fraction of the women faculty, and his response was "Oh, that's all you ever think of. I'm interested in the number of bodies available to teach classes!" (The situation is aggravated by a hiring freeze imposed on the university by the state budget situation.) I responded that I too was interested in bodies, in particular in women's bodies. The
conversation predictably degenerated at that comment. But still, the point is that my awareness of the problem is regarded as some personal foible of mine.

Item: Math Counts. This is a fine mathematics team competition for middle school students; my daughter has been active in it and loves it. But when I saw the list of sample problems they had to study, I was aghast: every single word problem had male names, if there were any names at all. I went to observe the regional competition, and listened to the "Count-down Round" (where the top ten students are asked questions orally). Exactly the same thing-all names mentioned were male. The only question which involved females at all (1) had no name attached to the girl (as opposed to the other questions) and (2) concerned the number of different outfits she could assemble if she had three skirts, two blouses, etc. Talk about stereotyping! I felt betrayed, that the "good guys" (as I consider Math Counts to be) should do this.

Item: The profusion of messages (e.g. on the Op-Ed page of the New York Times) about how "it is a dirty lie" to suggest to students that they can have a full-time career and a family too. The least offensive of the current phrases seems to be that "you can have it all, but not all at the same time." I agree with Jane Pauley that to "have it all" requires (1) good intelligence, (2) good energy, (3) good health, and (4) good luck. Since you haven't got much control over these factors, you certainly can't count on "having it all," and you shouldn't feel it a personal failure if you don't succeed. But it is also wrong to discourage students from trying.

Item: Retirement party for Joanne Elliot. One of my (male) colleagues reminisced about seeing Joanne as an attractive young woman in the common room at Princeton surrounded by young men eager to be near her. The comment made me feel very uncomfortable, since it placed emphasis on her attractiveness in a setting where conversations are often mathematical. If only the men had been clustered around her because they were eager to hear her theorems and conjectures! But at least as the story was related, that was not the case.

Emmy \mathcal{N} oether

"Emmy Noether's career was full of paradoxes, and will always stand as an example of shocking stagnancy and inability to overcome prejudice on the part of the Prussian academic and civil service bureaucracies. Her appointment as Privatdozent in 1919 was only possible because of the persistence of Hilbert and Klein, who overcame some extreme opposition from reactionary university circles. The basic formal objection was the sex of the candidate: 'How can we allow a woman to become a Privatdozent: after all, once she is a Privatdozent, she may become a Professor and member of the University Senate; is it permissible for a woman to enter the Senate?' This provoked Hilbert's famous reply: ‘Meine Herren, der Senat ist ja keine Badenanstalt, warum darf eine Frau nicht dorthin! [Gentlemen, the Senate is not a bathhouse, so I do not see why a woman cannot enter it!]' "
-from an address, "In Memory of Emmy Noether," delivered by P.S. Alexandrov, then president of the Moscow Mathematical Society, on September 5, 1935. Quoted from Emmy Noether: 1882-1935, by Auguste Dick. Birkhäuser, 1981.

The Past, Present, and Future of Academic Women in the Mathematical Sciences

Lynne Billard

Lynne Billard is a professor of statistics at the University of Georgia.

1. Introduction

As the proportion of women graduate students continues to increase, women will likely increase the representation in academic positions. What patterns have prevailed in the past, exist today, and can be envisioned for the future? This article attempts to review data and previous studies of academic progress of female faculty.

We consider first the educational opportunities that women have been accorded. We then investigate the career progress enjoyed by women who earned doctorates and joined the faculty ranks. This investigation includes the prospects for promotion and tenure, and also considers salary differentials. Since evaluation for promotion and tenure is dependent upon job performance, most especially publication rates, this issue receives separate attention. Finally, we try to predict the future and conclude that, in spite of persistent difficulties, prospects for the future have improved considerably and that a young woman starting out today faces fewer hurdles than did her counterparts of bygone years.

This work draws heavily upon the studies of Dix (1987) (in particular, the chapters by Debold (1987), Hornig (1987) and Zuckerman (1987)), Sandler (1986), Vetter (1981, 1987), Scott (1977, 1979), Ahern and Scott (1981), among others. In a very real sense, the present article can be viewed as a review and summary of these studies and the paths over which they lead, as they pertain to the mathematical sciences. Since little data exist for statisticians per se, it is assumed throughout that the quoted existing results for mathematics are reasonable estimates for those for statistics.

2. Education

Women perform significantly better than men at all levels of education from high school to graduate school, but they do not perform better in general on standardized tests such as the quantitative SAT and GRE tests. Chipman and Thomas (1985) show that gender differences in mathematics
performance do not emerge until high school where more men enroll in trigonometry and calculus (26% and 8%, respectively) than do women (20% and 6%, respectively) with the same percent enrollment in algebra (66% men, 69% women) and geometry (54%). The lower standardized test scores appear to be explained by high school course selection and by demographic and socioeconomic factors and not by genetic differences (Hornig (1987)). However, high school grades in mathematics for women are not less than those for men, though men have tended to have more years of preparation in mathematics at the high school level.

Of entering freshman, essentially the same percentage of men as of women intend to major in either mathematics or statistics (see Table 1). Thus, in 1971, 2.6% of the men and 2.9% of the women declared this major, while in 1980 the corresponding percentages were 0.7% and 0.6% respectively, with the figures remaining steady throughout the 1980s. Since in 1972 and in 1986, 44% and 46%, respectively, of the bachelor degrees were awarded to women, these represent reasonable approximate percentages for both men and women. Throughout this entire period, the same proportion (0.1%) of both men and women sought statistics as a career goal.

Table 1: Education Trends since 1971.

	Freshman major in math./stat.		Bachelors to women in		Doctorates to women in Math. sciences
	Men	Women	Math.	Stat.	
1971	2.6%	2.9%	38.2%	25.3%	7.8%
1973	1.8	1.6	40.3	34.8	9.7
1975	1.1	1.1	42.1	31.9	9.6
1978	1.1	0.8	41.4	39.2	13.7
1980	0.7	0.6	42.3	42.1	12.0
1982	0.6	0.7	43.2	41.1	13.8
1983	0.8	0.8	45.7	48.7	16.1
1988	0.7	0.6	46.5^{*}	16.2	

* 1986 figure; Source: Debold (1987), Vetter (1981), NSF (1990)

Table 1 also shows the proportion of bachelor's degrees with a major in mathematics (statistics) awarded to women,
as well as the proportion of doctorates in the mathematical sciences that were earned by women. In particular, we note that the proportion of bachelor degrees in mathematics to women has increased from 38% in 1971 to 46% in 1983, and the proportion of doctorates in the mathematical sciences awarded to women has increased from 8% in 1971 to 16% in 1983. In each case there has been a levelling off over the period 1983-1988. These changes are partly due to declines in the numbers of men in these categories. For example, there were 9,259 women and 14,454 men in 1972, and 5,006 women and 6,593 men in 1982 receiving the bachelors degree in mathematics; while there were 89 women and 1,039 men in 1972, and 94 women and 587 men in 1982 earning the doctoral degree in the mathematical sciences (see Weis (1985)). Thus, at least at the undergraduate level, parity seems to have been achieved, suggesting that whatever deterrants that may have existed previously may have evaporated. Presumably we can hope for a continued growth in numbers at the graduate school level, though the stability of the 1983-1988 figures may temper such expectations. Throughout this period, an approximately constant one third of the masters degrees in mathematics were awarded to women.

The drop in proportion of graduate degrees to women signals a higher attrition rate in mathematics for women between the bachelors degree and a doctoral degree (where, for example, the National Science Foundation (1986) data of parity indices show a loss from 35% of the bachelors degrees in 1977 to 15% of the doctorates in 1984). The Office of Technology Assessment (1985) report states that in $1982,37 \%$ of the bachelors degrees but only 27% of graduate enrollments in mathematics were women. Thus, part of the decrease is due perhaps to admission procedures where standardized test scores (which underestimate women's performance) and recommendations by faculty (presumably male) weigh more heavily than does academic performance as an undergraduate.

However, a large source of this attrition is attributed to a failure to complete the stated degree objective. A major factor influencing graduate students' persistence with a degree is the availability of financial aid. Haven and Horch (1972) and the 1981 Survey of Doctorate Recipients showed that women receive less aid than men and Harris (1972) found that women tended to come from wealthier families, presumably because, in the absence of other aid, only these women could afford this education. For mathematics graduate students, a significantly higher proportion of teaching assistantships went to women and a significantly higher proportion of research assistantships supported men. However, for those graduating with doctorates in 1988 (of whom 16% were women), 17% of teaching and of research assistantships were awarded to women suggesting that some progress has been achieved. Solomon (1976) observed that the actual level of support was generally lower for women than for men. On the other hand, women tend to gain a higher proportion of fellowships (where their better scholastic performance is no doubt a major contributing factor).

While financial aid is clearly an important indicator of persistence to degree completion, it is not the only factor. In a study at the University of Illinois, Berg and Ferber (1983) found that, despite equality of financial inducements, the attrition rate for women was still higher than that for men. They suggested that women students have a lower involvement with faculty and were less likely to be treated as colleagues. This need for greater mentoring by faculty will be hard to meet until there are more women faculty. Berg and Ferber (1983) also found that women tended to have less confidence in themselves despite their superior performances.

3. Careers

In the Preface to Ahern and Scott (1981), Hornig states that, "generally speaking, women are far more likely than men to be involuntarily unemployed and underemployed; they were much less likely than men to attain senior ranks or move to management levels, and their earnings not only reflected these differences but were persistently lower even at equal ranks. Women who appeared equal to men in all respects at receipt of the doctorate had less assured careers than men with slower progress and lower ceilings." Six years later, Vetter (1987) draws the same conclusions and suggests further there has been little change since 1977. On the other hand, Zuckerman (1987) is more encouraging, noting that while gender differences are present in all categories of academic institutions, most especially at the top ranked ones, trend data suggested that the gap is narrowing, especially at the lower ranks.

By far, the most important contribution to an analysis of career attainments is the superb study by Ahern and Scott (1981). This study (to be referred to as the matched triads study, originated by Dorothy Gilford) is based on triads consisting of one women and two men matched by year and field of the doctoral degree, the institution at which the degree was earned, and race. For some analyses, there is further matching by years of full-time equivalent experience and employment sector. Taking into account perceived levels of quality proved too complicated to handle in the study. Given the difficulties encountered by women in publication rates (see below), the fact that quality could not be addressed adequately is perhaps unsurprising. The data were compiled as to the observed outcomes of 1979 of approximately 50,000 individuals for four cohorts, viz., those who received the doctorate in the period 1940-1959, 1960-1969, 1970-1974, and 1975-1978, respectively. While the entire study was concerned with academic careers over the sciences, engineering and humanities, our analysis here will be restricted to the results for mathematics (including statistics) unless otherwise stated. We shall consider the issues of employment/unemployment, rank and tenure, including progress in promotion. Issues surrounding salaries will be addressed in the next section. More complete details can be found in Ahern and Scott (1981). As we look at the study, we should bear in mind that it was not until 1972 that the legislation prohibiting discrimination in federally
assisted programs (Title IX of the Education Amendment) and prohibiting discrimination in employment in educational institutions (Amendment of Title VII of the 1964 Civil Rights Act), was enacted.

Employment

In $1979,82.4 \%$ of men and 84% of women with doctorates in mathematics were employed in educational institutions (Vetter (1981)). For the matched triads, Table 2 shows that consistently fewer women are employed full-time than are men and that, excluding the 1940-1959 cohort (where some are now retired), roughly three times as many women are unemployed, though the numbers are reasonably low. More importantly, the percent of men and women unemployed for the most recent 1975-1978 cohort is just one. For all mathematics doctorates in 1985, Vetter (1987) reports the unemployment rates have decreased further to 0.4% for men and 0.9% for women; by 1987 , these rates decreased slightly for men to 0.3% but increased substantially to 1.8% for women (NSF (1990)). Approximately six times as many women as men in the matched triad study are in part-time positions. Zuckerman (1987) reports that women are more likely to be underemployed, being either in involuntarily part-time positions or in jobs outside their training. Finally, men (9%) and women (11%) in the 1970-1974 cohort were approximately equally likely to be employed in the top ranking universities (primarily due to overrepresentation of women at the lower ranks), which shows an improvement over the corresponding figures (11% for men and 6% for women) in the 1960-1969 cohort.

Rank and Tenure

For those identified in the matched triad study, the percent of the men and of the women occupying the traditional academic ranks of professor, associate professor, assistant professor, and instructor/nonfaculty positions is shown in Table 2 for each of the four cohorts. Also shown is the percent who are tenured. It is immediately apparent that, despite the fact that the data represent men and women starting out with equivalent matched credentials, women do not fare as well as men, with the women being ranked consistently lower than their male peers. Those in the first (1940-1959) cohort do eventually progress up the ranks, although twice as many women (12%) as men (5%) appear to be frozen in rank below the full professor level. For the 1960-1969 cohort, men were 1.4 times as likely to be full professors, and 97% of men but only 80% of women were tenured by 1979. Of those (in all fields) in this cohort who were tenured, the men took an estimated average of 5.9 years to attain tenure while the women took 6.3 years.

The 1970-1974 cohort spans the 1972 date of the nondiscrimination statutes, and by 1979 such individuals should have reasonably expected to be promoted and tenured. Therefore, the fact that still considerably fewer women (45\%) than men (70%) have been promoted to full or associate professor suggests further analysis is warranted. The matched triad study investigated three possible explanations. Ahern
and Scott (1981) found that a lower commitment to research with a corresponding heavier teaching load did not affect women differently than men in the same position. In fact, a higher percent of those whose primary activity was teaching rather than research was promoted by 1979 from assistant to associate professor (64% teaching versus 60% research for men and 48% and 32%, respectively, for women). Another commonly believed explanation, that women lost time due to childbearing, did not stand up to scrutiny. Indeed, married women with children (with 51% being promoted from assistant to associate professor) fared better than married women with no children (41%) who in turn fared better than unmarried (including widowed and divorced) women with no children (37%). Of those unmarried with children, 33% were so promoted. The corresponding figures for men were $66 \%, 51 \%, 53 \%$ and 80%, respectively. Thirdly, the perception that women are less mobile than men was not substantiated by the matched triad study. To the contrary, more women (28%) than men (19%) changed jobs between 1975 and 1979. While men who moved improved their status significantly, women who moved did not improve their status, possibly because the women moved due to a failure to receive promotion and tenure. Few faculty with tenure in 1975 changed jobs between 1975 and 1979.

Table 2: Percent men and women in mathematics Matched triad study.

	$\begin{array}{\|c\|} \hline \text { 1940-1959 } \\ \text { Men Women } \end{array}$		$\begin{array}{c\|} \hline 1960-1969 \\ \text { Men Women } \end{array}$		1970-1974Men Women		$\begin{gathered} \text { 1975-1978 } \\ \text { Men Women } \end{gathered}$	
Employment								
Full-time	91\%	79\%	96\%	86\%	93\%	* 78\%*	94\%	88\%
Part-time			1	6	2*	12*	1	6
Postdoctoral			1	1	3*	3*	3	3
Unemployed	6	10	2	7	2*	7*	1	1
Rank								
Full Professor		83	52	38	2	2	0	0
Associate	5	10	38	44	68	43	8	3
Assistant	0	2	6	13	21	46	72	78
Instr./Nonfac.	0	0	1	3	7	5	13	19
Other	5	5	4	3	2	4	8	2
Tenured		90	97	80	52	35	15	9
Women's salary as \% less than men's salary	-	<1	-	11	-	7	-	2

*All fields; Source: Ahern and Scott (1981)

Comparison of Ranks

For all four cohorts, although individuals in the matched triads started out together, differences in rank and tenure status persisted over the years. Accordingly, Ahern and Scott (1981) developed prediction equations (using stepwise regression analysis) to estimate rank and salary and to estimate the salary women should receive if paid like a man with similar characteristics. The data used here were confined to those triads for which the doctorate was earned
since 1958. This analysis also included matches that had equivalent full-time work experiences. A prediction equation was established for men and was then used to predict the ranks (and salary) women in the same field and institution category should receive if rewarded the same as a man with comparable characteristics. Taking into account the possible biases of this study, Ahern and Scott opined that their method should provide good estimates of the differences for younger faculty but underestimate the differences for older faculty.

The standardized regression coefficients in the prediction equations for women and men in the MPE (mathematics, physical sciences and engineering) field are displayed in Table 3. (In this equation rank was coded as 4 for full professor, 3 for associate professor, 2 for assistant professor and 1 for instructor). The most important predictor was a weighted measure of time. For men, this was the time since receiving the doctorate, while for women, the number of full-time equivalent years experience dominated. The sum of the coefficients of these two $(0.747$ for men and .638 for women) estimated the average yearly increase in rank. For men, the second most important predictor was the variable indicating the person had children under 18. The effect was positive. This predictor also had a positive effect for women (in MPE, but it did not enter in the equation for other fields). For women, the prestige of the department from which the doctorate was received had a positive effect. Since the two variables-being married at the time of the doctorate, and being married at the time the data were collected in 1979are collinear, only one of these variables usually entered the prediction equation, producing a slightly negative effect when present. Prediction equations which included sex as a predictor variable showed the effect for female to be always negative and significant, with women predicted at a rank approximately one-third lower than their matched men.

Table 3: Predictors of rank and salary in MPE field.

Predictor	Rank Regression coefficient		Salary Regression coefficient	
	Women	Men	Women	Men
Years since PhD	. 242	.747*	-	.670*
Years experience full time	. 396	-	.616*	-
Rating of PhD dept.	. 186	. 045	. 189	-
Married at PhD	-	-. 067	-	-
Married in 1979	-. 169	-	-. 257	. 091
Children under 18	. 100	.123*	. 160	-
Bachelors from:				
Liberal arts college	-	-	-. 198	. 078
Research university	-	-	-. 274 *	. 145
Foreign institution	-	-	-. 150	. 095
Administration	-	-	-. 102	.135*

*Significant at 5\%; Source: Ahern and Scott (1981)
However, while these studies show that women are promoted more slowly and gain tenure more slowly than their
male counterparts, Zuckerman (1987), using the CEEWISE 1983 data, reports that over science and engineering fields, generally 67% of men and 40% of women in tenure track positions had received tenure by 1983. This suggests the gap is narrowing. More recent data on the distribution of all doctoral men and women mathematical scientists employed in 1987 at four-year colleges and universities compiled in NSF (1990) suggests this trend is continuing. From Table 4, we observe that 58% of the women but 75% of the men are either at the Full or Associate Professor rank; and 75% of the women but 85% of the men are in tenured or tenure-track positions. Of all those in the Full (Associate) Professor rank, 5\% (13\%) are women with 7\% of both these ranks combined being women; and 7% (15%) of those who are tenured (tenure track, but untenured) are women with 8% of all those in tenure track positions being women.

Table 4: Rank and status of men and women in mathematics - 1987

$\%$ in Rank				
	Full	Associate	Assistant	
	Professor	Professor	Professor	
Men	51.7%	23.7	16.9	
Women	25.0	33.3	33.3	

$\%$ in Tenure Status			
	Assistant Tenure Track	Tenure Track	
	Professor	tenured	untenured
Men	70.3%	14.4	4.2
Women	50.0	25.0	8.3

Source: NSF (1990)

4. Salaries

Since salaries are tied to ranks, it is not surprising that for women both measures fall behind those for men. This is especially true in academia, although Zuckerman (1987), in commenting on the 1981 figures for science and engineering fields, suggests that the salary differences between men and women are largest at the full professor level, less so at the associate professor level, and are not present at the assistant professor level. Unfortunately, this optimism seems perhaps premature when one notes the figures of Table 5, which provides the percentage (of the men's average salaries) that the women's average salary falls short for ranks in the research universities for the 1990-1991 academic year. Women at public institutions seem to fare better than their colleagues at private or church related institutions. Comparable tables for the 1985-1986 and 19881989 salaries give essentially the same figures with very little change in these percentages over the years. New assistant professors (full professors) in the mathematical sciences received a salary at $92.7 \%(98.8 \%)$ of that averaged over all fields. These findings are not inconsistent with
those of Vetter (1987), who conducted a study of women's salaries as a percentage of men's salaries for doctorates in the mathematical sciences. The study found that this percentage declined from a high of 87.8% in 1973 to a low of 81.3% in 1979, increased again to 87.2% in 1983, but subsequently declined again in 1985 to 83.0%. This was essentially unchanged at 83.4% in 1987 (NSF (1990)). Vetter's study also found that the salary differential widened as the number of years of experience increased. This latter observation also emerged from the matched triad study (see Table 2), which shows for mathematics the percentage of the men's median annual salary by which the women's median annual salary is lower. Notice, in particular, the lower salary for women in the 1975-1978 cohort who by 1979-that is, after only one to four years from their doctorate-are already behind by 2%. Since it is assumed starting salaries were comparable, such a lag is somewhat disturbing. These salary differentials constitute a large cumulative effect over the years, not only in absolute numbers of dollars but also on retirement benefits, which tend to be a function of salary during employment.

Table 5: Percent deficient in women's average salaries, 1990-1991 - Research Universities

	Type of Institution					
	All	Private/				Church
:---						
Rank						

Source: AAUP (1991)

The matched triad study included the derivation of prediction equations for salary (see the discussion on ranks). The standardized regression coefficients for the respective predictors for salary are shown in Table 3. As for rank, the most important predictor variable was the time factor, with the sum of coefficients for years since the doctorate and years of full time equivalent experience representing the average year's increase in salary. Notice once again this is less for women than for men. Interestingly, although teaching as a primary activity was a potential predictor, it never in fact entered the equation, while administration as a primary activity did enter as a positive effect on salary for men but as a negative effect for women. Being married at the time of the doctorate had a negative effect on salary for women. Receiving the bachelor's degree from a research university had a greater effect than receiving the degree from a liberal arts college or overseas, but in all cases there was a negative effect on the woman's salary but a positive contribution to the man's salary. When sex was included as a predictor in
the equations, the effect for women was always negative and significant and predicted women to have a salary about $\$ 1,550$ (in 1979) less than the comparable male.

These prediction equations were subsequently used to predict the salary a woman would have received had she been paid as a man (using again the matched triads of doctorates from 1958-1978). The residuals (of actual minus the predicted salary) were found for successive five year periods since the doctorate had been awarded. The residuals for the most recent group of women tended to center around zero but they shifted more negatively for each successive five year cohort, substantiating the results of the Vetter (1987) study noted above. A corresponding opposite-sex equation for men had positive residuals for men (see Scott (1977)). Thus, when compared with those of equal ability and attributes, women tend to be underpaid while men tend to be overpaid.

While these conclusions are regrettable, they are however correctable. Scott (1977) developed a higher education salary evaluation kit whereby the salaries of women in homogeneous departments (or similar units) which have about fifteen or more white males, can be flagged as being potentially inequitable. Furthermore, the amount by which the salary needs to be adjusted to bring it to the level of a comparable white male is estimated. This study investigated many sets of potential predictor variables for the resultant regression analysis. Surprisingly, the set of predictors consisting of year of birth and year of doctorate (where "year" means the last two digits only) generally served very well. Adding additional predictor variables such as number of publications, number of doctoral students, etc., did not greatly improve the prediction. A possible explanation is that, since the regression analysis is performed over the homogeneous unit itself, most individuals in that unit publish papers and produce students at a comparable rate. Therefore, these variables do not tell us very much more than is already known and so do not add any additional predictive power. Whatever predictor variables might be the most relevant for a particular unit, it is important not to use variables such as numbers of articles published, rank, tenure, administration, which are themselves biased against women.

While this evaluation kit allows identification of women receiving salaries lower than comparable males, Scott (1979) cautions that, when this method appears to identify a woman as earning an average male salary, care should still be taken as she may still be earning less than what she herself should be earning were she a male when actual accomplishments are taken into consideration. By plotting salary as a function of years since the doctorate, Scott (1979) shows that all women in a certain department were underpaid. This includes a particular woman whose salary was comparable to the men and so would not be flagged from the regression analysis. Yet, on further investigation, by any measure of merit adopted (except salary), this woman was clearly the most outstanding person in the department. Gray and Scott (1980) discuss further the dangers and misuses
of the regression analysis. Billard et al. (1990) provided a statistical adjustment method to remove identified gender bias in such salaries.

5. Publications and Performance

In a major university, promotion and tenure are usually based on excellence in at least two of the following: teaching, research, and service. Since excellence in teaching graduate classes is predicated on the instructor being at the cutting edge of the subject, this presupposes excellence in research. Furthermore, the academic's reputational standing (most especially after the attainment of full professor rank) rests on research performance. The usual measures of research performance are publications and citations. Before examining these two measures in more detail, it is interesting to look at the study conducted by Davis and Astin (1987). They are investigating the factors which contribute most to an academic's reputation and the esteem in which that person is held. Their data is restricted to the "highly productive" scholars (as of 1980 and 1982) in the social sciences, where the number of papers (rather than books) was the operative measure of performance. The most significant predictor of reputation and esteem produced by their regression analysis was the number of chapters in a book (be they invited (new) papers or a reproduction of an earlier highly regarded paper), and not, in fact, the number of publications per se as might have been originally expected. The explanation is simple. The invitation to make a contribution to the book in and of itself presupposes the invitee has already established a reputation or level of excellence worthy of such an invitation. Although not directly addressed by Davis and Astin, the same conclusions may be made relative to invitations to serve on national boards or panels, many of which ultimately produce major publications of some description.

Although women have performed at least as well in graduate school, they publish less than do men. A study on citations showed that in mathematics 2.9% of articles classifiable by gender were written by women although 13% of the membership of professional associations were women and 7.6% of those doctorates in the mathematical sciences employed in educational institutions in 1979 were women (from Vetter (1981)). A study by Goldberg (1968) was repeated by Paludi and Bauer (1983) in which it was shown that publications perceived to have been written by women were considerably less favorably reviewed than those thought to be written by men (see Table 6). In this study, 180 men and 180 women were asked to rate comparable articles, one-third of which were "authored" by John T. McKay, a Joan T. McKay, and a J. T. McKay. The most favorable rating was one, with five being the least favorable. Upon questioning later, the majority of the raters believed the articles by J. T. McKay were in fact authored by a woman and this belief is reflected in the mean scores shown in the table. It is interesting to observe that women also rated male-authored papers more highly than they did for

Joan T. and J. T. papers, but not quite as favorably as did men rate men authors.

Table 6: Mean rating scores.

Article reviewed by	Article Authored By		
John T. McKay	Joan T. McKay	J.T. McKay	
Men	1.9	3.0	2.7
Women	2.3	3.0	2.6

Source: Paludi and Bauer (1983)

Along these same lines, Lefkowitz (1979) relates how prior to 1974 papers submitted for presentation at the professional meetings (of classics) included the author's name(s). These were refereed, with the result that very few women (or younger) scholars had their papers accepted for the meetings. After 1974, the authorship was left off, with the effect that, in each of the first two years, there was a 100% increase in the number of papers written by women that were accepted. By 1978 the proportion of women authored papers accepted was approximately equal the proportion of women in the profession. As an aside, the relevant Board of Directors subsequently decided, with unanimous approval, to continue the policy of removing names before refereeing and to expand the policy to all publications.

Women are likewise disadvantaged in evaluations based on citations are made. Ferber (1986) observed that women tend to cite women and men tend to cite men more than citations of the opposite sex. In a separate study, Table 7 shows the percent of citations of women, men, and joint authors in articles in mathematics written by men and women, thus substantiating these perceptions. The larger study (covering many fields) from which these results were extracted did, however, show that this disadvantage to women decreased as the proportion of women in the field increased; so this is encouraging for the future.

Table 7: Citations.

Cited articles that were written by	Article Authored By	
Women	Men	
Joint authors	4.8%	1.2%
Men	2.2	0.8

Source: Unknown

Women also tend to publish at a lower rate as their careers advance. Cole and Zuckerman (1984) suggest this is possibly due to the lack of rewards at the level they see their male colleagues enjoying. That equal rewards for equivalent research performances are not forthcoming has been substantiated by several studies, including those by

Bayer and Astin (1975) and Cole (1979), who demonstrated that such men enjoyed higher ranks than women, especially in the more prestigious universities. The improved resources that come with rank, such as better teaching assignments, greater access to graduate students, etc., are thus denied, at least to a degree, with an increasing reduction in access to these resources over time. This effect is further compounded by the fact that women tend to be less visible than men, their work is perceived to be of lower quality and rarely are women cited as having made major contributions (see Cole (1979) and Davis and Astin (1987)). This is demonstrated, for example, by the low number of women who serve as invited speakers at professional meetings.

These studies parallel those by Deaux and Taynor (1973) in which men applicants for a study-abroad program were more favorably viewed than identical women applicants, and by Fidell (1970) in which university chairs rated identical applicants, preferring those believed to be men, and, furthermore, tending to offer the men positions at the associate professor level and women at the assistant professor level. Sandler (1986) summarizes these and similar studies stating that "the same professional accomplishments are seen as superior in quality and worthy of higher rewards when attributed to men than when they are attributed to women." Nieva and Gutek (1980) provide a more indepth look at the factors behind these differences in evaluation. Deaux and Emswiller (1974) observed that when women were perceived to have performed as well as men on "male-related" tasks their good performance was due to external factors such as luck or effort whereas the man's good performance was due to internal factors such as skill or ability. Finally, men are frequently appointed to positions, most especially senior and administrative positions, on their potential, in contrast to women who not only had to prove themselves first but had to do so under intense scrutiny (Sandler (1986)).

6. The Future

It is apparent that inequalities have existed and continue to exist for all aspects pertaining to an academic career, ranging from educational opportunities, employment prospects, attainment of rank and tenure, and comparable salaries, as well as acceptance by the professional community as measured by publications and visibility. However, it is also clear that these disparities are decreasing overall and that real gains in narrowing the gap are being made.

Vetter (1987) and Hornig (1987) both conclude that women's access to graduate education has improved, especially since 1970. Thus, more women will be qualified to enjoy a greater share of the academic positions. This means, in turn, that the critical mass theory (see Debold (1987)) comes more into play, whereby more women faculty, by their very presence can also serve as role models and mentors. Sandler (1986) gives a chilling account of the subtle forms of discrimination which persist on the university campus. Fortunately, as more women are appointed to faculty positions and to administrative ranks, many of these forms will perforce disappear. In the meantime, the Sandler report
serves as a useful guide, delineating many of the markers which, if observed, can assist the woman faculty member towards her own successful career attainments.

Perhaps the best summary emphasizing the real progress that has been made is the following conclusion from Zuckerman (1987): "... pertinent data, drawn from current studies, show three separate but interconnected patterns. First, there are persisting differences ... in role performance and career attainments ... (but) ... Second, there are signs of growing convergence \ldots in access to resources, research performance, and rewards-that is, evidence for increasing gender similarity over the last decade and a half, especially between younger men and women. Third, ... evidence for growing divergence ... in published productivity in some, but not all, aspects of career attainment"

Acknowledgment

This work is largely a republished but updated version of Billard (1989). The earlier paper was prepared as a tribute to Dr. Elizabeth L. Scott to which the reader is referred for more details. In recognition of her very substantial role in drawing attention to the plight of all academic women, this present work is also dedicated in her honor.

Support from the National Science Foundation and the Office of Naval Research is gratefully acknowledged.

References

AAUP (American Association of University Professors). 1991. The Annual Report on the Economic Status of the Profession 1990-91. Academe 77 March-April Special Issue, 9-91.

Ahern, N. F. and Scott, E. L. 1981. Career Outcomes in a Matched Sample of Men and Women Ph.D.'s: An Analytical Report. National Academy Press, Washington, D. C.

Bayer, A. E. and Astin, H. S. 1975. Sex differentials in the academic reward system. Science 188, 796-802.

Berg, H. M. and Ferber, M. A. 1983. Men and women graduate students: Who succeeds and why? J. Higher Educ. 54, 629-647.

Billard, L. 1989. The past, present and future of women in Academia Proc.Amer.Statist.Assoc.Sesquicentennial Invited Paper Sessions, 645656.

Billard, L., Cooper, T. R. and Kaluba, J. A. 1990. A statistical adjustment to gender and race based salary inequalities. Technical Report.

CEEWISE (Committee on the Education and Employment of Womet in Science and Engineering). 1983. Climbing the Ladder: An Update on the Status of Doctoral Women Scientists and Engineers. National Academy Press, Washington, D. C.

Chipman, S. F. and Thomas, V. G. 1985. Women's participation in mathematics: Outlining the problem. In Women and Mathematics: Balancing the Equation (eds. S. F. Chipman, L. R. Brush and D. M. Wilson). Lawrence Erlbaum Associates, New Jersey.

Cole, J. R. 1979. Fair Science: Women in the Scientific Community. Free Press, New York.

Cole, J. R. and Zuckerman, H. 1984. The productivity puzzle: Persistence and change in the patterns and publications of men and women scientists. In Advances in Motivation and Achievement (eds. P. Maehr and M. W. Steinkamp). JAI Press, Connecticut.

Davis, D. and Astin, H. S. 1987. Reputational standing in academe. J. Higher Educ. 58, 261-275.

Deaux, K. and Emswiller, T. 1974. Explanations of successful performance on sex-linked tasks: What is skill for the male is luck for the female. J. Personality and Social Psych. 29, 80-85.

Deaux, K. and Taynor, J. 1973. Evaluation of male and female ability: Bias works two ways. Psych. Reports 31, 20-31.

Debold, W. K. 1987. Women in engineering and science: An undergraduate research perspective. In Women: Their Underrepresentation and Career Differentials in Science and Engineering (eds. L. S. Dix). National Academy Press, Washington, D. C.

Dix, L. S. 1987. Women: Their Underrepresentation and Career Differentials in Science and Engineering, (ed.). National Academy Press, Washington, D. C.

Ferber, M. A. 1986. Citations: Are they an objective measure of scholarly merit? Signs 11, 381-389.

Fidell, L. S. 1970. Empirical verification of sex discrimination in hiring practices in psychology. Amer. Psych. 25, 1094-1098.

Goldberg, P. A. 1968. Are women prejudiced against women? Transaction 5, 28-30.

Gray, M. W. and Scott, E. L. 1980. A "statistical" remedy for statistically identified discrimination. Academe 66, 174-181.

Harris, S. E. 1972. A statistical portrait of Higher Education. Report to the Carnegie Commission on Higher Education. McGraw-Hill, New York.

Haven, E. W. and Horch, D. H. 1972. How College Students Finance their Education. College Entrance Exam. Board, New York.

Hornig, L. S. 1987. Women graduate students: A literature review and synthesis. In Women: Their Underrepresentation and Career Differentials in Science and Engineering (ed. L. S. Dix). National Academy Press, Washington, D. C.

Lefkowitz, M. R. 1979. Education for women in a man's world. Chronicle of Higher Educ. August 6, 56.

NSF (National Science Foundation). 1986. Women and Minorities in Science and Engineering. U. S. Gov. Printing Office, Washington, D. C.

NSF (National Science Foundation). 1990. Women and Minorities in Science and Engineering. U. S. Gov. Printing Office, Washington, D. C.

Nieva, V. F. and Gutek, B. A. 1980. Sex effects on evaluation. Acad. Manag. Review 5, 267-276.

Office of Technology Assessment. 1985. Demographic Trends and the Scientific and Engineering Work Force: A Technical Memorandum. U. S. Gov. Printing Office, Washington, D. C.

Paludi, M. A. and Bauer, W. D. 1983. Goldberg revisited: What's in an author's name. Sex Roles 9, 387-390.

Sandler, B. R. 1986. The campus climate revisited: Chilly for women faculty, administrators, and graduate students. Project on the Status and Education of Women, Association of American Colleges, Washington, D. C.

Scott, E. L. 1977. Higher Education Salary Evaluation Kit. American Assoc. Univ. Prof., Washington, D. C.

Scott, E. L. 1979. Linear models and the law: Uses and misuses in affirmative action. Proc.Amer. Statist. Assoc. Social Sci.Section, 20-26.

Solomon, L. C. 1976. Male and Female Graduate Students: The Question of Equal Opportunity. Praeger, New York.

Vetter, B. M. 1981. Women scientists and engineers: Trends in participation. Science 214, 1313-1321.

Vetter, B. M. 1987. Women's progress. Mosaic 18, 2-9.
Weis, L. 1985. Progress but no parity: Women in higher education. Academe 71, Nov.-Dec. 29-33.

Zuckerman, H. 1987. Persistence and change in the careers of men and women scientists and engineers: A review of current research. In Women: Their Underrepresentation and Career Differentials in Science and Engineering (ed. L. S. Dix). National Academy Press, Washington, D. C.

Sophie Germain

"...Sophie Germain, who has been called one of the founders of mathematical physics, was born in Paris on April 1, 1776, the daughter of Ambroise François and Marie Germain. She grew up during the impassioned social, economic, and political conflicts of late-eighteenth-century France.
"In 1789, Sophie was thirteen years old when the Bastille fell, turning Paris into a bedlam. The streets were filled with discontented Parisians demonstrating their revolutionary sentiments, foraging for food, and reveling in the general anarchy...
"Sophie's family was relatively wealthy and could shield her from the revolutionary violence of the streets, but the cost of this protection meant long hours of solitude for the young girl. These hours were spent in her father's ample library, and it was here that she came across the legend of Archimedes' death as recorded by J. E. Montucia's History of Mathematics.
"It was easy for a lonely young girl to romanticize the fate of Archimedes, killed while absorbed in a geometry problem by a ruthless Carthaginian soldier. She reasoned that if geometry was so very engaging, it must hold wonders worth exploring, and starved as she was for mental stimulation, she was eager to investigate these new wonders...
"The study of mathematics became a passion for her, one that no amount of familial pressure could smother. Alone and untutored, she went through every book her father's library afforded on the subject.
"Her parents, concerned for her health and threatened by the customary wild stories of young girls who were too studious, took desperate measures: They denied her light and heat for her bedroom and confiscated her clothing after she retired at night in order to force her to sleep. Sophie played through this authoritarian charade docilely, but after her parents were in bed, she would wrap herself in quilts, take out a store of hidden candles, and work at her books all night.
"After finding her asleep at her desk in the morning, the ink frozen in the ink horn and her slate covered with calculations, her parents finally had the wisdom and grace to relent, freeing Sophie to study and use her genius as she wished. It was a fortunate decision, and Sophie, still without a tutor, spent the years of the Reign of Terror studying differential calculus."
-from Women in Mathematics, by Lynn M. Osen. MIT Press, 1974.

Top Producers of Women Mathematics Doctorates

Allyn Jackson

Allyn Jackson is the staff writer for the AMS.

Recently, Science magazine reported on two surveys among astronomers that pointed to the "chilly environment" women have found in that discipline (Science, 21 June 1991, pages 1604-1606). In June, surgery professor Frances Conley resigned from her position at Stanford University, which she had held for 25 years, to protest the appointment to chair of a colleague who she says harrassed her for years with demeaning remarks and attitudes (New York Times, 12 June 1991). Mathematician Jenny Harrison has brought a suit against the University of California at Berkeley, in which she claims that she was denied tenure while men with equal or lesser qualifications were granted tenure (Science, 28 June 1991, pages 1781-1783). A recent New York Times article looked into the reasons why, despite their increasing numbers in science and mathematics, women rarely reach the top of their fields (New York Times, 21 May 1991).

These national news stories point up the still uneasy nature of women's involvement in science and mathematics research. Why aren't there more women in mathematics? Despite the feminist movement, the percentage that women make up of the new crop of Ph. D.s in mathematics each year has hovered around the 20% mark for around ten years. Some claim that there are biological reasons why men tend to outperform women in mathematics, but that debate-which typically centers on data from the precollege level and may have little bearing on talent for mathematical research-is far from being settled. What does seem clear, however, is that women find the social environment of mathematics and science to be something less than welcoming. The common wisdom is that women drop out of graduate school in mathematics in greater proportions than do men. Therefore, graduate school is a good place to look for ways to keep more women in mathematics.

An examination of data from the Annual AMS-MAA Surveys over the last ten years provides some thoughtprovoking information. These data are supplied to the AMS by mathematical sciences departments in the U.S. and Canada. Finding the appropriate data to answer the question "Which schools produce the most women doctorates in
mathematics?" is not a simple matter. Table 1 (see next page) shows the top sixteen departments in terms of the total number of women doctorates. Table 2 (see next page) shows a ranking according to percentage. Care is needed in the interpretation of both tables. For example, in Table 1, MIT and Berkeley top the list primarily because those two departments were overall the largest producers of doctorates in that ten-year period; but in terms of percentage of women doctorates in that period, those two departments fall below the 17% average for all departments of mathematics with doctoral programs. However, looking at straight percentages is also problematic: the small numbers of doctorates at some of the departments mean that the percentages are unstable. (There are other problems as well; for example, Illinois State, the school with the highest percentage of women doctorates over the past ten years, awards only the doctorate of arts degree in mathematics, which does not require a mathematics research thesis.)

To try to balance the percentages with the total number of doctorates produced, schools having more than ten doctorates between 1980-1981 and 1989-1990 were divided into sets according to the size of their doctoral programs (where size is the total number of Ph.D.s produced over the last ten years). For each set of schools, Table 3 (see page 718) lists the three with the highest percentages of women over the last ten years. Because the majority of mathematics doctorates come from Group I departments, Table 5 (see page 720) lists comparable data for all departments in Group I (the definition of groups used in the survey are described in the accompanying box). Table 4 (see page 718) shows the average percentage of women doctorates from Groups I, II, and III. A higher concentration of women is found in Group II and III departments than in Group I.

Looking at fall 1990 graduate school enrollments, one also finds a lower concentration of women in Group I departments: 23% of the first-year students are women, compared to 34% and 37%, respectively, for Groups II and III. (Among all students, not just first-year students, the analogous figures are $21 \%, 29 \%$, and 33%.) A similar pattern can be found in the composition of mathematics faculties. The latest AMS-MAA Survey Report (Notices, May/June 1991) shows that women make up 6.0% of those Group I faculty members holding a Ph.D., 6.5% in Group

The data in the tables below were reported by departments responding to Annual AMS-MAA Surveys of New Doctorates from 1981 to 1990. In afew cases of nonresponses, attempts were made to contact departments for missing data. Names and thesis titles of new doctorates are published annually in the November issue of Notices of the AMS. For Annual AMSMAA Survey reports, departments are divided into groups according to the highest degree offered in the mathematical sciences. Groups referred to in the following tables:
Groups I and II include the leading departments of mathematics in the U.S. according to the 1982 assessment of Research-Doctorate Programs conducted by the Conference Board of Associated Research Councils in
which departments were rated according to the quality of their graduate faculty. ${ }^{1}$
Groupl is composed of 39 departments with scores in the 3.0-5.0 range Group II is composed of 43 departments with scores in the 2.0-2.9 range.
Group III contains the remaining U.S. departments of mathematics reporting a doctoral program.
'These findings were published in An Assessment of Research-Doctorate Programs in the United States: Mathematical and Physical Sciences, edited by Lyle V. Jones, Gardner Lindzey, and Porter E. Coggeshall, National Academy Press, Washington, D.C., 1982. The information on mathematics, statistics and computer science was presented in cigest form in the April 1983 issue of Notices, pages 257-267, and an analysis of the above classifications was given in the June 1983 Notices, pages 392-393. For a listing of departments in Groups I and II see the April 1988 Notices, pages 532-533.

TABLE 1. Leading U.S. doctorate-granting departments of mathematics by number of women doctorates, from academic year 1980-1981 to 1989-1990

	Total Women Doctorates	Total Doctorates	$\%$ Women
Massachusetts Institute of Technology	32	209	15.3
California, University of (Berkeley)	30	295	10.2
Maryland, University of	26	120	21.7
NYU-Courant Institute	19	155	12.3
Rutgers University, New Brunswick	17	77	22.1
Wisconsin, University of	16	152	10.5
California, University of (Los Angeles)	15	108	13.9
Illinois, University of (Urbana-Champaign)	15	105	14.3
Massachusetts, University of (Amherst)	15	44	34.1
Michigan, University of	14	115	12.2
Notre Dame, University of	14	53	26.4
Texas, University of (Austin)	14	60	23.3
California, University of (San Diego)	13	79	16.5
Carnegie Mellon University	13	46	28.3
Pennsylvania State University	13	64	20.3
Pittsburgh, University of	13	57	22.8

TABLE 2. Leading U.S. doctorate-granting departments of mathematics* by percentage of women doctorates, from academic year 1980-1981 to 1989-1990

	$\%$ Women	Total Doctorates	Total Women
Illinois State University	54.5	11	6
Oklahoma, University of	41.7	12	5
Memphis State University	38.9	18	7
Adelphi University	38.5	13	5
Missouri, University of (Rolla)	38.5	13	5
American University	36.0	25	9
Florida State University	35.3	17	6
Auburn University	34.8	23	8
Massachusetts, University of (Amherst)	34.1	44	15
Lehigh University	33.3	21	7
South Carolina, University of	29.2	24	7
Dartmouth College	28.6	21	6
Carnegie Mellon University	28.3	46	13
Kansas State University	27.3	22	6
Texas, University of (Arlington)	27.3	33	9

[^1]II, and 8.8% in Group III. In fact, the highest concentration of women in mathematics faculties is found among master's and bachelor's degree-granting departments, where women make up 14% and 17%, respectively, of the faculty holding doctoral degrees. The analogous figure for Group I, II, and III combined departments is only 7%. (It is interesting to note, too, that the highest percentages of women among mathematics faculties occurs among non tenure-eligible appointments.)

Notices queried faculty from a number of departments that, based on this data, were among the higher producers of women doctorates in mathematics, and asked about the reasons for their success. Most faculty expressed surprise that their department was doing a good job, and many had no idea why. Most of the departments had no organized programs for recruitment or retention of women students, and data on women students was not easily at hand. Some faculty seemed surprised that the issue was even raised; one chair remarked that this is not the kind of thing a mathematics department usually pays attention to. Despite the lack of clarity of the factors at play, two general themes emerge.

First, most of the departments reported efforts to create a good atmosphere for all students. For example, Bruce Palka, who has been the graduate advisor at the University of Texas at Austin for a number of years, points to the "warm, friendly" atmosphere of the department. A very high percentage of the students who come to visit the department end up choosing it for graduate school, he says. Faculty member Martha K. Smith reports that each semester she holds a reception for women graduate students and faculty. With forty-two women out of a total of 163 graduate students, Smith says there is a "critical mass" of women that tends to mitigate feelings of isolation. At the University of Maryland, faculty member Rebecca Herb reports that she has made efforts to bring the women graduate students and faculty together. There is a women's discussion group that meets monthly and a mentorship program that brings new women graduate students together with those who have been in the department a while.

The University of Massachusetts at Amherst has actively recruited students over the past ten years, many of them women. According to faculty member Tim Cook, who has been instrumental in the recruitment drive, the faculty personally contacted students showing interest in and potential for doctoral work. Although no special effort was made to attract female students, Cook believes that the personal touch made a difference. "We tried to make the department as comfortable and as friendly a place as possible," he declares. Prospective female students meet female faculty members, and in the department there is a great deal of personal attention paid to the students. In addition, the department tries to insure that its rules are flexible enough to facilitate the students' chances at success. In a number of instances, for example, the department made allowances for coursetaking schedules and teaching loads for women students who had families or who had long commutes.

Andy Magid, chair of the mathematics department at the University of Oklahoma, also points to a "warm, welcoming department" as a key factor in retaining women students. "In a relatively small, relatively young program like ours, doctoral students are like junior colleagues, and we try to lead each one to completing the degree," he says. "If we've had unusual success with women students, I'd say it's because we've been pretty good about eliminating barriers for all students." The department makes no special recruitment efforts to bring women into the Ph.D. program, but such national programs as the Department of Education's Patricia Roberts Harris Fellowships have supported women students in his department.

The second important factor seems to be having women on the faculty. The departments having a high percentage of women doctorates pointed to the visibility of women on the faculty as having a positive effect on the women students. For example, Rutgers University is an institution known for having an unusually large number of productive women researchers on the faculty. According to Rutgers faculty member Amy Cohen, these women "provide an existence proof and a happier climate" for the women students. A graduate student association, a prelim-exam preparation seminar, and a T.A.-training program help to bring students together and create a community atmosphere. In addition, Cohen says that, in part because of Douglas College, a women's college on the Rutgers campus, there is generally a high degree of awareness of encouraging the aspirations of women students.

Mary W. Gray of American University attributes the large percentage of women doctorates from her department to having nearly one-quarter women on the faculty. "Seeing women who are succesful, and our efforts to be supportive, make a difference," she says. She also notes that they get many of their women students through "word of mouth"faculty at other institutions know that American has women on the faculty and is successful at producing women Ph.D.s. And finally, Gray reports, "We don't lose women." She says that most of the women who come with the intention of getting a Ph.D. make it through the program and do not drop out at the master's degree level.
(Sometimes perceptions about the effect of women on the faculty are mixed: In one department with a faculty of about fifty, a male professor said that a major factor in their success at producing female doctorates was having three tenured women on the faculty, while a female professor said the number of women probably was not a major factor, because there were only three.)

It can sometimes be difficult to find a direct connection between having tenured women on the faculty and producing women doctorates. According to information provided by departments for the latest AMS-MAA Survey, for example, Carnegie Mellon University has no tenured women faculty, but, among Group I departments, that institution produced the highest percentage of women doctorates over the past ten years (see Table 5). Similarly, the largest overall producer of women doctorates, MIT, has no tenured women faculty.

TABLE 3. Percentage of women among doctoral programs of comparable size

For this table, departments of mathematics were divided into categories of comparably-sized doctoral programs, where size is defined to be the number of doctorates awarded by the department between 1980-1981 and 1989-1990. The size categories are given in the leftmost column. For each size category, the table lists the three departments having the highest percentage of women doctorates in that ten-year period. The rightmost column gives additional information about the departments in each size category.

Size of Department	Top three departments by $\%$ women doctorates	\% women doctorates	Average \% women doctorates for departments in this group
Depts granting 100 doctorates and above	Maryland, University of	21.7	13.3\% for 8 departments
	Massachusetts Institute of Technology	15.3	(167 women out of a total
	Illinois, University of (Urbana-Champaign)	15.0	1259 doctorates)
Depts granting 80-99 doctorates	Ohio State University	12.6	10.5\% for 5 departments
	Chicago, University of	12.5	(46 women out of a total
	Princeton University	9.8	436 doctorates)
Depts granting 60-79 doctorates	Texas, University of (Austin)	23.3	17.4\% for 8 departments
	Rutgers University, New Brunswick	21.1	(96 women out of a total
	Pennsylvania State University	20.3	551 doctorates)
Depts granting 40-59 doctorates	Massachusetts, University of (Amherst)	34.1	17.2\% for 21 departments
	Carnegie Mellon University	28.3	(175 women out of a total
	Notre Dame, University of	26.4	1019 doctorates)
Depts granting 20-39 doctorates	American University	36.0	20.3\% for 50 departments
	Auburn University	34.8	(278 women out of a total
	Lehigh University	33.4	1367 doctorates)
Depts granting 10-19 doctorates	Illinois State University	54.5	19.0\% for 41 departments
	Oklahoma, University of	41.7	(109 women out of a total
	Drexel University	40.0	573 doctorates)

TABLE 4. Percentage of women doctorates granted by U.S. departments of mathematics (Groups I, II and III) 1980-1981 to 1989-1990

Group I	14.6%	$(435$ women/2972 total doctorates)
Group II	18.4%	$(230$ women/1248 total doctorates)
Group III	20.7%	$(229$ women/1107 total doctorates)

Indeed, the Group I departments having no tenured women faculty produced 30% of the the women doctorates coming from Group I departments. Nonetheless, it is sobering to note that, among those Group I departments that produced less than 10% women doctorates over the last ten years, the number of women on their faculties is just four out of a total of 197 , or 2%. Among faculty in all Group I departments, 5% are women. (For all of the previous statements concerning faculty, it must be noted that the figures leave out four Group I departments that did not respond to the 1990 Departmental Profile Survey.)

Some institutions whose departments of mathematics produced low percentages of women doctorates in mathematics show up high on the list for applied mathematics and statistics departments. For example, Harvard University, which had one of the lowest percentages of women mathematics doctorates among Group I departments, produced the largest percentage, 17%, of women in applied mathematics over the past ten years. Similarly, Rice University, which also had a low percentage of women in mathematics, produced 24% in applied mathematics. Some have speculated that women tend to prefer applied mathematics over pure because of the wider range of employment opportunities available. (Because of inconsistent reporting from applied mathematics departments, the data for applied mathematics are incomplete, and it is difficult to draw many conclusions.)

In the Annual Survey data on doctorates in probability and statistics, women have a high representation. Since 1985-1986, the percentage of women among those receiving
doctorates in the fields of probability and statistics varied from 29% to 38%. As with applied mathematics, some of the schools having low percentages of women mathematics doctorates showed higher numbers in statistics and probability. Data supplied by doctorate-granting departments of statistics are incomplete because of nonresponding departments; however, it appears that the top producers of women doctorates in statistics, biostatistics, and biometrics departments are University of North Carolina at Chapel Hill, Cornell University, Harvard University, University of California at Berkeley, University of Michigan, University of Washington, Iowa State University, Ohio State University, University of California at Los Angeles, and University of Wisconsin. In addition, women make up 13% of faculty members holding the Ph.D. in statistics, biostatistics, and biometrics doctorate-granting departments, a much higher figure than the 7% for Groups I-III combined.

It is difficult to discern from statistics alone why certain departments have been more successful than others at producing women mathematics doctorates. Many of the factors at play are complex, involving the "climate" in the department and social interactions that can elude quantitative analysis. A study of a number of exemplary departments-including interviews with faculty, students, and administrators-could bring successful ideas and new thinking to other departments that are trying to improve the climate for their women students. Such improvements would, in the end, benefit all students.

\mathcal{A} Hot Topic: Math and Sex

Abstract

"A few years ago, a friend phoned me for some advice. His ten-year-old daughter was upset because she had just heard on the radio about the hot new discovery that boys are genetically better at math than are girls. Girls, she had heard, would be less frustrated if they recognized their limits and stopped their fruitless struggle to exceed them. " 'Daddy,' she had said, 'I always wanted to be a math professor like you. Does this mean I can't?' "My friend wanted to know if I had read the article. 'Is it true? What can I tell my daughter?' "Just two days before, I had seen the same report in the New York Times. One day before, the mail carrier had dropped through my mail slot the issue of Science magazine containing the short research article by Drs. Camilla Benbow and Julian Stanley, which I had seen summarized in the Times. Within the week, radio advertisers hawked the latest issues of Time and Newsweek, telling me even as I sleepily brushed my teeth in the morning to buy the magazines because they contained new evidence about 'male math genes.' And so it went. The Time article even had an illustration in case we couldn't get the written message. The cartoon portrayed a girl and a boy standing in front of a blackboard, with a proud, smug-looking adult-presumably a teacher-looking on. The girl frowns in puzzlement as she looks directly out at the reader. On the blackboard in front of her stands the multiplication problem 8×7, which she is clearly unable to solve. The boy looks with a toothy smile toward the adult, who gazes back at him. The cause for the satisfaction? The correct answer to the multiplication problem $7,683 \times 632$. Interpreting the image does not require a degree in art history, and the aftershocks from the Science article and subsequent press coverage still rumble beneath our feet. "Clearly, math and sex is a hot topic."

[^2]
TABLE 5. Group I departments of mathematics: women doctorates from 1980-1981 to 1989-1990

Department	\% Women Doctorates	Number of Women Doctorates	Total Number of Doctorates
Brandeis University	20.0	8	40
Brown University	14.6	7	48
California Institute of Technology	9.4	3	32
California, University of (Berkeley)	10.2	30	295
California, University of (Los Angeles)	13.9	15	108
California, University of (San Diego)	16.5	13	79
Carnegie Mellon University	28.3	13	46
Chicago, University of	12.5	11	88
Columbia University	12.1	7	58
Cornell University	21.0	12	57
CUNY Graduate School	24.1	7	29
Harvard University	8.0	7	87
Hlinois, University of (Chicago)	18.5	10	54
Illinois, University of (Urbana-Champaign)	14.3	15	105
Indiana University at Bloomington	16.9	10	59
Johns Hopkins University	22.2	6	27
Maryland, University of	21.7	26	120
Massachusetts Institute of Technology	15.3	32	209
Michigan, University of	12.2	14	115
Minnesota, University of	9.8	8	82
New York University-Courant Institute	12.3	19	155
North Carolina, University of (Chapel Hill)	25.0	6	24
Northwestern University	15.5	7	45
Ohio State University	12.6	11	87
Pennsylvania State University	20.3	13	64
Pennsylvania, University of	22.6	7	31
Princeton University	9.8	9	92
Purdue University	11.8	9	76
Rice University	14.3	2	14
Rutgers University (New Brunswick)	22.1	17	77
Stanford University	13.6	8	59
SUNY at Stony Brook	18.7	12	64
Texas, University of (Austin)	23.3	14	60
Utah, University of	13.3	6	45
Virginia, University of	20.7	6	29
Washington University	14.6	6	41
Washington, University of	8.8	5	57
Wisconsin, University of (Madison)	10.5	16	152
Yale University	12.9	8	62

Mathematics and Women: The Undergraduate School and Pipeline

D. J. Lewis

> D. J. Lewis is chair of the department of mathematics at the University of Michigan.

About two years ago, partly in response to urging from Uri Treisman of the University of California at Berkeley, our department decided to get involved in a summer program for undergraduate women. We were motivated to do so because of our concern for the small number of Americans earning doctorates in mathematics. While the number of Bachelors degrees in mathematics awarded by U.S. institutions plummeted from nearly 25,000 per year in the 1970 s to 10,078 in $1980-1981$, they had slowly risen and stabilized near the 16,000 mark in the late 1980s, with women approaching nearly half that number (about 7,500). On the other hand, the number of women earning doctorates at U.S. institutions seemed stuck near 125. (In the last two years, there have been 156 and 158 doctorates awarded to women, still less than 20% of the total- 861 and 892 , respectively. The percentage of women among U.S. citizens earning the doctorate is above the 20% mark and is climbing as the number of men doing so continues to decline). Clearly, a likely place to recruit additional doctorates who were U.S. citizens was from amongst women.

That men and women were completing the bachelor's degree in near equal numbers was striking to us, since considerably fewer women than men arrive at college with four years of secondary mathematics, far fewer take advance placement exams (though convergence in numbers may be possible in the near future), and a far larger percentage discontinue the study of mathematics after a year (this is partially explained by the fact that large numbers of women interested in science enter college planning to study biology or medicine, which have low mathematics requirements). We recognized the near parity in numbers stemmed in part from the failure of men to return to mathematics as quickly as women. Still, however you cut the cake, among the women there was a sizable pool of individuals who were persisting to a Bachelor's degree and, under the right circumstances, might go on to the doctorate.

We were also motivated by the fact that, during the 1980s, only five Michigan alumnae received the Ph.D., while in the sixties we regularly sent that many women
to graduate school each year. (Other universities had not done much better, only four reached double that number: Berkeley with 14, MIT and Chicago with 12, and Texas with 11.) An added inducement was the discovery that mathematics and physics doctorates are quite likely to have done their undergraduate studies at a research university (40% of the mathematics, 49% of the physics doctorates in the 1980 s did so; the figures for women are 32% and 41%). The doctorates in other scientific fields, the humanities, and the social sciences came from a more dispersed set of undergraduate institutions. Clearly we had a responsibility and a challenge.

We realized the social context within which mathematics is now studied and done is quite different from that of the 1960s. In those days, morale was high. Science and mathematics were universally held in high esteem and were well supported. Classes were small and faculty could know their students and their capabilities. Men and women arrived equally prepared, with enthusiasm and willingness to work, and all, as they report, were treated as equals. Today, women find it much easier to gain admission to the old line professional schools of law, medicine, and business and have reached parity with men in enrollments in these schools. We compete with these professions for the same women. One could explain the drop in interest in mathematics at Michigan by our having students well tuned to societal norms. Still, it was a puzzle why a generation of women, raised and steered in the feminist movement, should have withdrawn from mathematics, as seemed the case at Michigan. We hoped we might change the situation.

When we sought funding, we met a cool reception from the agencies. Some funding agencies questioned if there was a need. Some wondered whether interventions and special programs were based on anything but hope and whether there was any evidence they had accomplished their stated goal. The discussions ended with a challenge by Sam Goldberg of the Sloan Foundation to survey the literature concerning undergraduate women in mathematics and physics to see if there were well based principles upon which to base a program for women. With the help of Professor Patricia Gurin of the psychology department, Pat Shure of mathematics, and Carol Hollenshead, director of the Center for the Education of Women, as well as several
part-time postdoctorates from psychology, we set to work.
We found that most of the research on women in science and mathematics concerned elementary and secondary students; there is a paucity at the collegiate level. What there is concerning the collegiate level is some what marginal-often one-time snapshots of a local group of student's perceptions or anecdotal reports. Little can be said to be scientific. Except for a few National Science Foundation (NSF) statistical reports, there are no large scale or national studies, and there have been no longitudinal studies. There may well have been critical evaluations of some intervention programs, but they are not reported in the literature. Still, after surveying the literature, one arrives at a number of factors effecting undergraduate student behavior and decisions regarding mathematics and which probably impact more on women than on men. They suggest a number of hypotheses and actions which merit serious testing and which could suggest some modifications in the way mathematicians teach. In addition, we conducted three studies on Michigan students that tended to point to the same factors.

Self-confidence regarding mathematics appears to be the most distinguishing characteristic separating collegiate men and women. There are clear indications that at every level, from middle school to the doctorate, women generally are less confident in their mathematical abilities than men. Successful women report receiving encouragement and assurance of their abilities at several critical junctions from parents and instructors. Women peers rate women mathematicians as far more self-confident, self-reliant, persistent, risk-taking, and imaginative than other women. Yet, despite excellent performances, for many successful women in mathematics, there is always a doubt that they are as good as they are. Perhaps some of this self-doubt arises because the general public has come to view mathematics as masculine and early on women perceive themselves as being outsiders to the mathematical world. If we are to increase the number of women doctorates we will need to find methods to give them honest feedback and reassurance throughout the collegiate experience.

Surprising to me is the evidence that present day women studying mathematics are extremely job oriented and a large proportion at both the bachelor's and master's level chose programs that lead directly to employment, which they then take rather than pursue further education. In this regard, they respond as first generation college graduates, although women earning mathematics degrees are generally children of college graduates having professional mothers. This is a curious finding that surely merits study. Does it spring from lack of confidence? From counselling? From not being expected or encouraged to take the more challenging courses? We found that Michigan women thought the degree requirements too easy!

While it is difficult to obtain hard data, there is strong evidence that women constitute only about 30% of those pursuing a curriculum that leads directly to a doctoral program. Thus, the fact that women constitute about 25% of U.S. citizens earning a mathematics doctorate would
indicate we are not losing many well qualified women at the doctoral level and that to increase the number of women doctorates requires getting them into appropriate undergraduate programs.

Women respond more negatively than men to what they perceive to be poor instruction. There is some evidence that quality of instruction is the principle factor in the decision of so many to discontinue the study of mathematics. As already noted, women need feedback on their accomplishments and not just at the end of term. They have a greater need to be recognized as individuals. Further, there is some evidence that women respond negatively to mathematics because of a perception it is a bag of rules and tricks to be applied quickly and mechanically-qualities that may often characterize calculus instruction and examination. Women appear to prefer discussive, discovery modes of learning and to dislike the advocacy style of many mathematics lectures. As a rule, women decide their area of concentration much later than men: in mathematics, at the end of the second year or into the third. Their experience in the first two years directly effects their choice. When you examine what is being conveyed by these statements, probably the only way to provide ideal instruction for women (and men also) is via small classes where the instructor has considerable freedom and the size permits regular feedback and interaction between student and professor. Such was the case in the 1960 s , and, if we could do so again, undoubtedly the number of women completing the doctorate would climb. Would it change the percentages? Probably not-I expect in that situation men would also respond positively and enthusiastically. We surely need to conduct some scientific studies to determine how to attract and retain the mathematically gifted. Perhaps with good documentation we could persuade deans and government agencies that investing in mathematics instruction would and probably is the only way to meet the nation's mathematical needs.

Two phrases that appeared frequently in the literature coupled with negative responses to mathematics by women were "competitiveness" and "chilly environment." These phrases were rather ill-defined and usually were left to questionnaire respondents to define in their own way. In some instances "competitiveness" was equated with "personal comparison," at other times as the antithesis to cooperative group learning and study, and still other times with stress associated with the first year or two of study. Whatever it is, the literature suggests that women find mathematics classes and programs infused with competitiveness and find it distasteful. No doubt we need to determine more clearly what is being disliked and whether we can eliminate it and still achieve our objectives. Concern about the competitive environment also shows up in studies of the first year of graduate school. It is not clear that women find the first years of graduate study anymore stressful than their male peers or their peers in law, medical, and business administration schools, where women enrollments are now on a par with that of men. Probably as much of the stress comes from the need to adjust to a new locale, give up old friends and make
new ones, and to impress a new set of faculty, as comes from the move to another, tougher level of learning.

The term "chilly environment" seems to sum up the totality of micro-inequalities women experience. These are situations or experiences that are subtle, hard to measure, and often based on perceptions. Though each in itself may be minor, they can in totality create an unfriendly environment. There has been no significant study of the "chilly environment," but many women assert its existence within mathematics. Perhaps with today's heightened social awareness, individuals are more apt to respond openly to unintended slights than in the past. The phrase "chilly environment" appears sufficiently often that it warrants systematic study. If it is turning off students, we had better investigate it and develop strategies to create "warm environments."

The learning environment affects all students, but women still in the process of deciding what to study and for what duration are more effected by the environment in which they will work. The literature indicates women seek good student-faculty interactions, a peer support system, and a sense of community. Faculty undoubtedly need to examine both the social and the physical environment within their departments and seek ways to provide an environment that attracts, supports, and encourages students.

In recent years, considerable emphasis has been put on the role of research internships in helping students form career commitments. The assessments of the Research Experiences for Undergraduates (REU) program of the NSF, as well as smaller internship programs, suggest that some research experience can be a key factor in encouraging uncertain students to seek a research career. The NSF study indicated 80% of those in REU programs found the experience heightened their interest in research. At Michigan, for each of the last several years we have
had twenty plus undergraduates participate in the REU program. In addition, about the same number took summer internships in industry. Almost all of the REU alumni enrolled in graduate school, and there is an excitement that carries through the following academic year. At least five publications by students have been submitted. Many women approach internships differently than men. They use them to test whether research is for them. It is especially gratifying to see their growth in confidence and in mathematical maturity in the course of a summer internship. By summers end, most know they can do research and that it is challenging and fun. We do not know all the dynamics occurring during the course of the internship. Some women observers have suggested that confidence and self-assurance stems from the support and individual intimacy that occurs in working together.

Thirty years ago, I did not believe undergraduates could assist in a research project. The computer has changed this forever. I have come to the conclusion that in the future the best academic mathematical research will be done by teams consisting of senior faculty, postdoctorates, graduate students and undergraduates working together on a related set of problems. The undergraduates can be very useful to the others in testing hypotheses, seeking patterns, crunching numbers. The postdoctorates can and should play a significant role, in a supportive way, in the education of the graduates and undergraduates. Such groupings flourish in the other sciences, and we will need to learn from them. If we solve the problem of making the first two years of college mathematics attractive, I believe that this group approach, when perfected, will remove the remaining obstacles that now seem to lie in the road to women's success in mathematics and to our attracting the American student to this most beautiful and challenging subject.

"Scientific" Mytfimaking

"Nineteenth century biologists and physicians claimed that women's brains were smaller than men's and that women's ovaries and uteruses required much energy and rest in order to function properly. They 'proved' that therefore young girls must be kept away from schools and colleges once they begin to menstruate and warned that without this kind of care women's uteruses and ovaries will shrivel and the human race die out ... [T]his analysis was not carried over to poor women, who were not only required to work hard, but often were said to reproduce too much. Indeed, scientists interpreted the fact that poor women could work hard and yet bear many children as a sign that they were more animal-like and less highly evolved than upper class women...
"But this kind of scientific mythmaking is not past history ... [B]eginning in the 1970s, there has been a renaissance in sex differences research that has claimed to prove scientifically that women are innately better than men at home care and mothering while men are innately better fitted than women for the competitive life of the market place.
"Questionable experimental results obtained with animals (primarily that prototypic human, the white laboratory rat) are treated as though they can be applied equally well to people. On this basis, some scientists are now claiming that the secretion of different amounts of so-called male hormones (androgens) by male and female fetuses produces life-long differences in women's and men's brains. They claim not only that these (unproved) differences in fetal hormone levels exist, but imply (without evidence) that they predispose women and men as groups to exhibit innate differences in our abilities to localize objects in space, in our verbal and mathematical aptitudes, in aggressiveness and competitiveness, nurturing ability, and so on..."

[^3]
Merging and Emerging Lives: Women in Mathematics

Claudia Henrion

> Claudia Henrion is a professor of mathematics at Middlebury College in Middlebury, VT.

In the nineteenth century, there was a common belief that "as the brain develops the ovaries shrivel," implying that women's participation in the life of the mind would impair their ability as mothers [1]. This was part of a long tradition of identifying intellectual pursuits, particularly math and science, with men, and domestic responsibilities with women. Inevitably, these two spheres were hierarchically ordered: the life of the mind was considered far more important than life of the home.

As Plato said in the Symposium, "Those whose creative instinct is physical have recourse to women, and show their love in this way, believing that by begetting children they can secure for themselves an immortal and blessed memory hereafter for ever, but there are some whose creative desire is of the soul, and who long to beget spiritually, not physically, the progeny [of?] which it is the nature of the soul to create and bring to birth" [2]. The dichotomy is clear: one pursues a life of the mind, or one has a family, but one cannot do both. The hierarchy is equally clear: "everyone would prefer children such as these [from the soul] to children after the flesh" [3]. Plato does not consider the possibility of a woman leading a life of the mind. Kant continued in this tradition, defining math as the realm of men, saying that "women should not worry their pretty heads about geometry-that they might as well have beards" [4].

The image that "as the brain develops the ovaries shrivel" was one that feminists had to combat in establishing formal education for women at the college level in nineteenth century America. They argued that women's access to higher education would make them better mothers for their sons, the future leaders of the country [5]. Although this strategy was successful in opening the doors to a life of the mind, it did not question the deep-seated dichotomy between the intellectual sphere and the domestic sphere. Indeed, those women who worked in American women's colleges in the 19th and early twentieth centuries were forced to choose between a professional life (as teachers) and a personal life (if they chose to marry), for the two were not compatible. As Rossiter reminds us: "It went without saying that according
to the mores of the time, all candidates [for professorship] had to be of good Christian character and not only single but in no danger of marrying. Married women were not even considered for employment at the early women's colleges, even, it seems, when they were clearly the best candidate available ... Male faculty at the women's colleges, on the other hand, were expected to be married" [6].

Those seem like ancient times, and we breathe a sigh of relief that things are different now. Women have access to all kinds of formal education, they are able to secure good jobs even in such traditionally male fields as math and science, and they can choose to marry without sacrificing their jobs. Not only do women have access to formal institutions, but their numbers at these places are beginning to represent their proportion in the population. For example, nearly 50% of the math majors in this country are now women [7] (though this trend is sometimes hidden because many of the students who take lower level math courses are from engineering, physics, and computer science, fields that are still predominantly male).

But in the upper ranks, the percentage of women in mathematics declines dramatically. Women make up only 20% of those receiving doctorates [8], and less than 6% of tenured professors in mathematics [9]. Do these declining percentages simply reflect problems of the past? Is it just a matter of time before women come through the ranks and assume equal representation in the mathematics community? Or do these data indicate persistent problems that create unnecessary obstacles to women's full participation in mathematics - subtle barriers that make it less likely that women will pursue mathematics in graduate school and beyond?

These less visible barriers are what I am interested in examining, to see why many women who have "succeeded" in mathematics often do not feel like equal and central participants in the mathematics community. What contributes to this sense of being an "outsider," experienced by many contemporary women in mathematics? To what extent is there still a tension between their lives as mathematicians and their lives as women? [10]

The very concept of a woman mathematician begins to break down the sharp dichotomy between the professional/public/intellectual sphere and the private/personal/do-
mestic sphere--a dichotomy that was solidified in the 19th century, and that still influences much of our society today. As women "cross-over" into the world of the mind, and science in particular, tensions arise, both internal tensions that women experience as they try to balance their personal and professional lives, and external tensions as the mathematics community continually shifts and adjusts to a new population of inhabitants.

One response to these tensions for women in mathematics is to say that women must learn to adjust to this new environment, that conflicts arise because they have not entirely broken ties with their traditional responsibilities. Once they learn to do so, their lives as mathematicians will be easier. But this response assumes that it is possible and desirable to create and maintain a split between personal and professional life. I will argue that such a separation is increasingly unrealistic for both men and women. An alternative response to these tensions is to try to break down the barriers between the two spheres, acknowledging the interconnection and inseparability of personal and professional life.

This article draws on my research on contemporary women mathematicians involving intensive interviews with ten prominent women in mathematics. Their lives help make visible what has previously been invisible: the traditional reliance on a support structure that allows us to maintain the myth that it is possible to separate our personal and professional worlds. At the same time, their lives suggest ways of striking a balance between the two.

I approach this subject with caution for two reasons. First, the only thing that can be said with certainty about all women in math is that they are all different. Any attempt to generalize leaves out specific women and specific details. Nonetheless, there are themes that emerge often enough in interviews with women mathematicians that they warrant attention.

The second reason for caution is that, in any discussion of the difficulties for women in mathematics, there is a temptation to conclude that women should not go into mathematics-either because math is not a hospitable place for women (so they would inevitably be miserable), or because women are not cut out for mathematics. I reject both of these overly simplistic conclusions. The problems discussed in this article are not inherent in mathematics or in women. They are problems that can be remedied, and to do so would benefit the entire mathematics community. The first step towards change is to articulate the problems and make them visible.

Stereotypes of Women, Stereotypes of Mathematicians

The subtle tensions between being a woman and being a mathematician arise in part from the images that, from childhood onward, are all around us. We are all influenced to varying degrees by images, stereotypes, and messages of our society. The degree to which we internalize these mes-
sages depends on many factors: family, friends, educational experience, interests, community, age, and life experience. But, to a certain degree we are what we read and we are what we see.

Media images of women traditionally fall into three categories: wife/mother, sex object, and girl. In the last fifteen years, the "career woman" image has emerged, but even this image makes some concessions to the traditional roles of women as wife/mother or sex object. Carolyn Heilbrun, in Writing A Woman's Life, conveys the power of what she calls the "romantic/marriage plot" that most women are raised with, whether or not they choose to pursue it. These images continue to influence both women and men even when they are trying to define new paths. As women's roles expand to new arenas like business or science, they are still expected to also fulfill their domestic responsibilities, giving rise to the modern "super-mom" syndrome.

What do these images have to do with mathematics? Absolutely nothing-and that is the problem. None of the images of women are compatible with images of a mathematician. First and foremost, mathematicians are portrayed as completely unconcerned with anything on the material plane. We are often reminded of mathematicians who would become so absorbed in their work that they would forget to eat for days. They certainly think nothing about their clothes or physical appearance, and while they might have family, it is seen as peripheral to the focus of their lives. Certainly one's image of a mathematician does not include changing diapers or comforting a colicky baby, much less cleaning house or making dinner. Their life follows what Heilbrun describes as the "adventure or quest plot," as contrasted with the marriage plot.

But what do mass media images and stereotypes have to do with reality? Though we may be tempted to once again respond "absolutely nothing," these images affectand reflect-our lives more than we care to admit. Most women have not extricated themselves from domestic responsibilities. And many mathematicians still praise those individuals who transcend the material world and lose themselves in their work, dividing personal and professional life in a way not feasible for most women. As Halmos says in his "automathography," to be a mathematician, you must love mathematics more than anything else, more than family, more than religion, more than any other interest [11].

I do not mean that you must love it to the exclusion of family, religion, and the rest ... A spouse unsympathetic to mathematics demands equal time, a guilty parental conscience causes you to play catch with your boy Saturday afternoon instead of beating your head against the brick wall of that elusive problem-family, and religion, and money, comfort, pleasure, glory, and other calls of life, deep or trivial, exist for all of us to varying degrees, and I am not saying that mathematicians always ignore all of them. I am not saying that the love of mathematics is more important than the love of other things. What I am saying is that to the extent
that one's loves can be ordered, the greatest love of a mathematician (the way I would like to use the term) is mathematics. I have known many mathematicians, great and small, and I feel sure that what I am saying is true about them.

This passage illustrates that men mathematicians do indeed have personal lives and responsibilities. At the same time, the message is clear: although family and other interests may be tolerated, they are secondary to one's mathematics. However, this ordering is only possible if there is someone else who can take care of the children while the mathematician does mathematics. It assumes a traditional family structure of a professional and his supportive wife. Since it is extremely rare that a woman mathematician can rely on a supportive spouse to assume the domestic duties, the kind of ordering that Halmos suggests may not be possible, or even desirable. For women, such a vision can lead to a decision of exclusion: family or mathematics, rather than a decision about priorities.

Even, however, when women mathematicians do observe the priorities of their profession, they are still judged by society's standards and evaluated in terms of stereotypically female attributes. In Weyl's memorial to Emmy Noether, for example, he remarks on her appearance that "the graces did not stand by her cradle." A common issue that arises in discussions of Sofia Kovalevskaia's life is her performance as a mother, and whether she neglected those responsibilities. How often do we read a memorial of a male mathematician that discusses whether he was attractive, or whether he spent enough time with his children? [12]

Navigating Personal and Professional Life

As mentioned earlier, for the nineteenth-century women with academic careers in science, the professional and domestic spheres were completely disjoint. Almost all academic jobs open to women were in the women's colleges, and it was assumed that a female professor was single. If she married, she had to quit her job. This was not challenged until 1906, when a physics professor at Barnard College refused to resign when she announced her engagement to be married. "I think it is a duty I owe to my profession and to my sex to show that a woman has a right to the practice of her profession and cannot be condemned to abandon it merely because she marries. I cannot conceive how women's colleges, inviting and encouraging women to enter professions, can be justly founded or maintained denying such a principle." But the trustees countered that a married woman should "dignify her home-making into a profession, and not assume that she can carry on two full professions at a time" [13].

For contemporary women, the story is of course quite different. A wide variety of women have pursued mathematical careers, each with a very different story to tell. Each has navigated a distinct course through her personal and professional life. Some have had children, some have not. Some are single, some are married, many have had more
than one spouse or partner. They came to mathematics in various ways and at different points of their lives, from as early as elementary school, to as late as graduate school. Most have experienced both supportive mathematical environments and less hospitable ones. But for almost none was there an obvious, natural path, one that easily fused their professional and personal lives. Virtually none had role models or examples of women who had "made it" in mathematics. In this way, most of these women were pioneers, forging a path that would accomodate the multiple aspects of their lives. For a few this was not problematic, but for most, being a pioneer meant dealing with periods of alienation, confusion, doubt, conflict, and compromise.

What is most striking in studying the lives of women in mathematics, now and in the past, is the lack of a traditional pattern. Few followed the standard path that is clearly outlined for male mathematicians: undergraduate major in math, graduate work, post-doc, tenure track job, tenure, full professor. There are certainly cases of men who do not follow this norm-notable examples include Persi Diaconis who began as a magician, and skipped undergraduate work; and Ramanujan, who had very little formal training-but these are exceptions. With women, the exceptions are the ones who follow the traditional, linear path. For a variety of reasons, women's lives are more accurately characterized by a kind of veering and tacking [14]. Although from the outside this is often seen as a lack of commitment, from the women's perspective, it is their way of accomodating the many pressures, needs, and desires of their lives. Often personal issues must be resolved before a woman is ready to immerse herself full-time in research. For some, this means entering a long-term relationship, for others it means having and raising children, or caring for dependent adults.

In addition to personal issues, professional factors have also prevented women's careers from following a traditional pattern, factors that women were not in a position to control. These include overt obstacles, such as nepotism rules, as well as subtle ones, such as not being seen as a serious mathematician because of one's sex. One prominent research mathematician was not able to work with the professor most suited to be her advisor because he thought she should be a high school teacher and would not take her seriously as a mathematician. In addition, a woman is often invisible in the math community and can have more difficulty forming connections with the main network of researchers in their field [15].

All of these factors, both personal and professional, affect the timing of women's lives. If we look, therefore, at the "time-line" of a woman's life-what she accomplishes when-it can look quite different from that of her male colleague's. Such differences in time-lines can give rise to difficulties in being accepted as a "real" mathematician.

In studying lives of women mathematicians, what emerges is a picture of a wide variety of time-lines, rather than a single standard. Joan Birman, a topologist at Columbia University/Barnard College, did not get her Ph.D. until she was forty years old. Lenore Blum returned to
mathematical research in her forties, after years of teaching at Mills College and involvement in national programs to promote women in mathematics. Mary Ellen Rudin, who managed to stay professionally active even while raising four children, is finding that she is doing some of her best work in her fifties and sixties, now that most of the children are grown. She worked part-time as a lecturer until she was almost fifty, when the University of Wisconsin promoted her from a lecturer to a full professor. Judy Roitman did not decide to pursue mathematics until she was already enrolled in graduate school in a logic and methodology program. Though she had always enjoyed math, she had been given messages all her life, both subtle and not so subtle, that women didn't do math. Vivienne Malone-Mayes taught in a small Black college for years before having the courage to pursue a Ph.D. in math, a path that many in her community thought was absurd for a black woman, and certainly not practical for getting a job.

Clearly, each of these women had to "compose a life" of her own. These are examples-and there are many others-of women who succeeded. But there have also been many talented women who were not able to fit their unique lives into the world of mathematics, often because their life time-lines did not mesh with what is expected of a mathematician.

Integrating Children with Professional Life

Having children and integrating them into one's professional life provides a vivid illustration of how women's life timelines differ from that of their male colleagues, and of the conflicts that can result. I choose this topic not because it is a given that all women will choose to have children, or can have children. Many women in all walks of life, including mathematics, have rich and rewarding lives without children. However, this topic brings into focus issues that arise for women with respect to many aspects of their lives-issues of timing, relationships, connection to math community, personal and professional conflicts-all of which apply to women with and without children [16].

Simply deciding whether or not to have children is difficult for many women, but timing is particularly problematic. Women hear three strong, conflicting messages. They are told that, biologically, the ideal time to have children is as early as possible. However, the present social climate dictates that fewer people are marrying or having children early in life; there is social pressure to wait until when one is established in a relationship and a career. Professionally, the ideal time is to wait until after tenure. So these three pressures-biological, social, and professional-must be considered in turn.

Many women mathematicians did indeed have children early in their lives and felt that was a good decision. For example, two mathematicians, Lenore Blum and Fan Chung, each had a child in their later years of graduate school. And like many women at this time, they played down having a child for fear of not being taken seriously in their professional lives. In fact, when one of Lenore's professors
saw her with her four-month old baby, he said "where did that child come from? Whose is it?" He had been oblivious to her pregnancy and birth. When Fan had her second child in her second year at Bell Labs, her manager wondered what she was going to do. Would she quit now that she was having a child? He was unaware that she already had a child who was two years old who was clearly not interfering with her work. In both cases, it was crucial that they had access to full-time child care and supportive husbands. Joan Birman had three children before and during graduate school. She returned to graduate school at New York University later in life, starting part-time in a Master's program. Realizing her ability and desire to work full-time towards a Ph.D., she was able to get graduate support, most of which went toward caregivers for the children.

These women found ways to have children early in their lives and still continue with their mathematical development. This was during the 1960 s and 1970 s, a period when most women had their children early in life. But today, those who marry tend to do so later in life. And those pursuing higher education rarely think in terms of having children early in their lives.

If, however, one waits until one is settled personally and professionally, other problems can arise. Women in their late 30 s and early 40 s have more trouble conceiving, more complications with pregnancy, and higher incidence of Down's syndrome or other genetic disorders, and are likely to be more physically exhausted once the child is born. It is also more difficult to adopt a child after 40 . This is not meant to be alarmist; many women have children later in life without problems. Nonetheless, many women do experience the profound disappointment and frustration of having waited to have children and discovering at this later stage of life that they are unable to do so.

Given the biological issues of having children late and the changing social realities that make having children early very unlikely, only the middle period remains-after graduate school, but before tenure. But, as everyone knows, this is professionally the most pressured period of all. In a few short years, one has to establish oneself in one's field, make connections, go to meetings, publish, and teach many courses for the first time. Very often women also assume a disproportionately high administrative and service workload. Having children during this period is clearly risky business. If the pregnancy is easy, the birth smooth with no complications, and the child a happy, healthy one who likes to sleep a lot, and if the parents are willing and able to put their child in full-time day care, then one's professional career can stay on track. However, if any one of these factors goes awry, the consequences can be extreme because the cost of not staying professionally productive is very high.

In addition, it is still common to be perceived by colleagues as not fully serious about one's work if one has a child. At the early stages of one's career, judgment by one's peers and colleagues can have enormous impact. The implicit message-that either one is a mathematician, or one is a mother, but one cannot do both-is tied to
the assumption that it is men who do the mathematics and women who do the mothering.

So, from the perspective of a young woman who wants to become a mathematician, there seems to be no period of her career that would be favorable for having children. This is why a career in mathematics and having children seem to be in conflict. These problems are not unique to mathematics or even to academia. Still, the mathematical community needs to fashion for itself ways of dealing with this conflict, for there are at least two aspects of the discipline of mathematics that exacerbate this problem.

First, there is the pervasive myth that mathematicians do their best work at a very young age. Philosophy professors may be entering their prime in their 50 s or later, but this is rarely the image of a productive mathematician. As G. H. Hardy says in A Mathematician's Apology, 'If then I find myself writing, not mathematics but 'about' mathematics, it is a confession of weakness, for which I may rightly be scorned or pitied by younger and more vigorous mathematicians. I write about mathematics because, like any other mathematician who has passed sixty, I have no longer the freshness of mind, the energy, or the patience to carry on effectively with my proper job" [17]. He goes on to say, "No mathematician should ever allow himself to forget that mathematics, more than any other art or science, is a young man's game" [18]. This powerful myth of the young, virile mathematician contributes to the pressure young women (and men) feel, despite the fact that there are many examples of prominent mathematicians who did excellent work in their later years [19]. In fact, most of the women I interviewed found that their work improved as they got older.

Second, academic careers in general, and mathematics in particular, exacerbate the problem because of the linear trajectory of career development: graduate school, postdoctoral study, assistant professor, associate professor, full professor. Any deviation from this norm is suspect. In particular, people strongly believe that to take a couple of years off in mathematics makes it very difficult, if not impossible, to return. As a result, there are very few reentry points to a career in mathematics. The consequences are more severe for women than for men since women are more likely to take a year or two off, for example, to have children.

As more and more men assume an equal share of domestic responsibilities, the more these problems will affect men as well as women. Increasingly, men face serious conflicts between personal and professional life. For this reason, the entire mathematical community should be concerned with these issues. In general, though, women still assume more of the domestic responsibilities and are still the ones that bear children. Traditionally, men who have pursued careers in mathematics have not had to choose between their professional life and personal life. Even now, as the traditional structure of "wife at home, husband at work" becomes rarer, we still do not expect a man to choose between his career and having a family. We should not ask a woman to make that choice either.

Looking to the Future

How can the mathematical community address these problems? As I see it, several options must be explored simultaneously.

- Multiple entry and reentry points into mathematics. For example, the Ada Comstock program at Smith College allows older women who left school in order to raise a family to finish their "bachelor's" degree. Certain graduate programs, like the one at New York University, are receptive to older students or those who have taken some time off. Joan Birman would not have been able to get a Ph.D. at a school like Columbia, where she is now a professor, because her personal circumstances necessitated starting out on a part-time basis, and Columbia does not allow part-time graduate students in mathematics. The National Science Foundation has a program for women in mathematics who are returning to research.
- Part-time options. There should be ways for mathematicians to have a part-time status during certain periods of their careers, perhaps in graduate school or as a professor. This is one way of allowing people to have children and yet remain professionally active, even if it is at a reduced pace for a few years.
- Optional extension of tenure clock. For extenuating personal circumstances, such as having children, the tenure-track period could be lengthened. Many colleges and universities are already beginning to institute such policies.
- Support systems. Day care at mathematics meetings, flexible teaching schedules, and regular day care at colleges and universities are important.
- A change in attitude in the mathematics community. Informal factors, such as attitudes, can be as important as formal policies in determining the feasibility of women returning to mathematics. As long as taking time off is frowned upon, women who attempt to return will have a very difficult time being accepted or succeeding.

When the mathematics community conveys a clear message that having children is not in conflict with a career in mathematics, we will have gone a long ways toward fully embracing women in mathematics.

Conclusion

Living in a world which sends strong messages about the roles of women and of men, we often internalize these messages unwittingly. We must recognize our hidden assumptions and bring them into open discussion. Only then can we make conscious choices about how to live our lives and define new images of what it means to be a woman and what it means to be a mathematician. There is no inherent reason for these images to conflict.

Balancing personal and professional life is a challenge for everyone, both men and women, and there is no one right way to strike that balance. Given that there is no longer a single prevailing model-in which the man is the professional and the woman stays home with the childrenwe need to be more flexible in our structures and recognize a multiplicity of models.

In focusing on access to the public roles that were once the almost exclusive domains of men, the women's movement of the early 1960 s and 1970s failed to deal with the tensions of combining this public/professional life with the continued demands of personal life. The next stage, therefore, involves taking down the barriers that make these two spheres disjoint, seeing the interactive nature of personal and professional life and discovering how they can be effectively interwoven. We must recognize that personal life is a professional matter and professional life is a personal matter.

References

[1] Fausto-Sterling, Anne. Myths of Gender. New York: Basic Books. 1985.
[2] Plato. The Symposium, translated by Walter Hamilton. London: Penguin Books. 1951. 208 e .
[3] Ibid. 209.
[4] Paraphrase from Immanuel Kant's Observations on the Feeling of the Beautiful and the Sublime. Berkeley: University of California Press. 1960, p. 78-79.
[5] Soloman, Barbara Miller. In the Company of Educated Women. New Haven: Yale University Press. 1985.
[6] Rossiter, Margaret. Women Scientists in America. Baltimore:

Johns Hopkins University Press. 1982. p. 16.
[7] "Everybody Counts," Washington, D.C. : National Academy Press. 1989. (National Research Council document).
[8] "Everybody Counts."
[9] AMS Notices, November 1988, p. 1310-1312. According to this survey, only 5.4% of the full professors in the mathematical sciences are women. For doctorate granting departments, Group I-III, the percent drops to 2.9%.
[10] I examine these and other questions in depth in my forthcoming book on contemporary women in mathematics.
[11] Halmos, Paul. I Want to Be a Mathematician. New York: Springe Verlag, p. 400. 1985.
[12] There are a few instances where such issues are raised in biographies of male mathematicians. See, for example, Constance Reid's biography of Hilbert.
[13] Rossiter.
[14] Aisenberg, Nadya and Harrington, Mona. Women of Academe. Amherst: The University of Massachusetts Press. 1988.
[15] These ideas are developed in more depth in my book.
[16] Other topics such as women caring for elderly parents, or sick or dependent adults are also very important and give rise to similar conflicts as having children.
[17] Hardy, G. H., A Mathematician's Apology. Cambridge: Cambridge University Press, 1940, 1985. p. 63.
[18] Hardy, p. 70.
[19] See for example the AWM Newsletter, Vol. 21 \#2, p. 11.

Grace Chisholm Young

"By 1893 Grace [Chisholm] had taken both her final examinations and qualified for a first-class degree at Cambridge. At this time she had high hopes for a carreer as a mathematician. But despite her outstanding work at Cambridge, she could go no further there. Women were not yet admitted to graduate schools in England.
"Göttingen, a pleasant little German university town, was considered at the time to be the major center for creative mathematics in Germany, and probably the world. Gauss had lived and worked in Göttingen. The leading mathematician there now was Felix Klein. He was to be Grace's advisor and close friend for many years to come...
"Now the final oral examinations were all that remained for Grace to complete. An amusing incident relates to this. She writes that she had ordered a carriage in time to take her to the examination. I '...was sitting in the window (waiting) for the carriage to drive up, when to my surprise I saw a carriage drive away from my house. [I thought] he must be going to turn round, but instead of that it drove away.’ Looking at her watch she realized she was going to be late. Checking with the maid it turned out that the carriage driver had called at the house to ask for the gentleman who had ordered the carriage. He had assumed it was a gentleman since he was told he was bringing someone to take a doctoral examination. The maid had sent him away. There was no gentleman in the house. 'I had to go on my legs as fast as I could, and of course I lost my way, but after wandering around several triangles and squares I go to the Aula very hot and five minutes late.' But no one was quite ready, so no harm had been done.
"The examination went well, and then it was over. She was a doctor-the first official doctorate granted a woman in Germany in any subject whatever. 'I was almost stupified,' she wrote. She was presented with an exquisite bouquet of flowers from one of the professors. 'The next moment Miss Winston [a friend and colleague] arrived; we used the occasion to execute a war dance of triumph. Then the professors came congratulating and beaming." "

[^4]The Escher Staircase
Jenny Harrison

Jenny Harrison is a visiting professor at the Mathematical Sciences Research Institute in Berkeley.

Mathematicians, be they men or women, beginners or stars, love mathematics. They endure perennial anxiety for the joy of occasional moments of discovery. It is only natural for people enamored of the beauty and perfection of mathematics to expect the mathematical community to reflect, in its behavior and ideals, the perfection of mathematical thought. And so we mathematicians expect to be able to admire our colleagues' honesty as much as their precision and enthusiasm. We assume we will find ourselves in a tolerant, trusting community, held together by a passion for mathematics. It would seem that anyone who loved mathematics would be welcome. Given this commonly shared belief, it is surprising that women drop out of mathematics in greater proportion than men.

Some mathematicians are not comfortable with this topic because it involves issues of social inequities that run counter to the basic assumption of collegiality. The majority of male mathematicians are decent people who find it difficult to believe that some of their colleagues do not welcome women into the profession as equals. And yet, because of social factors, women have a particularly difficult time developing their mathematical talents and pursuing their mathematical ambitions. Like the people on Escher's famous staircase, they feel as if they're climbing and climbing, but never quite reaching the top.

The scenes I will refer to are largely not my own story; most were told to me by students and faculty at Berkeley, Oxford, Princeton, Yale, and Warwick. Most women will not have experienced all of them, but most will have experienced some. Each incident, on its own, may sound minor, but over the years they can build up to leave deep feelings of isolation and alienation.

To the young women who will read this: I find myself in a dilemma. If I minimize the problems, there is a risk you will be unprepared for what might be avoided. On the other hand, I would urge you not to be discouraged in view of the increasing number of successful women in mathematics. With foresight, support, and luck, one can overcome most
obstacles and have a rewarding and challenging career as a mathematician.

Childhood

Picture an enthusiastic, confident girl, brilliant in many subjects and with exceptional mathematical talent. At age nine she is taught how to calculate square roots and works out her own algorithm for computing cube roots. She is obsessive and loves to solve problems. But life is hard for geniuses, especially when they reach puberty, and especially when they are girls. She learns quickly that her friends distance themselves unless she sacrifices the path entirely or adopts a lightweight style to mask her brilliance. She learns that mathematics is not considered to be feminine at a time when her femininity means so very much to her and her peers. Mathematics is not for sociable people [1] and she, as a girl, has been trained to be sociable. Boys stay away from her, and, if she persists, she fears losing the relationships that she is taught are central to a woman's life. Still, she takes the risk-more mathematics courses.

Many studies have shown that in high school, teachers favor boys, asking them harder questions and giving them more encouragement and attention [2, 3, 4, 5]. Parents, teachers, and friends all expect boys to be better at math than girls [6]. Counselors discourage girls from taking advanced courses [7] and do not give them crucial information about mathematics requirements [8]. At home, fathers, not mothers, are authority figures when it comes to mathematics homework [9]. Many women mathematicians have told me that their fathers were important early mentors and taught them that a cute little girl also could be a scholar. This helped them to weather peer pressure so that their self-confidence and enthusiasm, essential for success in mathematics, survived for the next round.

College

In college, it is more acceptable for women to be smart, and nowadays about half of all bachelor's degrees in mathematics go to women. The peer-pressure problems greatly diminish, but now the difficulties center on the teachers. Women students have almost no role models and fear acting too silly, motherly, aggressive, flirtatious, talkative, or shy. Harassment, from inappropriate flirtation to
outright sexual assault, is a major problem that sometimes forces women to transfer or leave mathematics entirely. After her teaching assistant kept a regular vigil outside her house, a Berkeley woman transferred to another university. Another teaching assistant offered a woman a preview of the final exam in exchange for sexual favors. She became severely depressed and dropped out of school. Sometimes male graduate students find themselves, as teaching assistants, in a position of authority over some attractive women and they take advantage of it. A department chair at a major university claims that the biggest problem he has with new male graduate students is their making inappropriate overtures to female undergraduates.

Faculty and teaching assistants fresh from foreign cultures sometimes express unacceptable views more freely [10]. One such professor handed back tests saying, "Even the women did well."

Some of the professors neglect the women as students. Warwick students complained about one professor who completely ignored the women in class--he would not even answer their questions. An Oxford professor would regularly address a mixed audience as "gentlemen." At Berkeley, the students noticed that some professors, when asking questions of the class, would not make eye contact with the women students. Some women withdraw into shyness and are ignored even more. Only a rare individual will excel in such circumstances.

It is possible to change classroom dynamics dramatically with subtle body language and voice cues. A woman professor saw a typical pattern in her undergraduate class in real analysis-the most vocal students were men. The women students sat at the back of the room; they seemed intimidated and said nothing. She decided to try an experiment: to use verbal and body language to encourage the women. To succeed, she felt she needed to make space for the women and quiet the men. For example, she made regular eye contact with women to show that she expected them to know the answers, and she toned down her enthusiasm for the men. If a woman responded, the professor tried to refer to the student's ideas later in the lecture. Invariably, the student would beam and be more eager to participate the next time. The professor told no one what she was doing, and no one seemed conscious of it. By the middle of the semester, the class had turned around. The women had moved to the front row and were avid participants in the class. She knew something was happening when her grader commented, "It's amazing-your women students do so well." The class average (based on tests and homework) was a C+ but the women all made As and Bs.

This experiment was not fair to everyone. But one has to bear in mind that ordinarily the social climate is the reverse-it favors the men. This experiment shows that the atmosphere and social interactions in the classroom make a big difference in how well and how confidently the students grasp the material and produce good work. It's not simply a question of talent and desire to learn-the environment has to be right.

One of the most critical times of a woman's college days comes when she discusses her future plans with her adviser. The paucity of women faculty [11], especially in highly ranked mathematics departments [12], deprives female students of mentors who could help direct their career decisions. When a first-rate Berkeley undergraduate discussed the options with her male adviser, she let him know of her self doubts, and he questioned the sincerity of her desire to be a mathematician. He advised her not to go to graduate school unless she was absolutely sure. What she needed was validation of her ability and approval to move forward. She came to me for advice, and with my support and encouragement, she went on to get a doctorate and a job at a major university. Another honor student reported her adviser's response, "If you persist in this graduate school idea you will make some young man very unhappy." Another Berkeley student was advised to take up nursing despite her straight As in mathematics.

The student and adviser often compromise on a plan to try out graduate school in the master's rather than the Ph.D. program. The student does not realize that this tentative choice will label her for the next few years as not serious. I have rescued several women from this trap and got them into Ph .D. programs. One is now a postdoc in a top research department. An extreme case is a woman who was finishing her undergraduate work at Cambridge, having placed at the top each year she was there. No faculty member had suggested that she go to graduate school. I advised her to see an Oxford professor who became her thesis adviser, and she is now a tenured member of the Oxford faculty. A tenured faculty member at Warwick was never advised to go to graduate school. She only went to Harvard because her husband was encouraged to go there.

Many studies have documented the high drop-out rate of women graduate students. To quote just one source, the National Research Council report, "A Challenge of Numbers," says that less than one-tenth of women continue on for a doctorate from a master's degree, while nearly onequarter of the men do. In addition, the report notes that "the attrition of women along the path from the bachelor's to the doctoral degree is significantly higher in the mathematical sciences than in other science fields" [23].

Graduate School

In graduate school, only about 25% of the students are female. Men and women alike arrive full of hope, enthusiasm, and energy. I have vivid images of the bright young faces during their first few days of graduate school at Berkeley. The women do not know that many of them will give up within a couple of painful years.

Graduate school is difficult and demanding for both men and women. However, I would argue that circumstances conspire to raise the hurdles even higher for women students. In graduate school, more than at any other time, role models and a support system are crucial. Unfortunately, the
community of female mathematicians is still too small and dispersed to be of much help to young women [12].

Male mathematicians can be mentors for female students but they cannot be role models. A man can encourage, inspire, and teach women, but a woman cannot identify with him in the countless ways that distinguish women from men. Furthermore, an aggressive speaking style, minimal social skills, and blatant egotism-acceptable for men-are not suitable for most women to adopt. Finally, because most men have not experienced the subtle prejudice and often long-term discouragement women mathematicians do, men are less likely to be able to counsel women with the perspective needed to survive and flourish.

Three ingredients are needed for success in graduate school-talent, training, and confidence. If a student has had first-class undergraduate training, the course material will not pose a problem. Consider, though, a student who comes with straight As from a college without a strong mathematics program. The student will likely know much less than someone with four years of training from a strong department. Whether male or female, the student is likely to have some self doubts. But a female student is more likely to internalize these feelings of inferiority and to believe they reflect a lack of ability, while a male student is more likely to credit his failure to bad luck [14]. Peers and professors probably will make the same judgments due to the same social influences. If a woman student has good counseling-and that is a big if-the effect can be defused, but it is nonetheless very difficult for most. Her precious confidence quickly subsides. Of the three ingredients needed for success in graduate school, she now has only one.

It is common for a female graduate student to get far more attention for her femaleness than for her mathematics. This occurs in part because of the imbalance of numbers. In addition, a male postdoc conjectured to me that a female mathematician represents an ideal to many male mathematicians: not only can they make love to her, they can talk mathematics to her. She can understand them. The power difference between her and a male professor can worsen sexual tension, and the onus is on the professor, who may be older and one hopes wiser, to minimize this. If the faculty member is flirtatious, the student has to be on her guard for any changes of behavior. The inevitable silences in their conversations may make her feel so uncomfortable she stops thinking clearly and wants to leave the room. Women students are disturbed by interest based on their sex rather than mathematical ability. (I have heard many complaints about this.) Kindness, warmth, friendliness are fine, but the vast majority of women don't want their lives complicated with romantic overtures from their professors. One student's adviser was emphatic that he would not work with her unless they became sexually intimate. The power difference put her into a terrible bind. If she refused him, where would she go, would he retaliate? If she complied, could she live with herself? "One event can have a devastating effect on a woman. One uncurbed man can affect the careers of many women" [16]. But even when a faculty member is not overtly
attracted to a female student, subtle differences in attention can profoundly curtail the educational opportunities offered to women.

Sometimes the mathematical side of a woman is belittled. A graduate student at Warwick gave a ride to a visiting star in her field. She started to talk to him about his lecture and saw him chuckling to himself. She asked him what was funny and he bent over double, laughing, "A woman, talking mathematics, and foliations, it's too much!"

In an unfortunate bifurcation of reality and perception, some men who observe women getting attention for their femaleness become jealous. They feel that any attention is good attention and believe that attractive women have some unfair advantage over them. A male graduate student at Berkeley complained that female students have an easier time getting advisers because of course the professors (mostly male) would prefer to be working with a woman. This can be taken to an extreme: a worldclass mathematician justified his vicious opposition to a female competitor because of all the attention she received as a woman.

These problems diminish when there are enough women around. The men are more accustomed to their presence and the women have each other for support. Last year, a third of the graduate students in one seminar group at Yale were women and the atmosphere was quite genial. The women told me what a pleasure it was to look around the seminar room and sometimes find themselves a majority.

I observed this critical-mass phenomenon at Berkeley in our dynamical systems group which a male professor and I led. Over a period of seven years, a third of the students were women. Again, the atmosphere was healthy. Even when potentially intimidating guest speakers would arrive, we would all take them out for a beer and talk about mathematics. We noticed no generic differences in talent between the male and female students in this group. They all got good degrees and good jobs. Some of the women were outstanding (so were some of the men!).

Shyness is the biggest difference between female and male students, and I have seen it everywhere. None of a woman's training has prepared her for the combative, schoolyard games she encounters in graduate school, and she may adopt shyness as an escape. One Berkeley student would only talk to her adviser from his office doorway for most of a year. Her adviser worked around these problems with great care, and she wrote an excellent thesis. A Yale woman literally trembled during her weekly appointment with her adviser. He had observed her reticence (luckily he did not confuse it with a weak intellect) and discussed with me constructive ways around it.

Female students can be especially quiet in seminars. A student at Berkeley couldn't answer a question directed to her by the speaker, although she knew the answer perfectly well-she had recently proved it in her thesis. Sociolinguist Deborah Tannen has an explanation for quiet women [13]. She believes that men speak and hear a language of status and hierarchy whereas women speak and hear a language of connection and support. "Many men are more comfortable
than most women in using talk to claim attention." She notes that most women who want to ask a question or make a comment after a lecture need time to muster their courage, formulate their words carefully, then wait to be recognized by the speaker. Men are more comfortable interrupting and saying whatever is on their minds when there is an audience. "For most men, talk is primarily a means to preserve independence and negotiate and maintain status in a hierarchical social order. This is done by exhibiting knowledge and skill, and by holding center stage through verbal performance." Linguist Marjorie Swacker recorded discussion sessions at academic conferences. The length of the women's questions averaged less than half that of the men's. The men (and not the women) often began with a statement, asked more than one question, and followed up the answer with another question or comment [17].

Women can learn to be more assertive. When I visited Warwick in 1988, I found the female students and faculty regularly gave lectures to each other. I tried this at Yale, and it was remarkable how much more comfortable the women felt, both as speakers and as members of the audience. The woman who had trembled before her adviser gave an eloquent lecture to this group. Later she gave a similar talk in her adviser's seminar and found that her practice session enabled her to speak with clarity and confidence.

Faculty

A true colleague should be part of an academic familynever left out, never feeling left out, not suffering from a sense of isolation. Having just left the advisers/parents, postdocs' professional self-images are vulnerable. Their ideas need to be recognized and their thoughts validated as worthwhile. Women are too often ignored at this point in their careers. One Berkeley faculty member recounted the many luncheons at which her remarks were ignored unless a male present repeated them word for word: "Did you hear what she said? It was really interesting." Then and only then would her thoughts be discussed. Another faculty member at a prestigious department avoids faculty meetings because she believes that her male colleagues don't listen to her. She sends her comments to the meeting with a male friend, believing the department will listen to him. Karen Uhlenbeck wrote in 1988 that overt discrimination was only a small part of the problem. "One of the most serious problems women ... have is conceptualizing and acting upon the subtle non-articulated lack of acceptance." [18].
"Inclusion brings confidence. Exclusion brings emotional damage, withdrawal from discourse. Still, some succeed. They do so in less competitive departments or within supportive subgroups within competitive departments. Some manage by working in complete isolation, producing nothing for a few years and then announcing a major, innovative result" [19]. Uhlenbeck, speaking at the 1988 AMS meeting in Atlanta, said, "I cannot think of a woman mathematician for whom life has been easy. Heroic efforts tend to be the norm" [19]. Judy Roitman, at the same meeting, said, "Women's achievement in mathematics has been too often
accompanied by heroic feats of character. Think of Julia Robinson, unsalaried, sharing a corner of her husband's office for so many years, and consider the strength of mind and will that kept her focused on her work, and unconcerned about her career" [19]. Many men would find it difficult, if not impossible, to be productive under the conditions in which most female mathematicians routinely work [15]; yet the comparatively small number of women mathematicians is often attributed to innately inferior talent.

Joint work can present unusual problems. Intense intellectual intimacy is necessary for success in mathematical collaboration [20]. When the collaborators are of the opposite sex, they may run up against social taboos-too often they are suspected of sexual intimacy and the man is credited for the work [14]. A female postdoc reported that her male postdoc collaborator got all the invitations to speak about their work. Male collaborators may suffer from unconscious bias. Two women told me their collaborators appeared not to notice their ideas but later claimed credit for them.

As a woman gets older, many of these cultural problems lessen in their impact on her and it is easier for her to be a mathematician. She gives more lectures, and men talk to her because they are primarily interested in her work. Her male competitors are also more relaxed. Some of them have stopped doing research.

At what age do women do their best work? I made an informal survey and found that ten years is typically added to the answer a male mathematician would have given: $35-50$ instead of $25-40$. When asked, the women said it was a matter of confidence. The inequities not only decrease but the older woman is less dependent on the approval of others. She has tenure, she has publications, she has prestige. Her salary may not be as high [21] as that of a man; it is probable that her department is not as prestigious as that of a man [12]; and she has to confront the myth that mathematics is for young people [22]. But this is small potatoes compared to what she has been through.

Periodically, over the last 15 years, many have predicted significant increases in the percentages of women in the top math faculties. Despite these predictions and hopes of young women of yesteryear, this has not yet come to pass. Today, out of 303 tenured faculty in the ten most highly ranked U.S. mathematics departments, only four are women; among assistant professors, one out of eighty-six is a woman.

To the young women mathematicians who read this article, I hope it gives you an opportunity to consider ways in which you might respond to the kinds of predicaments I have described, so that, should they happen to you, you will not withdraw into your shell or blame yourself. Finding kindred spirits with whom to discuss the problem and share your emotions will help you to prepare a swift, dispassionate, sophisticated response.

I am indebted to Patricia Kenschaft for her excellent booklet, "Winning Women into Mathematics" [16] from which many of the references in this article were taken.

References

1. Keith, S., "Interest Inventories and Mathematics," unpublished article, Dept of Math., St. Cloud State University, MN 56301, 1991.
2. Good, T.L., Sikes, J.N., and Brophy, J.E., "Effects of Teacher Sex and Student Sex on Classroom Interaction," Journal of Educational Psychology, 65, pp. 74-87, 1973.
3. Becker, J.R., "Differential Treatment of Females and Males in Mathematics Classes," Journal for Research in Mathematics Education, 12, pp. 40-53, 1981.
4. Fennema, Elizabeth and Peterson, Penelope, "Autonomous Learning Behavior: A Possible Explanation of Gender-related Differences," Mathematics in Gender-related Differences in Classroom Interaction, eds. L.C. Wilkinson and C.B. Marret, Academic Press, New York, pp. 17-36, 1985.
5. Fennema, E. and Reyes, L.H., "Teacher/Peer Influences on Sex Differences in Mathematics Confidence," University of Wisconsin, Madison, Dept of Curriculum and Instruction, 1981.
6. Ernest, J., "Mathematics and Sex," MAA, Washington, D.C., April, 1976.
7. Haven, E.W., "Factors Associated with the Selection of Advanced Academic Mathematics Courses by Girls in High School," Research Bulletin 72, Princeton Educational Testing Service, 1972.
8. Kenschaft, P.C., "Confronting the Myths about Math," Journal of Career Planning \& Employment, 48, pp. 41-44, 1988.
9. Eccles, J., et al., "Self-Perception, Task Perceptions, Socializing Influences, and the Decision to Enroll in Mathematics, "Women and Mathematics: Balancing the Equation, eds. S. Chipman, L. Brush and D. Wllson, Lawrence Erlbaum Associates, Inc, Hillsdale, NJ, 1985.
10. Sandler, Bernice R., "The Campus Climate Revisited: Chilly for Women Faculty, Administrators, and Graduate Students," Project on the Status and Education of Women, Association of American Colleges, 1818 R St., NW, Washington, DC 20009, 1986.
11. The Annual Report on the Economic Status of the Profession, 1989-90, ACADEME, Bulletin of the American Association of University Professors, 76:2, p. 24, March-April, 1990.
12. Selvin, Paul, "Does the Harrison Case Reveal Sexism in Math?," Science, 252, pp. 1781-1783, June 28, 1991.
13. Tannen, Deborah, You Just Don't Understand, William Morrow and Co., Inc., New York, 1991.
14. Keith, S. and Keith, P., editors, "Proceedings of the National Conference on Women in Mathematics and the Sciences," St. Cloud, MN, 1990.
15. Helson, R., "Women Mathematicians and the Creative Personality," Journal of Consulting and Clinical Psychology, 36, pp. 210-220, 1971.
16. Kenschaft, P.C., editor, "Winning Women into Mathematics," Mathematical Association of America, 1991.
17. Swacker, Marjorie, "Women's Verbal Behavior at Learned and Professional Conferences," The Sociology of the Languages of American Women, eds. Betty Lou Dubois and Isabel Crouch, San Antonio: Trinity University, pp. 155-160, 1976.
18. Private communication, Oct., 1988.
19. Associationfor Women in Mathematics Newsletter, 18:3, p. 1988.
20. National Research Council, "Mathematical Sciences: a Unifying and Dynamic Resource," National Academy Press, Washington, DC, pp. 1-10, 1986.
21. Vetter, B.M., "Women's Progress," Mosaic, 18, pp. 2-9, 1987.
22. Stern, Nancy, "Age and Achievement in Mathematics: A CaseStudy in the Sociology of Science," Social Studies of Science, 8, pp. 127-140, 1978.
23. "A Challenge of Numbers," Committee on the Mathematical Sciences in the Year 2000, National Research Council, p. 47, 1990.
24. Helson, R., "The Creative Woman Mathematician," Women and the Mathematical Mystique, eds. L. Fox, L. Brody, and D. Tobin, Johns Hopkins Press, pp. 23-54, 1980.

Women in the Early $\mathfrak{A M S}$

"By 1888 women had already made important contributions to mathematics [in the U.S.]. They had been college teachers of mathematics for a quarter of a century. Christine Ladd, who had completed a dissertation under Charles Sanders Peirce but been denied a Ph.D. at Johns Hopkins because of her sex, had published in the American Journal of Mathematics and elsewhere. In 1886, two years before Thomas Fiske and his friends met at Columbia to start the New York Mathematical Society [later to become the AMS], Winifred Edgerton had received her Ph.D. cum laude in mathematics from Columbia, the first American woman to be granted a Ph.D. in mathematics.
"For the first two and one-half years the New York Mathematical Society had no women members, although the desire to publish a journal, the Bulletin, provided impetus for a major membership drive. Hence, in 1891 , uponinvitation, the first six women joined the NYMS. The first, admitted in May of that year, was Charlotte Scott, holder of a doctorate from the University of London and head of the mathematics department at Bryn Mawr College. Scott, a distinguished geometer, became one of the most active and recognized women in the AMS in the early history of the Society, serving on its Council and as vice-president...
" $[I n$ the 1920 s ,] two women were highly visible as scholars and members of the Society. Anna Pell Wheeler published in functional analysis, directed seven Ph. D. dissertations at Bryn Mawr, and was actively involved in the AMS. In the 1920s, she served on the original Board of Trustees, served on the Council, and was the first woman to give an invited address and to deliver the Colloquium Lectures. [Since then, two other women, Julia Robinson in 1980 and Karen K. Uhlenbeck in 1985, have presented AMS Colloquium Lectures.]
"Another Chicago Ph.D., Olive C. Hazlett, was a noted algebraist who worked in the areas of modular invariants and linear associative algebras. Of the many papers she gave, one was delivered at the International Congress in Toronto in 1924, another at the International Congress in Bologna in 1928... Hazlett also served as cooperating editor of Transactions. The only other woman who served in that editorial position during the AMS's first.fifty years was Caroline E. Seely, a 1915 Columbia mathematics Ph.D. and clerk to the secretary of the AMS..."
-from Jeanne LaDuke's contribution to the panel "Centennial Reflections on Women in American Mathematics," held during the AMS Centennial. Providence, August 1988. Quoted from the AWM Newsletter, November-December 1988.

Mathematics and Women: Perspectives and Progress

Alice T. Schafer

Alice T. Schafer is chair of the mathematics department at Marymount University in Arlington, Virginia.

The 1989 National Research Council report, "Everybody Counts," says (page 23) that, "gender differences in mathematics performance are predominantly due to the accumulated effect of sex-role stereotypes in family, school, and society." Of course, such a statement would not have been surprising had it appeared in the AWM Newsletter-women have been saying this for years. But it was refreshing to see it in such a report. The report also quotes Workforce 2000 (page 18) as saying, "White males, thought of only a generation ago as the mainstays of the economy, will comprise only 15% of the net additions to the labor force between 1985 and 2000." The report identifies women as one group that will be needed to fill a gap left by the absence of white males. What is being done to welcome women into mathematics and keep them there?

Some of the statistics are, unfortunately, depressingly familiar. According to Science magazine (28 June 1991, page 1781), there are 303 faculty in the "top ten" mathematics departments (identified as Berkeley, Caltech, Chicago, Columbia, Harvard, MIT, Michigan, Princeton, Stanford, and Yale), and the women can be counted on one hand. One is Joan Birman, who is actually tenured at Barnard College, a women's college of Columbia University. Another is Sun-Yung Alice Chang, who was offered a tenured professorship at Berkeley, but is currently at UCLA. The third is Berit Stensones, who has been appointed to an associate professorship with tenure at Michigan. And the fourth is Marina Ratner, who is tenured at Berkeley; for a history of her original appointment, see the AWM Newsletter from 1974 and 1975. The situation among non-tenured faculty is equally dismal: one woman out of eighty-six.

According to the October 1990 issue of Notices, there were 991 doctorates awarded in mathematics by institutions in the U.S. and Canada in 1989-1990, 18% of which were awarded to women. From that crop of doctorates, the thirtynine "Group I" institutions employed 101 men, but just twelve women. Such statistics are often explained away by saying that there are no qualified women "out there." This is difficult to believe when one looks at the percentage
of women receiving doctorates in mathematics, which has been plus or minus 20% for nearly 10 years now (with many of them coming from the "top ten"). And in recent years, many women have received postdoctoral fellowships in mathematics and have been invited speakers at national and international research conferences.

Once I had a conversation with a male mathematician who said he would never hire a woman mathematician because she would probably sue if she were not granted tenure. I know of no woman mathematician who has ever advocated that a woman be appointed to a position for which she was not qualified or that, once appointed, she be judged on any basis different from that of a male member of the department. Indeed, I was once asked by a man at one of the "top ten" institutions what I would do if faced with the following situation he encountered in his own department. A man and a woman were being considered for promotion to full professor. The woman's research was inferior to that of the man, but some members of the department felt that if one were promoted, the other should be also, for personal reasons. My answer was absolutely not! The woman's research should be judged on the same basis as any man's in the department. I suspected that my answer was a disappointment to the man who asked me; I think he had expected me to say that the woman should be promoted despite inferior research.

On a different occasion, when I was talking to a mathematician at another of the "top ten," I asked why there were no women on the faculty. His answer was that if the department could find anyone as good as " X," a woman at a less prestigious university, that his department would hire her. "What about hiring X?" I asked. No response-end of conversation. An answer I have heard many times from men at research universities is that women have children and cease to do research, but there are so many counterexamples that the argument is fallacious. And anyway, how many men, with or without children, have short "research lives"?

There has been a great deal of discussion in recent years about attracting more students-and, in particular, more women-into graduate school in mathematics. Programs and funding are not enough. There must be women on the faculties, and the women students must see their work evaluated on the same basis as that of their male
colleagues. When it comes to mathematics, male and female students should be treated the same. But when it comes to certain kinds of social factors, it is, unfortunately from my viewpoint, sometimes necessary to treat women differently. During my years teaching undergraduates, I told my female students that I would not write a letter of recommendation for them for entry to graduate school unless they promised to complete the work for the doctorate. I do not tell my male students this, and some of them did not complete the work for the doctorate. One of my Wellesley students now jokingly tells me that the reason she has a Ph.D. is that I had refused to write a recommendation for a National Science Foundation (NSF) fellowship unless she promised she would complete the work. She is now married, has children, and does research.

It has been well documented that many capable girls and women have reacted to the myth that females cannot do mathematics by avoiding mathematics courses and steering clear of careers in mathematics and science. If schools, colleges, and universities have failed here, women and some men have worked to eradicate this injustice and have established organizations and programs for this purpose. There is space here to mention only a few.

I believe that by now all mathematicians know of the existence of the Association for Women in Mathematics (AWM) founded in 1971 as an independent organization and with offices at Wellesley College since 1973. A history of AWM, written by former AWM President Lenore Blum, appears in this issue of Notices.

Two years after AWM was founded, due to the efforts of Cathleen S. Morawetz, aided by Isadore M. Singer, the AMS created the Committee on Women in Mathematics, with Morawetz as its first chair. Under her direction, a Directory of Women in Mathematics was published in order to show the mathematical community that there were women who were qualified to be faculty members at research institutions, to be speakers at mathematics meetings and research conferences, and to be appointed members of important national committees. During my tenure as the third chair of the Committee, a second Directory of Women was published, and I. N. Herstein, a member of the Committee, wrote an article in Notices, "Graduate Schools of Origin of Female Ph.D.s" (April 1976, page 166). His idea was that, if women preparing for graduate school in mathematics were aware of the departments which had in the past been hospitable to women, they might want to consider those schools. At that time, the Committee also submitted several proposals to the NSF for funding for programs that would benefit women mathematicians, but, unfortunately, none of them was funded. (I am happy to say that in recent years the NSF has begun to fund programs almost identical to the ones the Committee recommended.)

The Committee was later expanded to the AMS-ASA-AWM-IMS-MAA-NCTM-SIAM Committee on Women in the Mathematical Sciences and is currently chaired by Susan Geller of Texas A\&M University. Geller reports that the Committee has developed a questionnaire to be distributed
at Ph.D.-granting institutions in an attempt to determine why students in the mathematical sciences leave graduate school. The questionnaire has already been tested at six cooperating institutions, and as soon as funding is available, the study will include all the Ph.D.-granting institutions. The Committee has also been collecting statistics on the relative acceptance rates of male and female authors in various journals. (Journal editors interested in this study should contact Geller.)

In 1975, the MAA established the Women and Mathematics Program (WAM), the first program in the country designed to encourage female students to continue to study mathematics and to seek careers in fields requiring the use of mathematical tools. WAM participants are women from business and industry whose career choices involved a strong background in mathematics and science. They serve as mentors, role models, career counselors, and classroom visitors to elementary, middle, and high school students in sixteen regions throughout the United States. Many of these WAM participants also arrange plant tours for groups of students. The current director of WAM, Alice Kelly of Santa Clara University, says, "We work with both male and female students in our classroom visits, career counseling, and tours, thus exposing young males to the woman of today."

Many colleges and universities have instituted programs to encourage girls in elementary school and to show them how exciting mathematics can be as well as instituting programs for high school women students. An excellent reference which has descriptions of many of these programs is the proceedings of the National Conference on Women in Mathematics and the Sciences, held in 1989 and organized by Sandra Z. Keith of St. Cloud University.

In 1987, the MAA established a second committee on women in mathematics, known as the Committee on the Participation of Women, chaired by Patricia Clark Kenschaft of Montclair State University. Among the Committee's recent endeavors is the MAA publication "Winning Women into Mathematics," which includes a list of fifty-five cultural reasons why women are underrepresented in mathematics. During the national meetings in the past couple of years, the Committee has presented skits using mathematicians as actors to dramatize "micro-inequities" that have actually happened within the mathematical community. Kenschaft describes micro-inequities as "small slights that are often humorous in themselves but chip away at women like water dropping on a rock."

Charlene Morrow and her husband James are Directors of SummerMath at Mount Holyoke College. Describing the program, she writes: "SummerMath, now in its tenth year, was designed to address the underrepresentation of women in mathematics-based fields. It is an intensive, sixweek program for high school age females that provides new perspectives and new experiences in mathematics, computing, and science. We emphasize greater conceptual understanding, affirmation of young women as capable members of a learning community, and the importance
of constructing one's own understanding of complex ideas The atmosphere of the program is one of challenge with support: the challenge of rigorous study and hard problems with the support of a community of teachers, residential staff, and peers Students learn to take charge of their mathematical education, gain a mathematical voice, and experience increased success in mathematics classes upon returning to school."

The Sonia Kovalevsky High School Mathematics Days began in 1985. They were initiated by Pamela Coxson and Mary Beth Ruskai, who at the time held Office of Naval Research science fellowships at the Mary Bunting Institute of Radcliffe College. They suggested that the twenty-fifth anniversary of the Institute and the fifteenth anniversary of AWM be celebrated together, and the Sonia Kovalevsky Symposium was the result. As part of the Symposium, Coxson organized a Sonia Kovalevsky High School Day for high school women and their teachers in the Boston area. The Days have continued on a national scale with some funding from AWM and the remainder from local businesses and industries.

According to Donna Beers of Simmons College, the Sonia Kovalevsky Days held at her institution "celebrate the beauty and uses of mathematics. The goal of these programs has been to show students women professionals working in attractive and challenging fields in which their mathematical preparation has proven indispensable. Above all, organizers aim to encourage young women to persevere in their study of mathematics throughout all four years of high school and beyond. The basic ingredients of these programs have included: hands-on workshops on cutting edge applications of mathematics, e.g. percolation theory, genetics, cryptology, chaos theory, and fractal geometry; career panel discussions led by women professionals, e.g. accountants, actuaries, aerospace engineers, statisticians, computer software engineers; and a lunch-time keynote speaker, often a woman scientist or mathematician who shares her mathematical biography, stressing the hard work required as well as the satisfaction and confidence that developing one's mathematical potential can bring. Student and teacher evaluations of the Sonia Kovalevsky High School Mathematics Days have been uniformly positive,
urging that more be held more often, even at the middle school level in order to have a wider impact on young women students early on."

As mentioned above, the NSF now funds programs similar to those first suggested in the early 1970s by the Committee on Women in Mathematics; for example, the Visiting Professorships for Women and the travel grants for women to attend professional meetings and conferences. The NSF also funds many other programs for women, such as research planning grants, Career Advancement Awards for experienced women scientists, and Faculty Awards for Women for those who are tenured but not yet full professors. The latter two programs aim to recognize the nation's most outstanding women scientists and engineers in academic careers of research and teaching and to retain these women in academia.

Another NSF program, Research Experiences for Undergraduates (REU), has proved to be of great value to women undergraduates. For example, the nomination papers for the AWM Schafer Prize, which recognizes outstanding undergraduate women mathematics majors, show that many of the nominees spent summers in REU programs, and some became coauthors of research papers. This past summer, the NSF funded a six-week Summer Mathematics Institute at Mills College in Oakland, California for twenty-four women students, who worked intensively on advanced topics in a seminar setting. The aim of the Institute was to encourage these talented students to go to graduate school in mathematics. For a more complete description of opportunities at NSF, consult the brochure "Opportunities in the Mathematical Sciences," available from the NSF.

At present, fewer than one-fifth of the nation's mathematicians and scientists are women, and the prediction is that between 1991 and 2000 more than half of those entering the workforce will be women. We need to develop more ways of attracting and retaining women in mathematics. Women should be held to the same mathematical standards as men and should be judged on the same basis as men. Everybody Counts urges us to increase the pool of students who are successful in mathematics. Let's take that challenge seriously.

Iulia Robinson

Abstract

"Julia Robinson and I were graduate students together at Berkeley. During World War II we also did a lot of heavy computing in a large group organized by Jerzy Neyman. After the war we were glad to return to our studies and research, I to astronomy and Julie to mathematics, but there was still overlapping in statistics. "Julie was by then married to Raphael Robinson, who had an appointment in mathematics; a University rule made it quite difficult for the mathematics department to employ both of them. Professor Neyman felt that Julie should be employed and encouraged to do research. He argued that statistics, although technically in mathematics, had a lot of autonomy in budget and appointments, including a 'line item' for a research assistant. Although I already held this position, he arranged that I would be moved to another research position to accommodate Julie's appointment. Fine, except that personnel suddenly interfered, contending that the position, now that it had changed, should be under personnel-in essence, out of research. Julie was asked to submit a 'job description' of what she did each day, so she did: Monday-tried to prove theorem, Tuesday-tried to prove theorem, Wednesday-tried to prove theorem, Thursday-tried to prove theorem, Friday-theorem false. Personnel withdrew. The position remained in the graduate studies division, and Julie got appointed."

-by Elizabeth Scott, from a tribute, "Julia Bowman Robinson, 1919-1985," Notices, November 1985.

A Brief History of the Association for Women in Mathematics: The Presidents' Perspectives

Lenore Blum

Lenore Blum is a research scientist at the International Computer Science Institute, Berkeley, and Letts-Villard Research Professor at Mills College, Oakland.

Preface

The Association for Women in Mathematics (AWM) ${ }^{1}$ held its Twentieth Anniversary Celebration at the Joint Mathematics Meetings in San Francisco, January 16-19, 1991. The festivities included: a Symposium entitled The Future of Women in Mathematics, highlighting ten young women mathematicians (within ten years of Ph.D.) who talked about their current research; a Graduate Student Workshop featuring ten women graduate students who presented their dissertation results; a Workshop Luncheon where dozens more students and AWM members met to discuss "Is there life after graduate school?"; the twelfth annual Noether Lecture (by Alexandra Bellow); the presentation of the first annual Louise Hay Award for contributions to mathematics education (to Shirley M. Frye); and the AWM Anniversary Banquet followed by an Open Party complete with disc jockey and everyone's favorite dancing music. ${ }^{2}$

It was truly a joyous occasion. For those of us who were around during the early years of the AWM, yet still imagine ourselves somewhat youthful, at least in outlook and perspective, any initial disbelief about the prospect of celebrating our twentieth quickly gave way to feelings of deep emotion and pride--pride on having clearly made it in our own way, indeed on our own terms. The numbers of women at the meeting, from old-timers to young faculty and graduate students, and even undergraduates, were staggering.

[^5]As one woman put it, one did not have to look far to see female faces amongst the sea of faces in every session of the Meetings. Having been on the committees that picked the young women for the Symposium and Graduate Workshop, as well as the Alice T. Schafer Prize committee that awarded the first prizes last summer to two outstanding women undergraduates (Linda Green and Elizabeth Wilmer), I can testify to the elation we felt on seeing the large pool of extremely talented young women mathematicians. Clearly, these awards and invitations are viewed with great respect in the mathematics community, for we witnessed department heads and thesis advisors vying with each other to position their candidates well. Our only dismay was that we could not award all those deserving.

The following article on the history of the AWM is based on an after-dinner talk I gave at the Anniversary Banquet. Shortly after having agreed to give such a talk, it dawned on me that, unlike mathematics-which to some extent one can create in one's head-for history, one needs to have the facts. And, although for a certain period of my life I was intimately associated with the AWM, I certainly did not have total recall nor even near complete knowledge of all that had happened during the past two decades.

So I decided to enlist the help of all AWM Presidents. I wrote each of the other Presidents (Mary Gray, Alice Schafer, Judy Roitman, Bhama Srinivasan, Linda Rothschild, Linda Keen, Rhonda Hughes, Jill Mesirov, Carol Wood) asking ". . . if you could provide me a brief review of what happened during your term, perhaps discuss its special character ... and also comment on questions such as: How you feel AWM has made a difference, areas where we need work, ideas and hopes for the future (Any humorous/insightful anecdotes would be welcome.) I would then try to compile and interweave these stories [in my presentation]"

The history I compiled is in large part a history as seen through the Presidents' eyes, a uniquely personal vision, culled from the many letters and email responses I received. It also comes from the AWM Newsletters, Notices, my personal files, and correspondence with Judy Green about the origins of the AWM. Her article with Jeanne LaDuke on "Women in American Mathematics: A Century of Contributions" (WM) in A Century of Mathematics in America (ed. P. Duren, AMS, 1989) as well as the
book More Mathematical People (MP) by Donald Albers, Gerald Alexanderson and Constance Reid (Harcourt, Brace, Jovanovich, 1990) were also helpful. I have also incorporated some of my own memories and experiences, not just as AWM President, but as a woman mathematician "growing up" during that time. "Brief" in the title is meant as a disclaimer acknowledging my many omissions.

In planning the talk, I decided to quote people directly rather than paraphrase or synthesize. This turned out to be an extremely fortuitous decision for a number of reasons, including the fact that it helped provide the eloquence and humor, in addition to substance, necessary for an ideal after-dinner talk. But even more, by reading the quotes directly, I along with the audience could thoroughly enjoy what everyone had to say. In uncharacteristic fashion, I could even ham it up a bit and add some dramatic effects of my own. Some of the humor was so infectious-we were in stitches-that a couple of times I had a hard time completing a sentence I was reading.

The audience was terrific. It comprised old friends and new. The students and postdocs were there as were very many AWM members whose involvement and support over the years have been so vital to our continuing successes. All AWM Presidents except Judy Roitman (whose semester had begun) and Linda Keen (who was in Helsinki) were present as were Bettye Ann Case (longtime AWM meetings coordinator) and Anne Leggett (longtime AWM Newsletter editor), who both earlier in the day had received AWM citations at the Business meeting. There was Marie-Françoise Roy of the European Women in Mathematics, Hope Daly and her Joint Meetings arrangement staff who have worked so closely with us over the years, Debbie Lockhart our program officer at the National Science Foundation (NSF), Mike Dooley of the Exxon Education Foundation, and AWM Executive Director Patricia Cross-the person behind-thescenes orchestrating this happy event.

Jill Mesirov had suggested that I recognize everyone who had been involved in founding the AWM at the beginning, asking them to rise, and then as I went through the talk, those who joined AWM in five year intervals (Eileen Poiani had done something similar at the MAA's seventy-fifth), and this turned out to be great fun. I think by the end everyone had a chance to stand.

Since I had never given an after-dinner talk before, I was really somewhat apprehensive beforehand. I suspect others felt the same apprehension, for the only public announcement I could find of my talk was in the Banquet menu. At dinner, Mike Dooley who was sitting next to me offered little reassurance when he warned that such talks should never last more than fifteen minutes. So I knew I probably did okay when afterwards Mike said I really could have gone on for another fifteen. I glanced at my watch and much to my surprise I had talked for over forty-five minutes! And then Hope Daly came by to say how she had relived every minute of all the past meetings with me. But most of all, I felt the seal of approval when Judy Green, our consummate historian, came over beaming, gave me a hug
and said "You did real good!"
Here is my attempt to recapture the magical spirit of that evening....

PART 1

How it was ...
I would like to begin my talk by recreating some of the atmosphere twenty years ago. So I must start with a warning: the next few minutes [i.e. this section] may be a bit depressing, perhaps even somewhat hard to take. But bear with me, I promise it really will get better.

First, for my journey back in time, I went to the library and checked out Notices for 1971. The Joint Mathematics Meetings that year were held in Atlantic City; the program in the January issue was quite revealing. Of the more than fifteen invited hour speakers-AMS, MAA and ASL combined-none was female (i.e. 0%); of the more than 300 AMS ten minute talks, about fifteen were given by women (5\%). I became curious and looked at the Personal Items section. This contains short descriptions of individuals' professional activities and achievements as well as job promotions and appointments. Only five of the approximately 145 blurbs seemed to mention women (less than 4%). Of the thirty-one promotions listed, three were female (10%); at the instructorship level, women seemed to do relatively better, getting three of the nine appointments (33%). Here I used the well-known mathematical technique (which has served us so well over the years) of counting and dividing to calculate the telling percentages. And sure enough, as I went down the list-as the positions became less prestigious-the percentage of women increased. As if to confirm this trend even more dramatically, I noticed further on that, of the four deaths reported in that issue, two were women (50%)!

In the February 1971 issue I found a letter from Elizabeth Berman, pointing out some "advice" on how to find employment, recently published by the Mathematical Sciences Employment Register: "Women find the competitive situation in the government somewhat more advantageous to them, since it is relatively hard to secure a well-qualified mathematician for many higher level government jobs. In many such cases women are welcomed if their qualifications are better than those of the available men." Need I say more?

A gloomy picture of the status of women in academia was painted by Ruth Silverman in a letter that appeared in the June Notices that year. I quote excerpts:
"Editor, Notices:
"As a result of surveys on many campuses it becomes apparent that there is a pattern of discrimination against women in all fields...
"1) Women are predominantly at the bottom of the pyramid, irrespective of qualifications ... and suffer a substantial salary inequity. 2) Many academic departments have no full-time female faculty at all. In many ... the percentage of female faculty is far below the percentage of females among qualified applicants. 3) In many depart-
ments women with Ph.D.s hold positions below the rank of Assistant Professor and are kept at these low ranks without promotion or significant salary increase. 4) Women tend to be hired on a marginal, temporary, or one-year basis Often women teaching part-time have the same teaching load as men teaching full-time. 5) There are departments which make it a policy not to appoint women who are married to members of the faculty ..."

Silverman goes on to recommend that "in the forthcoming annual [AMS] salary survey data be collected ... comparing salary levels by sex." This practice was initiated by the AMS some years later.

Now, if you were a female graduate student at the time, there were certain departments where you probably were not. For example, Princeton did not start admitting women to their graduate program in mathematics until the fall of 1968. Marjorie Stein (Princeton Ph.D., 1972) was the first woman to complete her degree requirements there, although a Japanese woman had been admitted some years earlier by mistake. Apparently the admissions committee, unfamiliar with Japanese first names, did not recognize hers as female.

But wherever you were, you may very well have been told the following "joke" by the head of your department or your thesis advisor: "There have only been two women mathematicians in the history of mathematics. One wasn't a woman and one wasn't a mathematician."

Thus it may not be so surprising that in those years we were often accused of not having a sense of humor. (Ms. magazine addressed that issue with a famous pop art cover depicting the wry feminist humor typical of the '70s: A young man earnestly asks his woman friend "Do you know the women's movement has no sense of humor?" to which she answers straight faced "No ... But hum a few bars and I'll fake it!")

It must be said however that, sometimes at least, this mathematical in-joke was told well-meaningly (if not misguidedly)-as it were, a friendly gesture to break the ice. Certainly, that's how I had interpreted it several years earlier at a party given by my department chairman when I was a graduate student at MIT. And it clearly was a manifestation of the time, of the awkwardness everyone felt with the few women around. (It did not occur to me until some years later that it was also a callous dismissal of two of the most important mathematicians in recent history.) The effect was nevertheless to help alienate us from our history, to reinforce self-doubts, and keep us mostly unaware of the strong women contemporaries who could very well have served as important role models and mentors had we known their existence early on: Mina Rees, Julia Robinson, Mary Ellen Rudin, Cathleen Morawetz, Olga Taussky-Todd, Jane Cronin Scanlon, and Marian Pour-El are a few such examples of mathematicians at that time who come to mind.

I do not want to give the impression that all professors and thesis advisors were hopeless. Some of us were fortunate to have supportive advisors during those important years. Lipman Bers is a stunning example of a professor who did much to encourage young women in mathematics. As he
put it (in $M P$), "It never occurred to me that women can be intellectually inferior to men." Among his many female Ph.D. students are Lesley Sibner, Linda Keen, and Tilla Milnor.

What we did ... (In the beginning)

Atlantic City

I think it is fair to say that the AWM had its birth at the Joint Mathematics Meetings in Atlantic City in 1971. As Judy Green remembers (and Chandler Davis, early AWM friend, concurs):
"The formal idea of women getting together and forming a caucus was first made publicly at a MAG [Mathematics Action Group] meeting in 1971 . . . in Atlantic City. Joanne Darken, then an instructor at Temple University and now at the Community College of Philadelphia, stood up at the meeting and suggested that the women present remain and form a caucus. I have been able to document six women who remained: me (I was a graduate student at Maryland at the time), Joanne Darken, Mary Gray (she was already at American University), Diane Laison (then an instructor at Temple), Gloria Olive (a Senior Lecturer at the University of Otago, New Zealand who was visiting the U.S. at the time) and Annie Selden. [Harriet Lord (then a graduate student at Temple, now at Cal State Polytech at Pomona) was at the MAG meeting but unable to stay for the women's caucus.]
"It's not absolutely clear what happened next, except that I've personally always thought that Mary was responsible for getting the whole thing organized"

What I remember hearing about Mary Gray and the Atlantic City Meetings, indeed what perked my curiosity, was an entirely different event, one that was also to alter dramatically the character of the mathematics community. In those years the AMS was governed by what could only be called an "old boys network," closed to all but those in the inner circle. Mary challenged that by sitting in on the Council meeting in Atlantic City. When she was told she had to leave, she refused saying she would wait until the police came. (Mary relates the story somewhat differently: When she was told she had to leave, she responded she could find no rules in the by-laws restricting attendance at Council meetings. She was then told it was by "gentlemen's agreement." Naturally Mary replied "Well, obviously I'm no gentleman.") After that time, Council meetings were open to observers and the process of democratization of the Society had begun.

Boston

Meantime, in the Boston area, women mathematicians had already been meeting. As Linda Rothschild writes:
"My involvement with AWM began in the late '60s, before it formally existed. In 1969, Alice Schafer, then at Wellesley, and I (a graduate student at MIT) organized a group of women mathematicians and students to meet every few weeks to discuss common problems and goals. Bhama Srinivasan joined when she started teaching at Clark
in 1970. [According to Alice Schafer, the original group also included Bernice Auslander, Kay Whitehead, Caroline Series (then a graduate student at Harvard), Eleanor Palais and, Linda Almgren Kime. Kime lived in Cambridge and that made an easy place for the group to meet.] When AWM was officially launched, our little group became the Boston area mafia of AWM. Through Alice's boundless efforts, an office was established for AWM at Wellesley, and it has been anchored there ever since"

Berkeley and me

In the beginning, I was quite ambivalent about the emerging women's movement in mathematics. As I replied to Linda Rothschild, "Thanks for the information. I was glad to have more details about the early days [of the AWM] in Boston. Things seem to have started up after I left (in '68) and it's not clear that I would have been involved... I was pretty 'unconscious' about such things at that time. It didn't hit me until I got to Berkeley."

The good thing about being "pretty 'unconscious' about such things" in those days was it left you free to do your mathematics. The bad thing of course was that either you internalized every negative message from society, subtle or overt, or else naively dismissed them as not meant for you. While I did not completely escape the former mode, I fit more naturally into the latter-which served me well up to a point, the point being that I also made important decisions naively.

A naive decision was for me to go to Berkeley.
After receiving my degree, I had an excellent job offer (assistant professorship) on the East Coast (Yale), my husband on the West Coast (Berkeley). We also had various joint offers, moderately good for each of us. We were up against the famous 2-body problem, classic for women mathematicians as I was to learn later (from AWM Newsletters ${ }^{3}$). But at the time, we knew of no one who might offer some wise, even sympathetic advice. I ended up accepting a lectureship at Berkeley ${ }^{4}$ being quite assured (by the department chairman and vice-chairman) that the position was competitive in practice (if not in title) with my other offers, and that things would work out. Of course they did not.

The spring of 1971 was a particularly bleak time for me professionally. But, then again, I was in Berkeley. It was the era of People's Park, Cambodia, and Vietnam. I would have had to have been totally unconscious not to be affected by the political events around me. But also, in truth, I found it quite exciting, reminding me of a much earlier period in my

[^6]life. In the Math Department, Moe Hirsch, John Rhodes, and Steve Smale had organized a Colloquium series on "Social Problems Connected with Mathematics." When Steve asked me to chair a colloquium on "Women in Mathematics," I quickly agreed.

Since I didn't know much about women in mathematics, I found three women who did: Ravenna Helson, a research psychologist who had done a study on women mathematicians and the creative personality; Sheila Johannsen, a historian knowledgable about the history of women in mathematics; and Betty Scott, chair of the Statistics Department at Berkeley, who had just co-authored a report of the Academic Senate on the status of women on the Berkeley campus.

The colloquium panel was a great success. The lecture hall was packed. And it was quite an eye-opener for me. For one, it had never occurred to me that there might be common personality traits amongst women mathematicians, except perhaps that we were each unique. ${ }^{5}$ It had never occurred to me how statistics could be a powerful political tool. I found Betty Scott's study a masterpiece, fleshing out cold data with poignant case studies. And then there was data that spoke clearly for itself, for example, her data on faculty positions in the Berkeley Math Department (ladder positions):

academic year	\% women
$1928 / 29$	20
$1983 / 39$	11
$1948 / 49$	7
$1958 / 59$	3
$1968 / 69$	0

But also, it was the first time I had heard about Hypatia (born in Alexandria, c. 370 A.D., wrote and lectured on Diophantine arithmetic, butchered to death at the age of 45 by religious fanatics), Maria Agnesi, Sophie Germain, and more. Sonya Kovalevsky's motto, "Say what you know, do what you must, come what may," which many of us immediately adopted as our own, told me that this was a woman who could not be cursorily dismissed. ${ }^{6}$

After that event, I became known as the expert on women in mathematics, on the West Coast at least. More importantly, I started to meet regularly with some of the women math graduate students: Laif Swanson, Joan Plastiras, and Judy Roitman. And, to use Linda Rothschild's expression, this

[^7]little group was to become the Berkeley "mafia" of the AWM.

The First Decade (1971-1981)
 Building the foundations, a time of many firsts

Mary Gray (1971-1973):

The mother of us all

Without a doubt, Mary Gray is the founder of the AWM and the "mother of us all." As Carol Wood (who became AWM President in January 1991) put it: "My overwhelming sense \ldots is that AWM would not have existed when it did, if at all, without the energy and vision of Mary Gray. That is probably too obvious to say, and of course there are others who shaped, changed, nurtured, etc. in critical ways ... But I was always struck by Mary's vision, and I think that our birthday party is an excellent opportunity to honor Mary ..."

Mary Gray
I first remember seeing a small announcement for the new organization, the Association of Women in Mathematics, placed by Mary in Notices, February 1971. The first issue of the AWM Newsletter (clearly written by Mary) appeared that May listing Mary Gray as chairman. By the second issue, "of" was changed to "for", but I don't recall when "chairman" was replaced by "President."

The Newsletter has since become the very embodiment of the AWM. From the start, it was our forum for discussing the role of women in mathematics, for exposing discrimination, for exchanging strategies, encouraging political action and, affirmative action, for informing, supporting, honoring, and of course, for job listings (which first appeared in the

February 1972 issue). It has been our key linkage with each other, with credit due largely to Mary and subsequent editors, Judy Roitman and Anne Leggett.

Mary set down goals and agenda for the early AWM. In an article ("Uppity Women Unite!") in the January 1972 MAG Newsletter she wrote: "We have some plans to improve the status of women in mathematics ... There are two categories of problems, those involving the general female population and those involving professional women mathematicians. We must go back to the elementary schools-rewrite textbooks, use films, etc., and retrain the teachers and counselors. The goal is to show girls and boys that girls can and should learn mathematics ... As a small first step, careful attention must be given by the mathematical community to the mathematical training of elementary schoolteachers, to see that they learn to like mathematics as well as learning mathematics ..."

Mary goes on: "What do women want? Let me be specific as far as women mathematicians are concerned: 1) Equal consideration for admission to graduate school and support while there, 2) ... for faculty appointments at all levels ..., 3) Equal pay for equal work, 4) Equal consideration in assignment of duties, for promotion and for tenure, 5) ... for administrative appointments at all levels in universities, industry and government, [and] 6) ... for government grants, positions on review and advisory panels and positions in professional organizations. Because of past injustices, special efforts will have to be made for some time to find women to consider. AWM is ready to help. Now is the time for discrimination to end."

What seems quite amazing now is that these were considered radical demands!

Mary Gray informed us (sometimes in far greater detail than many of us cared to know) of legislation on discrimination and affirmative action and urged us to become involved. She was not afraid to say things straight, to take on the establishment single-handedly. Challenging the system, she successfully ran in 1976 as a petition candidate for Vice-President of the AMS. As Bhama Srinivasan said when we met in Berkeley last fall, "Mary had the courage, and willingness, to take the initial steps and the initial hostility \ldots. [charting a course] which eventually wiped out the 'old boys network.' "

Not all women mathematicians were enthusiastic about the AWM in the beginning. For example, as Cathleen Morawetz (in MP) puts it, "I did not want the Association for Women in Mathematics to speak for all women mathematicians. I joined them later, but at that time they were terrible attackers ..."

Nevertheless, she played an important role herself in changing the consciousness about women in mathematics. "I was on a committee for disadvantaged groups in the Math Society, and I thought there should be a separate committee for women. I was terribly afraid when I went before the Board of Trustees-or it may have been the Council. Anyway, when it came my turn to speak, I said 'There's a problem with women. You may not have noticed
that there are not many women mathematicians.' "
Cathleen continues, "At that point Saunders Mac Lane said, 'Well, mathematics is a very difficult subject.' I was not up to coping with that, but Iz Singer picked up the ball. The committee [on women] was formed and I was made chairman ..."

In 1973, the Committee on Women published the first Directory of Women Mathematicians.

Alice Schafer (1973-1975):

AWM Incorporated

In terms of its organizational structure, I picture AWM as an evolving continuum (built with boundless energy and grass roots networking). There is considerable overlap between one presidency and the next. Indeed, the boundaries between terms often seem quite hazy with each subsequent President building on what came before--as well as each preceding President continuing to stay actively involved. Nobody seems to take a back seat and nobody seems to retire.

This dynamic was already in evidence in the first transition from Mary Gray to Alice Schafer: "When I took over the presidency, Mary sent me a box with all sorts of papers, checks, etc ... When I asked [her] what I could do, she suggested getting AWM incorporated." Alice then goes on to relate her struggles setting up an official structure for the fledgling organization.
"That was done through a lawyer in Boston, who I had been told would charge very little, so I was amazed when he charged $\$ 500$, which was really big money for AWM, and so, in the Newsletter, I asked for a contribution of a dollar from each member. Some gave and AWM did finally pay the bill. When it came to obtaining tax exemption status from the IRS, the lawyer said he would do it and I said first I would try. He said I could not do it, but [nevertheless] I did ..."

In the early days, money was indeed a problem. And so Alice continues: "Do you recall that one time the March Newsletter was printed in such small print in order to save money that many people could not read it? I think that was during my presidency. However, I do not recall that anyone sent in a contribution because of it [to help us out], but I may be wrong."

For those of you who were not around during those years, and for those of us who may have forgotten, Alice goes on to paint a colorful, and almost slapstick, picture of what we were up against and how she handled it: "One of the ... funny things that happened, that I recall, during my presidency is that when the meeting was in San Francisco [January 1974] AWM was still being harassed by the male mathematicians. Lee Lorch, friend of AWM, came to tell me that some of the men were going to attend the AWM meeting, which I was chairing of course, and were going to break it up. He thought I ought to be warned. I was glad of the warning and told him that teaching in high school for three years (before I had enough money to start graduate school) ought to prepare me for that! Actually,
what is interesting, historically, is that meeting was the first time AWM had ever sponsored mathematical talks; before that it had all been consciousness raising. I had invited Cathleen Morawetz and Louise Hay to give short talks on mathematics ... and had scheduled them ahead of the consciousness raising part, and of course, their talks were good. The men, who were for the most part sitting in the last two rows in the audience, never said anything. I never knew who they were and it didn't matter ..."

Seated left to right: Alice Schafer, Carol Wood, Jill Mesirov, Rhonda Hughes. Standing left to right: Ruth Charney, Bettye Anne Case, Eleanor G. D. Jones, Susan Geller, Jenny Baglivo.

During this period, in addition to building its own internal structure, the AWM was also beginning to establish itself as a legitimate professional society, to be reckoned with amongst its peers, i.e. other mathematical organizations. To the consternation of the men who were "sitting in the last two rows" (whose shenanigans were once again foiled by Alice), ${ }^{7}$ by the end of Alice's term AWM was about to be admitted as an affiliate member of the Conference Board of Mathematical Societies (CBMS), the umbrella society of mathematical organizations. By the time I became President, all I had to do was put on the finishing touches, and there we were, on the same Council (and on the same CBMS letterhead) with such organizations as the AMS, ASL, IMS, MAA, NCTM, SIAM, ASA, ACM, and ORSA, among others. An amazing feat for an association that was only four years old!

[^8]In its first venture into internationalism, AWM sponsored a panel at the International Congress of Mathematicians (ICM) in Vancouver, the summer of 1974, to compare the situation for women in mathematics worldwide. Speakers included: Sheila Brenner (England), Michele Vergne (France), Bhama Srinivasan (India), and Xuan Hoang (North Vietnam). Other firsts in the mathematical world during this period included Barbara Osofsky's AMS Invited Address in Dallas, January 1973-the first such address at a national meeting by a woman since Anna Pell Wheeler's Colloquium Lectures in 1927^{8}-and Sloan fellowships awarded to Joan Birman and Karen Uhlenbeck in 1974.

Lenore Blum (1975-1978):

Exploring new territory

In August 1975, I became President of the AWM (and served in that capacity for three years.) Since Mary had already captured the attention of the mathematics community head on, and Alice had set up the foundation for a working organization, I was mostly free to explore new territory. It seemed clear that the provincial view of mathematics-including who a mathematician was, and what a mathematician didwas a prime factor in the exclusion of women, as well as others, from the field. It also seemed clear that the provincial view was potentially limiting to the discipline itself.

So, to make this "statement," as well as to further educate myself, I decided to use the public forum which had proved so successful in Berkeley.

In those years, the academic job market for mathematicians was very tight. Many young people were in a terrible bind, given the prevailing view that the only respectable work for a mathematician was in academia. Since women mathematicians had been finding creative alternatives to academic employment for years, their experiences could be particularly useful, perhaps even change an image. I organized a panel on "Women Mathematicians in Business, Industry, and Government" for the January 1976 Joint Mathematics Meetings in San Antonio (and a similar one in Seattle, the summer of 1977). Here I met for the first time: Marjorie Stein, a mathematician working at the U.S. Postal Service (Statistical Service Requirements Division); Jessie MacWilliams, a coding theorist at Bell Labs; Mary Wheeler of Rice, also a consultant for oil companies, working on numerical solutions to P.D.E.'s; Marijean Seelbach, a topologist and functional analyst working on optimal control theory at NASA-Ames. These energetic women had clearly found unusual and challenging career paths for themselves utilizing their mathematical training and skills. It was quite inspiring.

Many of us were eager to explore further our history. I decided to organize some panels at the Joint Math Meetings on the "History of Women in Mathematics" with AWM

[^9]members as speakers. What was so powerful about these sessions, even historic in itself, was that for the first time women mathematicians were talking about women mathematicians (their lives and their work) to women mathematicians. By understanding their work, possibly even identifying with their lives, the speakers were able to convey uniquely meaningful, deeply personal portraits of the women who had come before us. The sessions were charged!

In Toronto (summer 1976), Mary Gray talked about Sophie Germain and her work (a bicentennial perspective), Linda Keen about Sonya Kovalevsky (her extraordinary life and mathematical achievements), Martha Smith about Emmy Noether (her work and tremendous influence). As an added treat, Emiliana Noether came to talk about her aunt (-in-law). In St. Louis (at the infamous cold winter Meeting of 1977), Teri Perl told us about the "Lady's Almanac," a popular women's magazine published in England from 1704 to 1841 , devoted in large part to mathematical questions and solutions.

But perhaps one of the most moving occasions was when Sylvia Wiegand spoke of her grandmother, mathematician Grace Chisolm Young. Because women were not admitted to graduate schools in England at the turn of the century, Grace went to Germany and became the first woman to receive a formal degree in mathematics in Göttingen-indeed the first woman Ph.D. in Germany in any field. When she returned to England, she married William Young, her former tutor. Sylvia read a poignant letter from her grandfather to her grandmother, written some years later:
"I hope you enjoy this working for me ... I am very happy that you are getting on with the ideas. I feel partly as if I were ... setting you problems which I could not quite do myself but could enable you to ... "The fact is that our papers ought to be published under our joint names, but if this were done neither of us get the benefit of it. No. Mine the laurels now and the knowledge. Yours the knowledge only. Everything under my name now, and later when the loaves and fishes are no more procurable in that way, everything or much under your name.
"This is my programme. At present you can't undertake a public career. You have your children. I can and do." ${ }^{9}$

An historic panel, "Black Women in Mathematics," organized by Pat Kenschaft and Etta Falconer, was held in Atlanta, January 1978. Of the twelve black women in the U.S. holding Ph.D.s in mathematics at the time (more of course held degrees in mathematics education), six were on the panel: Geraldine Darden, Elayne Idowu, Eleanor G.

[^10]Jones, Evelyn Roane, Dolores Spikes and Etta Falconer. ${ }^{10}$
These AWM sessions at the national meetings were immensely popular. We were clearly identifying and addressing subjects of interest and issues of concern to the mathematics community-at-large (well before these issues were recognized by the establishment as legitimate, even critical). As a consequence, we began to broaden our constituency, attracting people who had perhaps felt uncomfortable with the more political tone of earlier days.

But political issues were nevertheless still very much on our minds. We provided testimony for congressional investigations, wrote university presidents and newspaper editors and letters (often signed jointly by the three Presidents Mary, Alice and me) protesting objectionable images of girls and women in textbooks, the media, and advertising. (In school math books, girls were still calculating the perfect recipe, while boys calculated the time to get to the moon. Flyers depicting a naked woman contemplating a calculator were still being distributed at the Math Book Exhibits in 1976.) In 1978, a masterful combination of teamwork and old girl networking resulted in decisions by the AMS and MAA not to hold national meetings in states that had not ratified the ERA (Equal Rights Amendment). At the International Congress in Helsinki (ICM-78), a special meeting was called by the AWM to protest the absence of women speakers. Over 500 people attended. I introduced a resolution (amended by Lee Lorch) urging this situation be rectified by the next Congress. The resolution passed by a near-unanimous vote (only three dissenters).

It was a time of heady issues, but also a time of great excitement and great fun. It was a time of newly found camaraderie, of friendships, of support and respect among women mathematicians.

I was clearly a beneficiary of this "sisterhood" during my presidency. Besides the two former Presidents to guide me, Judy Roitman was Newsletter Editor and Judy Green, AWM Employment Officer (a title deemed appropriate since she had taken it upon herself to analyze employment data and monitor the legitimacy of job advertisements). Both Judys were co-Vice-President.

Judy Roitman and I had become great friends during the early Berkeley days, and as I wrote in the November 1978 Newsletter welcoming her presidency, "... our friendship has grown with, indeed, has been intertwined with, our involvement in ... the AWM." She was (and is) a greatand speedy-writer, and since writing was not one of my better skills, many a President's Report was told (I can hardly say dictated) to her over the phone the night before the Newsletter went to press.

Judy Green often played the role of political advisor, telephone consultant, as well as AWM liaison with the Math-

[^11]ematics Action Group (MAG) and the National Association of Mathematicians (NAM), the association for black mathematicians. In preparing this history, I queried her: "Even though you were never President, you very well could ... have been. How come we never could get you to 'run'? You were doing a lot of the work de-facto anyway." To which she replied, "... I'm much better helping people than being in charge. I really don't like being out there in front. Judy Roitman and I were co-Vice-Presidents since neither one of us would say we'd be President-elect. At the end, she gave in before I did!" That also helps explain why my term lasted as long as it did!
Discrimination/Affirmative Action. Before going ahead, I would like to take out a few moments to address directly a few aspects of the twin issues of discrimination and affirmative action that were so central to our lives in those years.

The AWM gave women mathematicians courage to speak out publicly, even file complaints and charges about their own situation. As a consequence, our files were overflowing with correspondence from women documenting discrimination, seeking assistance and advice. Mary Gray, being the most knowledgable, handled most of these cases throughout the 1970s, but we all did some.

Affirmative action rulings often produced backlash and many abuses. For example, in order to satisfy affirmative action guidelines, many math departments resorted to "papering the files," inviting women to apply for jobs that didn't exist or had already been offered to men. A related practice is illustrated by the following letter from a woman mathematician on the East Coast to the Vice-Chairman of the Math Department on the West Coast. The names have been removed, not so much for anonymity, but rather to stress genericity:
"Dear Professor X, This is the third consecutive year that I have been invited to apply for the position of Assistant Professor in the Mathematics Department of [West Coast University]. I assume it is the third year of [WCU]'s Affirmative Action program. As I mentioned in my last response to such an invitation, I have been Associate Professor since the first year. It is hard to believe that [WCU] is serious about its Affirmative Action program if it makes no attempt to match the experience of the candidate considered with the positions available. Would you be interested in a job as Assistant Professor?
"Sincerely, Y" ${ }^{11}$
Indeed, while many in the mathematics community believed that there was an influx of women faculty as a result of affirmative action, the data in the early years showed quite the contrary. As an example, between 1973-1974 and 1974-1975 the percentage of women in regular math faculty positions, in most instances, actually went down; and no significant rise became evident until very much later. (See

[^12]Judy Green's article in the April 1975 AWM Newsletter, mine in the May-June 1976 CBMS Newsletter, and Mary's and Alice's in Notices, October 1976.)

Judy Roitman (1978-1981): A summing up

The early years of the AWM were a time of activism, of speaking out, of politics, of confrontation, of heroes and villains-when issues seemed almost black or white. Judy Roitman provides a perspective on the decade: "I can summarize my time in AWM office by saying that I was one of the last-perhaps the last-President of an amateur AWM. What do I mean by this?

Judy Roitman
"The AWM grew out of the feminist movement of the 1970s, which was marked by confrontation, attention to, and expression of, personal feelings and individual incidents, and ignorance of history. Having finally read some of this history (Margaret Rossiter's excellent book on American women scientists) I suspect that had we known how closely we were following in the footsteps of earlier feminists, and how little change their tremendous efforts made, we probably never would have bothered. So the early job of the AWM was just to look around us and report the obvious-the situation for women was terrible-and the apparently not-so-obvious-it didn't have to ... be that way. We spent a lot of time popping up at meetings (departmental, local, national) saying over and over again that women could be perfectly good, even great, mathematicians if given the opportunity \ldots and that there were several steps the mathematical community could
take to improve things for both women and minorities. It was an easy kind of agitation-you just had to look around you and report what you saw ...
"But while this style had its successes, it was based on a sort of shooting from the hip. That is why I characterize it as being amateur...${ }^{12}$

It was also a time of lassoing people in. In addition to national meetings of the AWM, members were organizing and meeting regionally: Sue Montgomery and Ruth Afflack in Southern California, Rebekka Struik in the Rocky Mountain region, Jessie Ann Engle, Judith Longyear and Vera Pless in the Midwest, Pat Kenschaft in New Jersey, Linda Keen in New York, to mention only a few. In the mid-1970s, AWM instituted an Open Council, encouraging the participation of members representing a wide range of self-identified constituencies and areas of interest. ${ }^{13}$ By 1981, AWM had grown to over 1000 members (from the U.S. and fifteen other countries), its influence and political power ranging far beyond these numbers. For example, then and over the years, AWM-supported candidates in AMS elections have been quite likely to win.

The 1970s were certainly a time of increased consciousness about women in mathematics. It was also a time of many firsts. Two notable additions to those already mentioned are Julia Robinson's election to the National Academy of Sciences ${ }^{14}$ and Dorothy Bernstein's election as President of the Mathematical Association of America (MAA), both in 1975. During Judy Roitman's term, the AWM Noether Lectures (chaired first by Karen Uhlenbeck) were inaugurated by Jessie MacWiliams at the San Antonio meeting in January 1980. ${ }^{15}$

But also, it was a time of solid program development and achievements. During those years, many of us were involved in designing and implementing educational programs to increase the participation of girls and women in mathematics. Other organizations-such as the Math/Science Network, headquartered in the San Francisco Bay Area, and Women and Mathematics (WAM), founded by the MAA-to which many AWM members belonged, were also very much part of this effort. Since the old system was clearly not working for us, we were motivated to explore new paradigms in teaching:

[^13]developing hands-on activities and materials stressing problem solving skills, promoting team teaching and cooperative learning, providing role models and information to students (as well as their parents and teachers) about why mathematics was important for their future. ${ }^{16}$ Of course, all this made sense in general. And indeed, educational programs we developed in the 1970s are now models for educational reform in the 1990s. A stellar example is Nancy Kreinberg's EQUALS teacher training program at the Lawrence Hall of Science in Berkeley. (Many articles describing successful educational programs and strategies can be found in AWM Newsletters.)

PART 2

The Second Decade (1981-1991):

A coming of age

The second decade in the life of the AWM can be characterized variously as a period of maturing, of coming of age, of increased self-assurance, of establishing and strengthening institutional mechanisms, of gaining acceptance by the mathematics community. It was a time when AWM grew up. Indeed, these are the themes and phrases that kept recurring in my conversations and correspondence with the AWM Presidents of the 1980s.

Bhama Srinivasan (1981-1983):
 Noether Symposium, Speakers Bureau, Research vs. Education?

On one of those gorgeous Berkeley afternoons last fall, Bhama Srinivasan and I met at a picnic sponsored by the women graduate students in the Berkeley Math Department. Bhama had been visiting as part of the algebra year at MSRI. Being the two senior mathematicians at the picnic, it was natural to chat with the students about the usual issues that come up about women and mathematics. Much to our surprise, they knew very little about the AWM! We talked about the upcoming Twentieth Anniversary and reminisced about AWM's Tenth (also held in San Francisco at the beginning of Bhama's term). I'm not sure we made any new recruits, but the students did arrange to keep meeting weekly. And so the process renews itself.

During Bhama's presidency, AWM sponsored its first major mathematical conference, the Noether Symposium at Bryn Mawr College. Bhama credits Rhonda Hughes with the idea. The Symposium, in honor of Emmy Noether's 100th birthday, was held in March 1982, appropriately at the institution where Noether held her last position. There were nine scientific lectures as well as a panel discussion. The event "was not only scientifically successful but a specially moving occasion," Bhama remembers. Three of the women who had studied with Noether at Bryn Mawr spoke at the Symposium. They painted a picture of a mathematically

[^14]charged, particularly precious time, dominated by Noether and fully integrated with women:
"Meeting Emmy Noether was one of the great things in my life," said Olga Taussky-Todd who, in 1934, had come from a research post in Göttingen to study with Noether at Bryn Mawr. "She was a teacher and she had a great urge to make people see her methods and to understand them. At Bryn Mawr it was particularly easy for me to profit ... from her school. There was her thesis student Ruth [Stauffer McKee]. There was Marie Weiss who worked on a problem explicitly suggested to her, namely units in cyclic fields, using ideas of Latimer. For this we had to thank Grace [Shover Quinn]."

Bhama Srinivsan
"We not only studied together, attended Miss Noether's and Mrs. Wheeler's lectures also," recalled Grace S. Quinn, "but we really played together, walking down Gulph Road with Miss Noether in the lead discussing mathematics intensely all the while unmindful of the traffic ..."

Ruth McKee recalled how it was to be in Noether's classes. "The strange phenomena was that from our point of view, she was one of us, almost as if she too were thinking about the theorems for the first time. There was a lot of competition and Miss Noether urged us on, challenging us to get our nails dirty, to really dig into the underlying relationships, to consider problems from all possible angles. It was this way of shifting perspective that finally hit home ... suddenly the light dawned and Miss Noether's methods were the only way to attack modern algebra ..."17

[^15]The Symposium proceedings, Emmy Noether in Bryn Mawr, (edited by Bhama and Judith Sally) were published by Springer-Verlag in 1983. ${ }^{18}$ Yet another first for the AWM!

As we drove from the picnic, Bhama and I talked more about the AWM. She reminded me of the tensions that had begun to surface during the early 1980 s: Were we an organization of research mathematicians or did we represent the interests of all women in mathematics, particularly in education? Now that we were not as preoccupied with political issues as in the early years, it seemed we were having an identity crisis! Bhama recalls, "I was concerned about how to balance our various (and sometimes conflicting) constituencies and interests. So I set up a number of new committees [including the Committee on Mathematics Education, chaired first by Evelyn Silvia and now by Sally Lipsey, and the Maternity Committee, presently chaired by Anita Solow] to address these issues and involve many more women in the workings of the AWM.

Also during this period, the AWM Speakers Bureaufunded initially by grants from Polaroid, then Sloan, and directed by Judy Wason--became fully functional. ${ }^{19}$ The Speakers Bureau provides lists of speakers and topics appropriate for high schools and colleges. This highly successful AWM activity has proved to be one of the best ways to improve the visibility of women in mathematics.

Linda Rothschild (1983-1985):
 A period of transition, The White House, A mathematical mentor

Linda Rothschild speaks of her presidency as "a period of transition: AWM was becoming established as a 'serious' and 'respectable' mathematics organization at that time (for better or for worse!) ... Even the White House recognized AWM as a serious organization by inviting its President to a luncheon for women's professional group leaders in honor of Women's Business Day."

Keeping with AWM tradition, Linda organized a panel (at the January 1983 Meetings in Denver) addressing issues of "Mathematics and Computers" well before this topic

[^16]became fashionable in the larger mathematics community. ${ }^{20}$ She also took care to balance research/education concerns by organizing panels on grantsmanship ("Getting them and keeping them," Albany, August 1983) ${ }^{21}$ and, with Kay Gilliland of EQUALS, on how teachers of mathematics can encourage girls in their classes (Eugene, August 1984).

But "of the various panels I put together for the national meetings," Linda writes, "perhaps the most applauded was the one honoring Lipman Bers on his seventieth birthday [at the Louisville Meetings in January 1984] for his contribution to nurturing the success of so many female graduate students." Echoing the sentiments felt by many of us, she adds, "If only there had been ten others like him, think how many more women mathematicians there might be! ${ }^{\prime 22}$

Linda described the session in the March-April 1984

Linda Rothschild

[^17]AWM Newsletter: "The lecture hall was filled with people who wanted to find out the secret of the 'Bers' mystique. We learned first hand that the statistics are truly remarkable. Professor Bers had had 40 Ph .D. students of whom 16 were women. The panelists, Tilla Milnor, Irwin Kra, Jane Gilman, Jozef Dodzuik and Linda Keen (moderator), all former Bers students, told fascinating stories about their experiences in graduate school ..."

What was it that made Bers such a good advisor of women students? Linda Keen provides some insights. "He gave us all, and probably the women needed it more, a confidence in our own abilities. He took it for granted that we would expect to have families and that we would continue anyway."

Linda Keen (1985-1987):

Kovalevsky Symposium, Robinson Memorial, ICM-86

Linda Keen recalls highlights of her stint as AWM President. "The first highlight was the Sonya Kovalevsky celebration run by the AWM at Radcliffe together with the Mary Bunting Institute [in October 1985]. This was a two part affair. The first was a program for high school seniors, held on the campus-organized by Bernice Auslander and Pamela Coxon with help from the whole Boston group. There were talks about mathematics as well as talks about careers. The students had lunch together and had a chance to talk informally to a number of women mathematicians." This event was to become the model for the many Sonya Kovalevsky High School Days sponsored since by the AWM. ${ }^{23}$

From left to right: Lenore Blum, Carol Wood, Judy Green, Linda Keen.
"The second part of the affair," Linda continues, "was more 'my baby.' It was a serious mathematical conference on the theme of mathematics that had grown out of Kovalevsky's work. There were about ten speakers, more

[^18]than half women." Three special sessions (organized by Jane Cronin Scanlon, Lesley Sibner, and Jean Taylor) in conjunction with the Kovalevsky Symposium were held at the AMS meeting in Amherst two days earlier. The Legacy of Sonya Kovalevskaya, a collection of papers ${ }^{24}$ presented at both events and edited by Linda, was published in 1987 (AMS, Contemporary Mathematics, volume 64). ${ }^{25}$
"Then there was the Julia Robinson Memorial session sponsored jointly by the AWM, the AMS, and the MAA [New Orleans, January 1986]. It was really a super affair with great talks." Constance Reid, Julia's sister and biographer of mathematicians, spoke about Julia's life. ${ }^{26}$ Lisl Gaal gave a brief description of Julia's thesis, and Martin Davis a retrospective of her mathematics. Lisl quoted Julia: "When I am dead I hope I shall not be remembered by anecdotes, but for my work."

Julia Robinson was a great mathematician. Her work was instrumental in the solution of Hilbert's tenth problem. She was the embodiment of firsts for contemporary women in mathematics: the first woman President of the AMS, the first woman mathematician elected to the National Academy of Sciences, the first woman mathematician to receive a MacArthur award. Julia was not an active AWM member, but supportive in private ways. As she became more involved in public life, her support increased. As Vice-President of the AMS, she intervened when the Council would not consider a motion to move a meeting from a non-ERA state because the motion was not already on the agenda. Julia pointed out this was an emergency situation. The motion passed and the meeting was moved. Linda recalls that when Julia was AMS President "she really made sure women were placed on important committees-and was very supportive to me, both as Council member and as President of the AWM." Julia Robinson was a "role model" for many of us long before we understood what that expression meant. She will continue to be a source of inspiration for a very long time.

A final highlight of Linda's term was the ICM-86 in Berkeley. "Our program at that meeting was a real success as you know," Linda writes. There were nine panelists from ten countries and five continents. ${ }^{27}$ "The forming of

[^19]the European Women in Mathematics was a long range aftereffect"
"There was also the sturm and drang about the number of women invited to the ICM." At the AWM panel, Linda read a resolution she had earlier presented to the ICM Executive Committee concerning the selection of women (and those in other groups) as Congress speakers. This resolution was endorsed by the 400 attendees at our meeting. ${ }^{28}$ "This brought us to the attention of the international community and as you saw [at the ICM-90 in Kyoto] many are now more sensitive to the issue."
Gender, Mathematics and Science. In the mid-1980s, there was a flurry of work by a group of feminists theorists on gender and science. In commentary fairly critical of this work, Ann Hibner Koblitz succinctly summarized the main ideas behind the theory. "Put in its most general guise, the new 'gender theory' says that centuries of male domination of science have affected its content-what questions are asked and what answers are found-and that 'science' and 'objectivity' have become inextricably linked to concepts and ideologies of masculinity." She then lists eight criticisms of which I will mention only two, namely that gender theorists "seem unaware of the increasing numbers of women who have had satisfying lives as scientists" and "employ cartoon-character stereotypes of science, scientists, men, and women." (See "A Historian Looks at Gender and Science," AWM Newsletter, July-August 1986.)

A letter from Mary Beth Ruskai in the May-June 1986 Newsletter expressed concerns felt by many of us "that a few very vocal and visible sociologists are succeeding in promulgating opinions that are detrimental to the advancement of women in science."

Ruskai discusses a rash of articles in the popular press where arguments presented by gender theorists invoke a number of stereotypical misconceptions. For example, she points out that "instead of being concerned that women with an aptitude for computing, science, and mathematics were going into other fields" some advocates of the theory see this as a virtue-women are not interested in science because it does not deal with subtleties. Ruskai is critical of the dichotomous distinction between "artistic" and "technical," the cures for math/physics anxiety devoid of proper math preparation, the recurrent idea "that women are more intuitive than men, where intuition and logic are perceived as opposites." She calls for AWM to take a stand.

Ruskai's letter generated more response than anything

[^20]else that had ever appeared in the AWM Newslettera number of responses are contained in the NovemberDecember 1986 issue. Here, for example, Marriane Nichols expresses an alternate point of view. Namely, she argues, if we understand "the biases that do exist in math and science today," then we can "see how they limit what we can know and understand. From there one perhaps can begin to expand and enrich these fields. ${ }^{29}$

Rhonda Hughes (1987-1989):
 Acceptance by the Establishment, AMS Centennial, Travel Grants, Schafer Prize

"By the time I became AWM President," writes Rhonda Hughes, "the organization had clearly gained the acceptance of the mathematics establishment (whether we wanted it or not). I could tell, because all sorts of people began to talk to me who had never done so before. (This sort of thing should not, however, go to one's head. As soon as my term ended, some of these same people started calling me 'Jill'...)."

While very much a participant in establishment activities, AWM was still mindful of its unique perspective and role in the mathematics community during Rhonda's term. The AWM "Response to the David Report" (San Antonio, January 1987) focused on initiatives for women and minorities. ${ }^{30}$ Panelist Fern Hunt emphasized the need to increase the diversity of people doing mathematical research, not only from a political or social point of view, but to promote the "diversity of ideas-one of the prerequisites for progress in mathematics." So to the famous (or infamous) line from the film Casablanca, "Round up the usual suspects!" she would add, "And round up the unusual ones too!" Louise Raphael discussed NSF initiatives for women and minorities and also shared a key factor which helped her reenter mathematical research. "Namely, it is essential to find collaborators who share the same mathematical interest." Other panelists were John Polking and Barry Simon; Lida Barrett moderated.

AWM's presence was very much in evidence at the AMS Centennial Celebration, held in Providence in August 1988. ${ }^{31}$ The AWM panel, "Centennial Reflections on Women in American Mathematics," focused on a century of contributions and experiences of women mathematicians. Judy Green and Jeanne LaDuke discussed their findings on the substantial presence of female Ph.D.s in American mathematics before World War II-and the dramatic decline after the war-as well as more recent history. Mabel Barnes, Olga Taussky-Todd, and Vivienne Mayes-Malone reflected on their own experiences, giving us a rare and personal accounting of this history as well as a unique glimpse into their own lives:

[^21]Mabel Barnes (Emerita Professor at Occidental College and mother of algebraist Lynne Barnes Small) told of her experiences in the early 1930s at the newly established Institute for Advanced Study: "Even in remote Nebraska I heard about a place called the Institute for Advanced Study opening up in Princeton. I applied for admission and was accepted ... Soon after I arrived, the Director of the School of Mathematics took me aside and warned me that Princeton was not accustomed to women in its halls of learning and I should make myself as inconspicuous as possible. However, otherwise I found a very friendly atmosphere and spent a valuable and enjoyable year there. Had I not gone East, I would not have met Olga Taussky as early as I fortunately did."

Olga Taussky-Todd cited the time in 1958 when she was invited to give a one-hour lecture at an AMS meeting, the first woman since Emmy Noether in 1934. "At such an occasion the chairman usually says a few kind words by way of introduction. I trained myself to say 'thank you for your kind words.'" she recalled. "However, he only mentioned my name and Caltech and I almost thanked him for his 'kind words.' " The fact that she studied and worked in several countries allowed Olga to observe a number of facts about "the behavior" and "treatment" of women over the years. "Now we live with Women's Lib and it has not only changed the opportunities for women, but also their behavior towards each other. Women are now 'friends' of women colleagues ..."

Vivienne Malone-Mayes, the only black math professor at Baylor, spoke of being a black woman graduate student at the University of Texas at Austin in the late 1950s. This was a time when blacks could not be T.A.s nor join their classmates for discussion at segregated cafes. "I can personally vouch that my personal isolation ... was absolute and complete ... At times I felt that I might as well have been taking a correspondence course," Vivienne recalled. "The history of black women in mathematics (based upon the parameter of $\mathrm{Ph} . \mathrm{D} . \mathrm{s}$) ... is only recent history in comparison with the centennial of years since the first white female Ph.D." she pointed out. The first white woman to be awarded a Ph.D. in mathematics in the U.S. was Winifred Edgerton Merrill (Columbia University, 1886). The first black women to be awarded math Ph.D.s were Marjorie Lee Browne (at Michigan under G.Y. Rainich) and Evelyn Boyd Granville (at Yale under Einar Hille), both in 1949. "It should be noted," Vivienne added, "that many of the dissertation advisors received criticism for sponsoring these black female doctoral candidates. Their courage must be acknowledged as an important factor in the careers of these mathematicians ... ${ }^{\text {. } 32}$

Reflecting on her presidency, Rhonda points to growing pains as well as significant achievements. "In my time, we still seemed plagued by the research-education tension in our membership. This appears to be less of a problem now,

[^22]with the wide range of programs and activities we've taken on." On the positive side she concludes, "I am most pleased with the establishment of the Travel Grant program, and the Schafer Prize. Seeing all those bright undergraduate women receiving awards in Columbus [Joint Meetings, August 1990] symbolized for me the whole point of AWM. And once they become mathematicians, the Travel Grant program might further help their professional development."

Louise Hay Award. It seems most fitting here to make special mention of the Hay award, established by the AWM to recognize contributions to mathematics education, but especially to talk about Louise, who was very much part of the foundation and fabric of the AWM. Indeed, she was slated to have become AWM President in 1991.

Louise Hay died on October 28, 1989 at the age of 54. She had been a faculty member and Head of the Mathematics Department at the University of Illinois at Chicago for many years and had a profound effect on women students there like Rhonda Hughes. At the AWM meeting in Louisville, January 1990, Rhonda delivered a deeply moving testimonial. As Rhonda spoke, I thought of the time I first met Louise. It was the year I started to work on my thesis and Louise was visiting MIT on an NSF postdoctoral fellowship. I remember being startled to see a woman's name on a math faculty door, but even more startled to see Louise. Since I had never seen a woman mathematician before, I had imagined her to fit the common stereotype of the time-and certainly that was not what I saw! As Rhonda, I too was impressed by "her unusual combination of youth, vivacity, and mathematical reputation." She was a living role model.

Louise Hay

Louise was intimately connected with the origins and growth of the AWM, particularly in the Chicago area. In "Fond Remembrances of Louise Hay" (AWM Newsletter, January-February 1990), Rhonda recalls Louise's support and encouragement from the beginning: "Inspired by AWM's founding, Nancy Johnson (Louise's Ph.D. student) and I organized the women graduate students and faculty in the department for the general purpose of raising our own consciousness, and that of the men around us. We had a huge crowd at our first meeting (those were heady days!), and one woman who had been on the faculty for many years expressed the hope that we wouldn't make waves. 'And what's wrong with making waves?' Louise retorted ..."

Over the years, Louise supported all facets of AWM activities. "I last saw Louise in Atlanta in January 1988, when I invited her to speak in the AWM panel discussion 'Is the Climate for Women in Mathematics Changing?' " Rhonda remembers. "She always seemed to say things you wouldn't hear others say. I can't imagine anyone but Louise paraphrasing Virginia Woolf, 'Women will not achieve equality until they have earned the right to be hacks ... not everyone is a genius. ${ }^{\prime}{ }^{33}$

Jill Mesirov (1989-1991):

Looking outward, the Twentieth Anniversary

In her President's Report in the AWM Newsletter (JanuaryFebruary 1991), Jill Mesirov presents an impressive list of AWM activities during the past two years: panels, Sonya Kovalevsky High School Days, graduate student outreach, Schafer Prize and Hay Award, Resource Center development, Twentieth Anniversary celebration, Noether Lectures, outreach to other societies, Speakers Bureau, Travel Grant program. This multifaceted array of activities represents a truly remarkable testimony to Jill's presidency as well as to the cumulative work and accomplishments of the AWM during the past twenty years. We seem to have resolved our identity crisis by doing it all!
"I think of the past two years as a time when the AWM began to look outward to the rest of the mathematical sciences community," Jill writes in one of our many email conversations. "Our major success in this was the beginning of an ongoing presence at SIAM [Society for Industrial and Applied Mathematics] National Meetings ... My goal in these efforts was to broaden our representation, influence, and activities beyond the AMS and MAA. And I think this is happening."
"I also think of the last two years as a kind of 'coming of age' " she continues. "We have really expanded the scope of our activities ... I think that our relationship with NSF has become quite strong and vital over the past couple of years.

[^23]They really view us as giving lots of value for the money they invest in our programs and are very keen these days to fund programs to encourage women and minorities in the sciences. ${ }^{34}$ Exxon has also been an important partner for us, giving us yearly grants towards our operating expenses as well as to support the complete revision of the Resource Center. ${ }^{35}$ Tricia [Cross, AWM Executive Director] has really been vital in building up this relationship."

But, as is characteristic of all superachievers, Jill sees projects yet undone, some very close to home. "One area that I wasn't able to make progress on (directly or indirectly)," she points out "is the two career family and children issue. One can't do everything I guess. It's funny because in many ways this is something that is really important to me because it really has an impact on my life everyday."

Nevertheless, Jill's enthusiasm is hardly dampened. "It's been a crazy two years, exhilarating, overwhelming, frustrating, rewarding. Believe it or not, I really enjoyed it!"

How things are ... (An assessment)

Did the AWM make a difference? "My God yes" responds Judy Roitman. It was not uncommon for major women mathematicians to be unemployed; young women were routinely discouraged; the few who persevered were usually treated badly; and role models were few and far between."

One need only look at the program for this Joint Meeting (See Notices, December 1990) to sense the very real involvement of women in the mathematical world today-a stark contrast to Atlantic City twenty years ago! As Carol Wood puts it, "women are everywhere dense." Invited speakers include: Christel Rotthaus (AMS/AWM/MAA), Rebecca Herb (AMS/MAA), Maria Klawe (AMS) and Jill Mesirov (MAA). Dusa McDuff is the first recipient of the AMS Ruth Lyttle Satter Prize, established by Joan Birman in memory of her sister to recognize an outstanding contribution to mathematics research by a woman. ${ }^{36}$

In the professional organizations and institutions, we are no longer on the outside but rather play key roles within the internal power structure. Witness Deborah Haimo taking over the presidency of the MAA from Lida Barrett as Marcia Sward, MAA Executive Director, looks on ${ }^{37}$ In the AMS, women are Vice-Presidents, Trustees, Council members, and chairs of important committees; Julia Robinson was AMS President (1983-1984). Cathleen Morawetz has been Director of the Courant Institute, Judith Sunley is Director of Division of Mathematical Sciences at the NSF. Women

[^24]mathematicians have been elected to the National Academy of Sciences, received MacArthur "genius" awards, Sloan Fellowships, Guggenheims, Presidential Young Investigator awards, and routinely, NSF fellowships and research grants. At ICM-90 in Kyoto last summer, six women gave 45minute invited talks ${ }^{38}$ and Karen Uhlenbeck gave the first of fifteen plenary addresses. Of the five U.S. delegates ${ }^{39}$ to the International Mathematical Union General Assembly, three were women-all AWM members.

During the past twenty years, the percentage of U.S. women receiving Ph.D.s in mathematics has increased dramatically, from about 6% to over 20% per year. (See the Annual AMS-MAA Survey, Notices, November 1990.) But curiously, although there was a significant jump in the number of new female Ph.D.s in mathematics during the early 1970s, we find since then that the number has stayed amazingly steady (except for a peak of 102 in 1980-1981), averaging at eighty-six per year. What has happened is the number of U.S. male Ph.D.s in mathematics during this period has dropped by more than half (from 658 in 19741975 to 312 in 1989-1990). While a number of far-reaching conclusions and speculations may be drawn, suffice it to say that, relatively speaking, women have gained ground in this domain.

How much of the changes are due to the AWM and how much to the times in general? "This is a false question," Judy Roitman contends. "The AWM is the expression in the mathematical community of the broader feminist movement ... But without the AWM or some similar group (and I think it was an act of brilliance to form it outside of the existing mathematical organizations rather than a caucus within ...) the changes for women would have been fuzzier and less specific, driven by affirmative action necessities (which are pretty minimal) and vague changes in public perception, and not directed by our own understanding of what has to be done."

Where we're going ... (Hopes for the future)

Thus, as we celebrate and reflect on our 20th birthday, we clearly have a collective sense of optimism and well being. But lest anyone get the impression we are entering our twenty-first year in a mode of complacency, Jill Mesirov, with characteristic sense of mission and responsibility, outlines our ongoing agenda:

- We must continue to find ways to identify talented young girls and encourage their interest in mathematics.
- We must make sure that women are guided to the best graduate program for their needs and abilities. Women traditionally have been underrepresented in the top rank graduate programs; we should understand why that is true and help to correct it.

[^25]- Those of us who are professionally active in research, industry, or education have an obligation to our young women colleagues:
- to support them at the beginning of their research or teaching careers,
- to bring them into the appropriate network and bring their work to the attention of the rest of the community, and
- to find creative ways in which to help them through the difficulties of two-career relationships and childrearing.

And in good tradition, Carol Wood, next AWM President, is positioned for the ongoing challenge.

Carol Wood (1991-1993):

Looking into the crystal ball

Carol writes of her vision and hopes for AWM during her upcoming term, mindful of difficult choices that will have to be made. "I see this as a time when AWM has enormous opportunities to make a difference in the lives and careers of young women, and find this both frustrating and exhilarating. Frustrating, because there are too many things we could be doing, and we risk the danger of doing few of them well if we can't make judicious and difficult choices. Exhilarating, because AWM has, I feel, been accepted as the organization to which many groups now turn for leadership in matters involving the participation in mathematics of women, and because there is an awareness that women are needed for the future health of mathematics."

With fitting metaphor, she continues, "In a way, the demands on AWM remind me most of the microcosm of a woman's life, with her multiple roles, and with all the people whose demands, needs, and expectations make it both necessary and difficult to determine what matters and what doesn't."

Nevertheless, undaunted by these multiple demands, Carol has expansive plans for the future. "Something which I would like to achieve during my presidency," she writes, "is the establishment of strong ties with existing organizations concerned with promoting and encouraging participation of women in mathematics in other parts of the world, and also to see AWM play the role of midwife in bringing such groups into being ... In some ways we would be playing a leadership role, but in many others we would be awed by the wisdom of our international counterparts."

Summing up, Rhonda Hughes voices our shared sentiments: "I think we are entering our twenty-first year more unified and stronger than ever before, with a unique opportunity to have influence on the next generation of mathematicians. What used to be our concerns alone are now the concerns of the entire community, and we can give leadership and vision to the effort to get young people interested in mathematics. After all, we have been thinking about how to do this for a long time ..."

Acknowledgments and appreciation

In this brief account, I have only been able to mention a small fraction of the people, institutions, and events that have been so vital in creating and shaping our history.

We owe our successes to the AWM officers (both official and unofficial) over the years, the AWM staff at the Wellesley office, ${ }^{40}$ the many committee members, the speakers and panelists at AWM sessions, the Noether lecturers, the numerous contributors to the AWM Newsletter (which makes for such fascinating and insightful reading one is tempted to quote it all!), the organizers and participants of AWM outreach activities-particularly the Speakers Bureau and the Sonya Kovalevsky High School Days-and mostly to our enormously supportive and participatory membership.

I would like to acknowledge specially all those who were involved in planning and organizing this Anniversary Celebration. ${ }^{41}$ Funding for the Symposium and Workshop has been provided by grants from the National Science Foundation and the Office for Naval Research.

Our sister organizations, the AMS, the MAA, and more recently SIAM, have been truly that; we greatly appreciate the support and recognition they have shown their younger sibling.

Finally, on behalf of the AWM, I would like to express our deep appreciation to Wellesley College for its support over the years, and particularly for providing space for the AWM headquarters office and Resource Center. For its ongoing funding of the Resource Center as well as general support, we are grateful to the Exxon Education Foundation.

Postscript: The "trickle up" effect

Just as I was finishing this article, a reporter from Science magazine phoned. He wanted to talk about the dearth of women in the top U.S. mathematics departments. I wanted to talk about the active presence of women in the American mathematics community. Implicit in our conversation was the (seemingly paradoxical) question: If women are doing so well in mathematics today, then why are they not represented in the top departments? Obviously, the answer is complex.

In the 1970s, when affirmative action came into being and government was enforcing the laws, we saw changes for women, not so much in academia, but in industry. In those years, government was putting pressure on industry to hire women. Industry in turn tried to hire women in technical fields and found there were not many. To remedy this situation, both government and industry started supporting educational programs to increase the participation of women in mathematics-based fields. These programs were remarkably successful and women started becoming more visible in technical areas, particularly in the fledgling

[^26]computer industry. In the 1980s, when the political pressure let up, industry continued to hire women in technical fields. Why was this? For one, they had already had the experience of working with competent women. For another, it was in their interest: With the drop in Americans entering technical fields and the balance of technological expertise and industry shifting to other parts of the globe, increasing the numbers of women could help the U.S. maintain its technical edge.

What happened in academia? While government was enforcing affirmative action legislation in industry, it basically maintained a hands-off policy towards universities, responding to strong arguments of academic freedom and autonomy. One of the strengths of American institutions of higher education has been their long history of selfgovernance. So universities experienced minimal pressure from government to change. Then why did big changes take place in the mathematics societies and at many departments, but not in the top departments? During this period, the AWM and its members were certainly an omnipresent force within the math societies, both raising the consciousness of the community as well as wielding a fair amount of political influence. In the 1980s, many math departments were directly affected by the decline in Americans studying mathematics (and now in the 1990s, by the crisis in the job market for mathematicians). Thus, the problems of the larger society hit home, and these groups responded to the situation in much the way that industry had. That is, it was viewed as in everyone's best interest to increase the participation and visibility of women in mathematics. On the other hand, the top departments have been buffered by and large from the changes in society. Even in tough times, they have first pick of the top students (and in the current tough times, their students do better on the job market). These departments are not as viscerally aware of the problems affecting the rest of the community. And in the main, they have not taken a leadership role in changing the situation. This has come from elsewhere.

And changes have indeed occurred. The large numbers of active women researchers attest to that. The large numbers of women giving invited talks at national and international meetings attest to that. The large numbers of women in leadership positions in the mathematics societies attest to that. Before, when the numbers were small, the few women mathematicians available could not always satisfy all the criteria (not all professional-and not always as objective as might be claimed) for getting a position: Are they the top person in the particular field the department is hiring? Are they in the right professional circles? Are they at the right age or stage of their professional careers? Does their personal circumstance allow them to move? And so on. Now there is a near critical mass and an excellent pool of women mathematicians. I predict that within five years there will be vast changes in the top departments reflecting (and benefitting from) changes already in place within the wider mathematics community. One might call this the "trickle up" effect.

1991 AMS Election Special Section

In an effort to increase the number of ballots returned in the election process, the Society has decided to include in Notices all the pertinent election material, including biographies and statements of the candidates in the upcoming election. The information below is provided in order to assist the members in filling out the ballots that will soon be mailed. The officers of the Society encourage the members to return ballots.

Positions to be filled in contested elections this year are:
President-Elect (one to be elected)
Vice-President (one to be elected)
Member-at-large of the Council (five to be elected)
Trustee (one to be elected)
Member of the Nominating Committee (three to be elected)
Member of the Editorial Boards Committee (two to be elected)

For the first time in recent history the Council has nominated two candidates for the position of PresidentElect. One of these candidates, Ronald L. Graham or Steven Smale, will accede to the presidency after serving one year as President-elect. In addition to biographical information and candidate statements, you will find an article about each candidate-a "nomination" article. This article is intended to inform you, the voter, about the mathematical accomplishments of each of the candidates.

I urge you to study the material printed below. More importantly, I urge you to look for the ballot that will arrive shortly in the mail and to return a completed ballot. In recent elections, only 15% of the members participated. I hope this figure can be greatly increased.

Robert Fossum
Secretary

Table of Contents	page
Introduction, by Robert Fossum	755
Candidates	756
Nomination for President-Elect Ronald L. Graham by Gian-Carlo Rota Stephen Smale by Raoul Bott	
Biographies of Candidates	757
President-Elect	758
Vice-President	
Member-at-large of the Council	761
Trustee	763
Member of the Nominating Committee	769
Member of the Editorial Boards Committee	770

1991 AMS Elections

REPLACEMENT BALLOTS

This year ballots for the AMS election will be mailed September 10, 1991, or within a day or two thereafter. The deadline for receipt of ballots in Providence is November 10, 1991.

There has been a small but recurring and distressing problem concerning members who state that they have not received ballots in the annual election. It occurs for several reasons, including failure of local delivery systems on university or corporate properties, failure of members to give timely notice of changes of address to the Providence office, failures of postal services, and other human errors.

To help alleviate this problem, the following replacement procedure has been devised: A member who has not received a ballot by October 10, 1991, or who has received a ballot but has accidentally spoiled it, may write after that date to the Secretary of the AMS, Post Office Box 6248, Providence, RI 02940, asking for a second ballot. The request should include the individual's member code and the address to which the replacement ballot should be sent. Immediately upon receipt of the request in the Providence office, a second ballot, which will be indistinguishable from the original, will be sent by first class or air mail. It must be returned in an inner envelope, which will be supplied, on the outside of which is the following statement to be signed by the member:

The ballot in this envelope is the only ballot that I am submitting in this election. I understand that if this statement is not correct then no ballot of mine will be counted.

signature

Although a second ballot will be supplied on request and will be sent by first class or air mail, the deadline for receipt of ballots will not be extended to accommodate these special cases.

SUGGESTIONS FOR 1992 NOMINATIONS

Each year the members of the Society are given the opportunity to propose for nomination the names of those individuals they deem both qualified and responsive to their views and needs as part of the mathematical community. Candidates will be nominated by the Council to fill positions on the Council and Board of Trustees to replace those whose terms expire January 31, 1993. See the AMS Reports and Communications section of this issue for the list of current members of the Council and Board of Trustees. Members are requested to write their suggestions for such candidates in the appropriate spaces below.

SUGGESTIONS FOR 1992 NOMINATIONS

Council and Board of Trustees
Vice-President (1)

Members-at-large of the Council (5)

Member of the Board of Trustees (1)

The completed form should be addressed to AMS Nominating Committee, Post Office Box 6248, Providence, RI 02940, to arrive no later than November 10, 1991.

Nominations for President-Elect

Nomination for Ronald L. Graham Gian-Carlo Rota Massachusetts Institute of Technology

 It is a privilege, as well as a singular honor, for me to place Ronald L. Graham's name in nomination for the Presidency of the American Mathematical Society. Graham is one of the charismatic figures in contemporary mathematics, as well as the leading problem-solver of his generation. For the last twenty-five years, he has been the central figure in the development of discrete mathematics. His seminal work has led to the birth of at least three new branches of mathematics: Ramsey theory, computational geometry, and worst case analysis of multiprocessing algorithms (now sometimes referred to as "Graham type analysis.")

Graham's characteristic quality is an indefatigable activity, both in the cause of mathematics, and on behalf of its applications.

Ron will never turn down a telephone call from a colleague, near or far, asking for help on a problem. Every one of his collaborators knows that Ron will somehow find whatever hours or days are needed to come up with some substantial suggestion, and frequently with the crucial step towards the solution. He is unusual, unique perhaps, in being able to effectively work on several problems at once, while carrying a full load of administrative work at Bell Labs.

Ron's positive view of mathematics and of science, as well as his entertaining lectures, have inspired generations of mathematicians.

Graham's first papers were in number theory, in fact his very first paper (1964) deals with a question which goes back to the Rhind Papyrus. It was known to the Egyptians that any "reasonable-sized" positive rational number can be represented as the sum of distinct unit fractions. A number of results were proved generalizing this fact; for example, Breusch and Steward in 1954 independently proved that if $p / q>0$ and q is odd, then p / q is the sum of a finite number of reciprocals of distinct odd integers. Graham proved the widest and deepest generalization of this result. He gave a simple necessary and sufficient condition for a rational number to be expressible as the finite sum of reciprocals of distinct positive integers taken from a preassigned set. A typical case of his theorem runs as follows: a rational number p / q can be expressed as a finite sum of reciprocals of distinct squares of integers if and only if

$$
p / q \in\left[0, \pi^{2} / 6-1\right) \cup\left[1, \pi^{2} / 6\right)
$$

It was my good fortune to meet Ron Graham in 1965, a few years after he had received his Ph.D., and to pose to him a question which I believed to lie beyond the reaches of all techniques of the time. This was the geometric analog of Ramsey's theorem for vector spaces over finite fields. Let $G F(q)$ be a finite field with q elements. For every choice of p, t, n, there exists $N=N(p, t, n)$ such that for every t-coloring of the set of p-dimensional subspaces of an N-dimensional vector space V over $G F(q)$, there exists an n-dimensional subspace U such that all p-dimensional subspaces of U are monochromatic. In the limiting case of
a "field with one element" one recovers Ramsey's theorem (1930). In collaboration with B. Rothschild (1971), Graham introduced the notion of an " n-parameter set" (a kind of combinatorial geometry), in which a general form of a Ramsey-type theorem could be proved which implied not only the classical theorem of Ramsey and its conjectured vector-space analog, but also van der Waerden's theorem on arithmetic progressions, and Hales and Jewett's theory of positional games.

Graham and Rothschild's achievement quickly attracted the attention of mathematicians in several countries and led to the development of what is now known as "Ramsey theory" (roughly speaking, the study of properties that must necessarily hold in a "sufficiently large" structure.) At several crucial stages, Graham's intervention played a decisive role; for example, Graham (1973) initiated what is now called Euclidean Ramsey theory, that is, the proof of existence of Ramsey-type properties invariant under the Euclidean group. Ramsey theory has spilled over into set theory (logic and topological Ramsey theory) and even to dynamical systems.

Graham's work sheds light on a mysterious probabilistic method introduced by Erdôs for proving existence proofs. No systematic procedure is known for turning Erdôs's method into an explicit construction. Graham and Spencer (1971) were the first to provide an example to the contrary. They constructed a tournament such that for any set S of k vertices there is a vertex in the tournament which dominates all k elements of S. Similarly, in collaboration with Diaconis and Morrison (1989), Graham computed the cutoff phenomenon in a random walk on a n-dimensional cube. This was the first Markov chain for which such a cutoff in random walks was explicitly determined.

Graham's later work in probability has led him to the invention of the concept of quasi-randomness. The idea is to deepen the known fact that a sufficiently "random" combinatorial object, for example a graph, will almost surely have certain properties. Graham (in collaboration with F. Chung, 1988) proves instead that certain properties form a "quasi-random" equivalence class: any family of objects having any one such property will also have the other properties. This insight makes it possible to explicitly construct families of, say, graphs, which behave for all practical purposes like random graphs.

Graham's work in geometry is no less brilliant. In a celebrated result (obtained in 1975) Graham settled a 20 -year old problem of H . Lenz, of determining the largest area a plane hexagon of unit diameter can have. He showed that such a hexagon is unique and has an area exceeding that of a regular hexagon of unit diameter by about 4%.

An important problem is that of efficiently locating an internal point of a given convex set. Early algorithms required $0\left(n^{4}\right)$ time and were thus rather inefficient. Graham (1972) observed that, in order to determine whether a point lies in a triangle defined by a set of N points, it is not necessary to test all such triangles. By performing a preliminary sorting step, Graham was able to invent an
algorithm for finding such a point in linear time. He proved that the convex hull of N points in the plane can be found in $0(N \log N)$ time and $O(N)$ space, using only arithmetic operations and comparisons. This is the first $0(N \log N)$ time algorithm to be discovered for the problem, and ten years later it was proved to be optimal. His method has blossomed into the field that is now called computational geometry.

Graham was quick to recognize the importance of $N P$-completeness (1966-1969). He showed (1977) that the problem of computing Steiner minimal trees for general planar point sets (on which several scientists in the nineteenth century, including Maxwell, had worked) is $N P$-complete. He was the first to establish a precise bound on worst-case performance of a combinatorial algorithm. Again, his idea has now borne fruit in hundreds of papers applying it to such problems as scheduling and bin-packing, and in fact, in what is now called complexity theory.

My favored theorem of Graham's is the following packing inequality (1969). Let K be a simplicial complex in the plane such that any two vertices are at a distance at least one apart from each other. Let $\alpha_{0}(K), A(K)$ and $P(K)$ and $\chi(K)$ be the number of vertices, the area, the perimeter, and the Euler characteristic of K. Then the following sharp inequality holds:

$$
\alpha_{0}(K) \leq 2 A(K) / \sqrt{3}+P(K) / 2+\chi(K) .
$$

Ronald L. Graham is one of few mathematicians whose influence and leadership are acknowledged and appreciated in the scientific community at large, as well as among mathematicians. His mathematical depth, his broad vision, as well as his effectiveness in management make him, in my opinion, the candidate who will successfully steer the Society through the difficult years ahead.

Nomination for Stephen Smale

Raoul Bott
 Harvard University

It is a pleasure and an honour for me to hereby place Stephen Smale's name in nomination for the Presidency of the American Mathematical Society.

Smale is one of the leading mathematicians of his generation, whose work has been foundational in differential topology, dynamical systems, and many aspects of nonlinear analysis and geometry. It has been his genius also to bring these subjects to bear in a significant way on mechanics, economics, the theory of computation, and other brands of applied mathematics.

Smale's characteristic quality is courage, combined with great geometric insight, patience, and power. He is singleminded in his pursuit of understanding a subject on his own terms and will follow it wherever it leads him. These qualities also emerge in many episodes from his personal life. Once his sails are set, it is literally impossible to stop him. Thus in a few short years he moved from Sunday
sailor to skippering his own boat across the Pacific with a mathematical crew of hardy souls; and so his interest in minerals has, over the years, not only taken him to obscure and dangerous places all over the globe, but has culminated in one of the finest mineral collections anywhere.

Smale characteristically takes on one project at a time, thinks deeply about it and then turns to the next. He likes to share his thoughts with others, keeps his office door open, never seems in a hurry, and inspires his students with his own confidence. His willingness to run for this position therefore assures me that if he were elected he would grace our Society not only with his great mathematical distinction, ecumenical interests and quiet-almost shy-manner, but that he would also do his homework thoroughly and give the serious problems that face our subject and our institutions his "prime time".

Stephen Smale
It was my good fortune to have Smale as one of three enrolled students in the first course on topology which I taught at Michigan (1952-1953). (Munkres was another one, but the third, whose name now escapes me, was-as I liked to say-"the really smart one". Indeed, he could play blindfolded chess, compose operas, etc.) Smale's manner in class was the same then as it is now. He preferably sits in the back; says little, and seems to let the mathematical waves wash over him, rather than confront them. However, Smale's courage surfaced soon at Michigan when he chose me, the greenhorn of topology-actually of mathematics
altogether-as his thesis advisor. I proposed a problem concerning regular curves (i.e., curves with nowhere zero tangents) on manifolds; namely, that the projection of the space of such curves on its final tangent-direction satisfied the "covering homotopy property". This notion had just been invented in the late forties, and I had learned it from Steenrod in Princeton just the year before. The combination of analysis and topology in this question appealed to Smale and he went to work. I was pleased and impressed by the geometric insight and technical power of his eventual solution, but completely amazed when he in the next few years extended these techniques to produce his famous "inside-out turning of the sphere" in \mathbb{R}^{3} through regular deformations. In fact, when he wrote me about this theorem I replied curtly with a false argument which purported to prove the impossibility of such a construction!

More precisely, what Smale had proved was that the regular immersion classes of a k-sphere S^{k} in \mathbb{R}^{n} correspond bijectively to $\pi_{k}\left(V_{k, n}\right)$, the $k^{\text {th }}$ homotopy group of the Stiefelmanifold of k-frames in \mathbb{R}^{n}. He had thus managed to reduce a difficult differential topology question to one in pure homotopy theory and so had set the stage for an obstruction theory of immersions. The final beautiful development of this train of thought came in the thesis of Morris Hirsch, directed by Spanier, but also with great interest and encouragement from Smale.

In the 1960s, Smale produced his "Generalized Poincaré Conjecture" and-what is still to this day the most basic tool in differential topology-the " H-cobordism theorem." All these were corollaries of his deep rethinking of Morse theory, which he perfected to a powerful tool in all aspects of differential topology. Above all, Steve had the courage to look for concrete geometric results, where my generation was by and large taught to be content with algebraic ones.

Smale's rethinking of the Morse theory involved fitting it into the broader framework of dynamical systems. This enabled him not only to extend the Morse inequalities to certain dynamical systems, but also to use concepts from dynamical systems to understand the Morse theory more profoundly. By clearly formulating and using the transversality condition on the "descending" and "ascending" cells furnished by the gradient flow, he was able to control these cell-subdivisions much more accurately than Thom had been able to do ten years earlier. I distinctly remember when he retaught me Morse theory in this new and exciting guise during a Conference in 1960 in Switzerland.

By that time he had actually also constructed his famous "horseshoe" map of the 2 -sphere, and so was well on his way to laying the foundations of a subject we now call "chaos". Indeed, he showed that under the assumption of a hyperbolic structure on a "non-wandering" set, this set breaks up into a finite number of compact invariant sets in a unique way. Each of these was either a single periodic orbit or else was an infinite union of such orbits so inextricably tangled that we would call them "chaotic" today. Moreover, he showed that these basic sets, as he called them, were structurally stable (the chaos cannot be removed by a small
perturbation) as well as ubiquitous!
In the years since these spectacular results-which earned him the Field Medal in 1966-Smale has not ceased to find new and exciting quests for his geometric and dynamical imagination.

In the later 60s, he and his students studied the Morse theory in infinite dimensions as a tool in non-linear differential equations. He proved a Sard type theorem in this framework and the Palais-Smale Axioms are now the foundation on which the modern school build their Morse theory beyond "Palais-Smale".

In mechanics, Smale was one of the initiators of the "geometric reduction" theory which occurs so prominently in the work of the symplectic school. In economics, Smale rein-
troduced differential techniques in the search for equilibria with great success, and in computation theory his "probabilistic growth theory" applied to algorithms-in particular, his estimates for a modified form of Newton's algorithm is an exciting new development in that subject. And the last time I heard Smale talk, he was explaining Godel's theorem in dynamical system terms!

In fact, with an oeuvre of this magnitude and with more than thirty distinguished doctoral students dispersed all over the world, one would have to invoke truly legendary names to best Smale's impact on today's mathematical world.

He is clearly a candidate of the first order whom we must not pass up.

COMBINATORIAL GAMES

"The subject of combinatorics is only slowly acquiring respectability and combinatorial games will clearly take longer than the rest of combinatorics. Perhaps this partly stems from the puritanical view that anything amusing can't possibly involve any worthwhile mathemat-ics."-from the Preface

- Based on lectures presented at the AMS Short Course on Combinatorial Games, held at the Joint Mathematics Meetings in Columbus in August 1990, the ten papers in this volume will provide readers with insight into this exciting new field. Because the book requires very little background, it will likely find a wide audience that includes the amateur interested in playing games, the undergraduate looking for a new area of study, instructors seeking a refreshing area in which to give new courses at both the undergraduate and graduate levels, and graduate students looking for a variety of research topics.
EIn the opening paper, Guy contrasts combinatorial games, which have complete information and no chance moves, with those of classical game theory. Conway introduces a new theory of numbers, including infinitesimals and transfinite numbers, which has emerged as a special case of the theory of games. Guy describes impartial games, with the same options for both players, and the Sprague-Grundy theory. Conway discusses a variety of ways in which games can be played simultaneously. Berlekamp uses the theory of "hot" games to make remarkable progress in the analysis of Go Endgames. Pless demonstrates the close connection between several impartial games and error-correcting codes. Fraenkel explains the way in which complexity theory is very well illustrated by combinatorial games, which supply a plethora of examples of harder problems than most of those which have been considered in the past. Nowakowski outlines the theory of three particular games-Welter's Game, Sylver Coinage, and Dots-and-Boxes. A list of three dozen open problems and a bibliography of 400 items are appended.

1980 Mathematics Subject Classifications: 90; 94
ISBN 0-8218-0166-X, LC 90-22771, ISSN 0160-7634
233 pages (hardcover), February 1991
Individual Member \$31, List Price \$52,
Institutional Member \$42
To order please specify PSAPM/43NA

All prices subject to change. Free shipment by surface; for air delivery, please add $\$ 6.50$ per title. Prepayment required. Order from American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 02901-1571, or call toll free 800-321-4AMS (321-4267) in the continental U.S. and Canada to charge with Visa or MasterCard.

Biographies of Candidates

1991

Abstract

Biographical information about the candidates has been verified by the candidates, although in a few instances, prior travel arrangements of the candidate at the time of assembly of the information made communication difficult or impossible. A candidate had the opportunity to make a statement of not more than 200 words on any subject matter without restriction and to list up to five of her or his research papers.

Abbreviations: American Association for the Advancement of Science (AAAS); American Mathematical Society (AMS); American Statistical Association (ASA); Association for Computing Machinery (ACM); Association for Symbolic Logic (ASL); Association for Women in Mathematics (AWM); Canadian Mathematical Society, Société Mathématique du Canada (CMS); Conference Board of the Mathematical Sciences (CBMS); Institute of Mathematical Sciences (IMS); International Mathematical Union (IMU); London Mathematical Society (LMS); Mathematical Association of America (MAA); National Academy of Sciences (NAS); National Academy of Sciences/National Research Council (NAS/NRC); National Aeronautics and Space Administration (NASA); National Council of Teachers of Mathematics (NCTM); National Science Foundation (NSF); Operations Research Society of America (ORSA); Society for Industrial and Applied Mathematics (SIAM); The Institute of Management Sciences (TIMS).

An (*) indicates the individual was nominated in response to a petition.

President-Elect

Ronald L. Graham
Adjunct Director, Mathematical Sciences, AT\&T Bell Laboratories; University Professor, Rutgers University, New Brunswick
Born. October 31, 1935, Taft, California

Ph.D. University of California, Berkeley, 1962
Offices. Member-at-Large of the Council, 1978-1981; Board of Trustees, 19821991 (Secretary, 1983, 1988; Chair, 1985, 1990).
AMS Committees. Short Course Subcommittee, Committee on Employment and Educational Policy, 1978-1982 (Chair, 1980-1982); Committee on Committees, 1980; Executive Committee, 1980-1981; Committee to Review Society Activities, 1980-1981; Proceedings of Symposia in Applied Mathematics Editorial Committee, 19801992 (Chair, 1980-1981); Committee to Select Gibbs Lecturers for 1981 and 1982; Program Committee for National Meetings, 1981-1983; AMSMAA Joint Program Committee for the Toronto Meeting, 1982; Committee on Composition Technology, Board of Trustees, 1982-1984 (Chair); Fulkerson Prize Committee, 1982-1985 (Chair); Notices Editorial Committee (Associate Editor, Special Articles) 1983- ; Bulletin Editorial Committee (Associate Editor, Research Announcements), 1983- ; AMS-IMS-SIAM Committee on Joint Summer Research Conferences in the Mathematical Sciences, 1984-1987; Transactions and Memoirs Editorial Committee (Associate Editor), 1984-1989 (Chair, 1989); Committee on Salaries, Board of Trustees, 19841990 (Chair, 1987-1990); Committee on Long-Range Planning, Board of Trustees, 1984- ; Joint Policy Board for Mathematics Coordinating Committee on Public Understanding of Mathematics, 1984- ; Committee on Cooperation with the Chinese, 1986- ; Centennial Public Information Committee, 1987;

Public Information Committee, 1988; Journal of the AMS Editorial Committee (Associate Editor), 1988-1992; Audit Committee, Board of Trustees, 1990- ; Strategic Planning Task Force, 1991.

Addresses. Special Session on Interrelations between Computation and Number Theory, Washington, D.C., January, 1975; Short Course on Applied Combinatorics, Kalamazoo, August 1975; Organizer, Special Session on Extremal Problems for Finite Sets, San Antonio, February 1976; Special Session on Combinatorial Number Theory, Seattle, August 1977; Organizer and Speaker, Short Course on Fundamentals of Applied Combinatorics, Seattle, August 1977; Special Session on Graph Theory and Combinatorics, Memphis, November 1977; Special Session on Ramsey Theory and its Ramifications, Atlanta, January 1978; Special Session on Number Theory and its Applications, Biloxi, January 1979; Special Session on Analytic Number Theory, Duluth, August 1979; Principal Lecturer, NSF-CBMS Regional Conference on Ramsey Theory, Northfield, Minnesota, 1979; Special Session on Extremal Problems in Combinatorial Geometry, Ann Arbor, August 1980; Organizer, Special Session on L_{1} and Related Metric Spaces, San Francisco, January 1981; Special Session on Number Theory, San Francisco, January 1981; International Congress of Mathematicians, Warsaw, 1983; Special Session on Combinatorics, Fairfield, October 1983; Special Session on Random Walks on Finite Groups, Louisville, January 1984; Special Session on Combinatorics, Honolulu, March 1987; Invited Address,

Phoenix, January 1989; Special Session on Problems in Number Theory, Orono, August 1991; Special Session on Graph Theory, Fargo, October 1991. Additional Information. Polya Prize in Combinatorics, 1972; Regents Professor of Mathematics, UCLA, Fall 1975; AAAS, Secretary Section A (Mathematics), 1977-1981; CBMS Council, 1978-1980; Visiting Professor, Computer Science, Stanford, Fall 1979, Fall 1981; CBMS Executive Committee, 1980-1981; MAA First Vice-President, 1981-1982; Institute for Mathematics and Its Applications, Minnesota, Board of Governors, 1981-1983; NAS/NRC Board on Mathematical Sciences U.S. National Committee for Mathematics, 1981-1985; New York Academy of Sciences, Mathematics Section, ViceChair 1982-1983 (Chair, 1984-1985); Fairchild Distinguished Scholar, California Institute of Technology, Fall 1983; Consortium for Mathematics and Its Applications Advisory Committee, "For All Practical Purposes: Introduction to Contemporary Mathematics" PBS television series, 1983-1987; AAAS Fellow, 1984; L.L.D., Western Michigan University, 1984; NAS/NRC Board on Mathematical Sciences Panel on Applied Mathematics Research Alternatives for the Navy, 1984-1987; D.Sc., St. Olaf College, 1985; Mathematical Sciences Research Institute Program Committee for Computational Complexity, 1985-1986; Mathematical Sciences Research Institute Science Advisory Council, 1985-1989 (Chair, 19861989); SIAM Committee on the Pólya Prize, 1986-1987; NAS/NRC Board on Mathematical Sciences Committee on Applications of Mathematics, 1986-1988; National Academy of Sciences, Mathematics Section, 1986-1991 (Chair, 1988-1991); Visiting Professor, Computer Science, Princeton, Fall 1987 and Fall 1989; D.Sc., University of Alaska, 1988; Carl Allendorfer Award, MAA, 1990; NAS/NRC Board on Mathematical Sciences Committee on Doctoral and Postdoctoral Study in Mathematics, 1990-1991; Lester A. Ford Award, MAA, 1991; MAA Committee on the Undergraduate Program in Mathematics; NRC Board on Computer Science and Technology; Santa

Fe Institute Science Advisory Board; Editorial Boards: Journal of Combinatorial Theory; Journal of Random Structures and Algorithms; Journal of Algorithms; Journal of Information and Computation; Journal of Discrete and Computational Geometry; Journal of Number Theory; and twenty other technical journals.
Selected Publications. 1. On finite sums of unit fractions, Proc. London Math. Soc. 14 (1964), 193-207; 2. with B. L. Rothschild, Ramsey's theorem for n-parameter sets, Trans. Amer. Math. Soc. 159 (1971), 257-292. MR 44 \#1580; 3. with L. Lovasz, Distance matrix polynomials of trees, Adv. in Math. 29 (1978), 60-88; 4. Rudiments of Ramsey theory, CBMS Regional Conference Series in Mathematics 45, Amer. Math. Soc., Providence, RI, 1981. MR 82j:05018; 5. with F.R.K. Chung, Quasi-random set systems, J. Amer. Math. Soc. 4 (1991), 151-196.
Statement. In recent years the activities of the AMS have begun to expand beyond their traditional boundaries, moving from an earlier, almost exclusive, focus on considerations of mathematical scholarship and research into a broad spectrum of current issues involving topics such as employment and the volatile job market, mathematics education, research funding, renewal of the profession, public awareness and appreciation of mathematics, and the serious underrepresentation of women and minorities at all levels of the mathematical ladder. I feel that this trend is not only healthy, but, in fact, essential if the AMS is to serve its membership as effectively as it should. Many of the problems now facing the Society and the profession need urgent attention. It will require creative thinking and bold actions by the AMS leadership to successfully address these critical issues. To carry out this program, the Society will have to involve a much fuller representation of the membership-to become less exclusive and more inclusive-than it traditionally has in the past.

I have always had a strong personal commitment to serving the profession. The office of AMS President offers the ultimate challenge, one to which, if
elected, I would certainly give my best shot.

Stephen Smale

Professor, University of California, Berkeley
Born. July 15, 1930, Flint, Michigan Ph.D. University of Michigan, 1956
Offices. Representative, Board of Editors, American Journal of Mathematics, 1965-1970; Vice President, 1984-1985; Member of Council (ex officio): 19651970, 1984-1985.
AMS Committees. Invitations Committee for the Symposium in Algebraic and Differential Topology, 1963; Organizing Committee for the 1968 Summer Institute in Global Analysis, 1967; Organizing Committee, Symposium on Nonlinear Functional Analysis, Chicago, April 1968; Committee to Select the Winner of the Veblen Prize, 1971; Committee to Select Hour Speakers for Summer and Annual Meetings, 1972; Committee on a Research Expository Journal, 1975-1976; AMS-SIAM Committee on Applied Mathematics, 1977; Editorial Commmittee for the Research Expository Journal, 1977-1978; Committee to Select Gibbs Lecturers for 1977-1978; Colloquium Editorial Committee, 1978-1983; Bulletin Editorial Committee (Associate Editor, Research Expository Articles), 19791981; Committee on National Awards and Public Representation, 1986-1987; AMS-SIAM Committee to Select the Winner of the Wiener Prize of 1990.
Addresses. Invited Address, Stillwater, Oklahoma, August-September 1961; International Congress of Mathematicians, Stockholm, 1962; Special Session on Ordinary Differential Equations, Denver, January 1965; International Congress of Mathematicians, Moscow, 1966; Invited Address, Chicago, April 1968; Summer Institute on Global Analysis, Berkeley, July 1968; Colloquium Lectures, Hanover, August 1972; Symposium on Some Mathematical Questions in Biology, Mexico, June 1973; Short Course on Mathematical Economics, Toronto, August 1976; Symposium on the Mathematical Heritage of Henri Poincaré, Bloomington, April 1980; Special Sessions on the History of Contemporary Mathematics and
on Topics in Complex Variables, San Francisco, January 1981; International Congress of Mathematicians, Berkeley, 1986; Invited Address, Phoenix, January 1989.
Additional Information. Member, Institute for Advanced Study, 1958-1960; Sloan Fellow, 1960-1962; Representative to the Board of Editors, American Journal of Mathematics, 1965-1970; Fields Medal, International Union of Mathematicians, 1966; Oswald Veblen Prize, AMS, 1966; National Academy of Sciences Committee on Applications of Mathematics, 1973-1975; Fellow, Econometric Society; Fellow, American Association for the Advancement of Science; Member, National Academy of Sciences; American Academy of Arts and Sciences; International Union of Mathematicians; Member: AMS, MAA, SIAM.
Selected Publications. 1. Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391-406. MR 25 \#580; 2. On the mathematical foundations of electrical circuit theory, J. Differential Geom. 7 (1972), 193-210. MR 48 \#1255; 3. The Mathematics of time. Essays on dynamical systems, economic processes, and related topics, SpringerVerlag, New York-Berlin, 1980. MR 83a:01068; 4. The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. 4 (1981), 1-36. MR 83i:65044; 5. Global analysis and economics, Chapter 8, Handbook of Mathematical Economics, Arrow and Intrilligator, North Holland, Amsterdam, 1981, 331-370.
Statement. I would like to see the American Mathematical Society take more initiatives to make current mathematical research play a role in a wider, popular discourse. Lessons could be learned from a recent Minnesota meeting which drew several thousand to hear about "chaos." Undergraduates and even high school students would be inspired to deepen their studies of mathematics. The populace at large would better appreciate the use of public funding for mathematical research. In a similar vein, current research would be put in closer contact with undergraduate education.

Vice-President

Avner Friedman

Director and Professor, Institute for Mathematics and its Applications, University of Minnesota
Born. November 19, 1932, PetachTikva, Israel
Ph.D. Hebrew University, 1956
Offices. Member-at-Large of the Council, 1967-1969.
AMS Committees. Proceedings Editorial Committee, 1961-1963.
Addresses. Symposium on Partial Differential Equations, Berkeley, April 1960; Symposium on Applications of Nonlinear Partial Differential Equations, April 1964; Invited Address, Ann Arbor, November 1969; Special Session on Probabilistic Analysis, Washington, DC, January 1975; Special Session on Variational Inequalities and Related Topics, San Antonio, January 1976; Special Session on Methods of the Calculus of Variations and Partial Differential Equations Applied to Geometrical or Physical Problems, West Lafayette, October 1977; Nonlinear Parabolic Equations, Rome, April 1985; Partial Differential Equations and Applications, Peking, May 1985; International Symposium on Mathematical Theory of Networks and Systems, Stockholm, June 1985; EQUADIF, Bruno, Czechoslovakia, August 1985; Symposium on Nonlinear Partial Differential Equations, Mathematics Research Center, Madison, October 1985; International Conference on the Calculus of Variations, Pisa, March 1986; Control of Partial Differential Equations,Gainesville, February 1986; Nonlinear Problems in Evolution Models, Los Alamos, February 1987; Nonlinear Evolution Equations, Nancy, France, March 1988; Conference on Blow-up of Solutions, Edinburgh, May 1989; Numerical and Asymptotic Methods in Differential Equations, Argonne, February 1990; Free Boundary Conference, Montreal, Canada, June 1990; Joint U.S.-Brazil Conference in Partial Differential Equations, Rio de Janeiro, October 1990.
Additional Information. Sloan Fellow, 1962-1965; Guggenheim Fellow, 19661967; Stampacchia Prize, 1982; NSF Special Creativity Award, 1983-1985 and 1991-1993; American Academy of

Arts and Sciences, 1987- ; Board of Mathematical Sciences, 1990- ; Editorial Boards: Journal of Differential Equations, Communications in Partial Differential Equations, Stochastic Analysis and its Applications, Journal of Mathematical Analysis and its Applications, Journal of Applied Mathematics; European Journal of Applied Mathematics; Member: AMS, SIAM.
Selected Publications. 1. On the regularity of the solutions of nonlinear elliptic and parabolic systems of partial differential equations, J. Math. and Mech. 7 (1958), 43-59; 2. A new proof and generalizations of the Cauchy-Kowaleski theorem, Trans. Amer. Math. Soc. 98 (1961), 1-20; 3. Asymptotic behavior of solutions of parabolic equations of any order, Acta. Math. 106 (1961), 143; 4. The Stefan problem in several space variables, Trans. Amer. Math. Soc. 133 (1968), 51-87; 5. Regularity theorems for variational inequalities in unbounded domains and applications to stopping time problems, Arch. Rational Mech. Anal. 52 (1973), 134-160. MR 50 \#5596.
Statement. The focus in the development of mathematics must be redirected, from emphasis on pure mathematical systems to mathematical systems motivated by the sciences. On one hand, young researchers are not finding jobs. On the other hand, the level of mathematical skill among our students is so low that it threatens our economic competitiveness. Both these problems call for the AMS to take a leading role in reshaping the educational program in this country.

We live in a time when mathematical research is flourishing. The public profile of mathematics is as high as it has ever been, due to a large extent to the advent of computers, which are used in the physical and engineering sciences and in business. The AMS should capitalize on these opportunities. It should develop programs with the sciences, in both education and research. We need more people with integrated skills. We need to pay close attention to elementary and secondary education, perhaps with an eye to integrating mathematics and the sciences earlier. By responding successfully to these challenges, the

AMS will inevitably help increase the public support for the profession.

Linda Keen*

Professor, Lehman College, City University of New York
Born. August 9, 1940, New York, New York
Ph.D. New York University, 1964
Offices. Member-at-Large of the Council, 1981-1983.
AMS Committees. Oversight Committee of AMS Panel to Select NSF Postdoctoral Fellows, 1981-1983 (Chair, 1983); Nominating Committee, 19821983 (Chair, 1983); Committee on Professional Ethics, 1987-1989 (Chair, 1988-1989); Program Committee for National Meetings, 1988; AMS-MAA Joint Program Committee, 1988; Undergraduate Mathematics Education (UME) Trends Editorial Committee, 1989- ; Editorial Boards Committee, 1990-1992; Chair, Committee to Select the Winner of the Satter Prize for 1991. Addresses. Invited Address, Washington, D.C., January 1975; Organizer and Speaker, Conference on Teichmüller Spaces and Kleinian Groups, Columbia University, May 1976; U.S.-Japanese Conference on Kleinian Groups, EastWest Center, Honolulu, January 1979; Organizer and Speaker, Special Session on Kleinian Groups, Philadelphia, April 1980; Special Session on Kleinian Groups, Pittburgh, August 1981; Special Session on Complex Analysis, College Park, October 1982; Summer Research Conference on Kleinian Groups, Boulder, August 1983; Special Session on 3-Manifolds, Fairfield, October 1983; Special Session on Geometric Function Theory, Worcester, April 1985; Special Session on Geometric Structures and Kleinian Groups, Denton, October 1986; Nevanlinna Colloquium, Helsinki, August 1987; Organizer and Speaker, AMS Short Course on Chaos and Fractals, Providence, August 1988; Special Session on Dynamical Systems and Moduli, Boulder, August 1989; MAA Invited Address, Boulder, August 1989; Special Session on Dynamical Systems, Hoboken, October 1989; Special Session on Complex Dynamical Systems, Orono, August 1991.

Additional Information. Charter Member, Mayor's Commission for Science and Technology of the City of New York, 1984-1985; Member, Steering Committee, International Congress of Mathematicians, 1984-1986; President, Association for Women in Mathematics, 1985-1987; U.S. National Committee for Mathematics, 1990-1992 (chair, 1992).

Selected Publications. 1. Intrinsic moduli on Riemann surfaces, Ann. of Math. (3) (1966), 404-420. MR 34 \#2859; 2. Collars on Riemann surfaces., Ann. of Math. Stud., no. 79, Princeton Univ. Press, Princeton, NJ, 1974, 263-268. MR 52 \#738; 3. with R. Devaney, Dynamics of meromorphic functions: Functions with polynomial Schwarzian derivatives, Ann. Sci. École Norm. Sup. (4), 1989; 4. with L. R. Goldberg, The mapping class group of a generic quadratic rational map and automorphisms of the 2-shift, Invent. Math. 101 (1990), 335-372; 5. with P. Blanchard and R. Devaney, The dynamics of complex polynomials and automorphisms of the shift, Invent. Math. 104 (1991); 6. with C. Series, Pleating Coordinates and the Maskit Embedding for the Teichmüller Space of a Punctured Torus, to appear.
Statement. The role of the AMS is to support the mathematical community in its broadest sense. This includes the important traditional areas of support such as research, as well as mathematical education, job opportunities, and public information. To increase its effectiveness, the Society has begun to encourage active participation by a broad spectrum of members both in appointed and elected positions. Since it is demographically clear that the new generations of mathematicians must come from underrepresented pools such as women and minority groups, the AMS must be in the forefront of the efforts to recruit from these pools. Support for mathematics is more important than ever and the AMS should work to increase the amount of nonmilitary research funding and the number of individual research grants. It should be guided in its efforts by the AMS referendum relating to these issues.

Robert Osserman

Professor, Stanford University; Deputy Director, Mathematical Sciences Research Institute
Born. December 19, 1926, New York, New York
Ph.D. Harvard University, 1955
AMS Committees. Organizing Committee, AMS Summer Research Institute, 1973; Committee to Select Hour Speakers for Far Western Sectional Meetings, 1978-1979; Organizing Committee, AMS Symposium on the Geometry of the Laplace Operator, Honolulu, March 1979 (Chair); Committee on Summer Institutes, 1979-1984 (Chair, 1980-1984); AMS-MAA Arrangements Committee for the San Francisco Meeting, January 1981; Committee on Science Policy, 1986-1988.
Addresses. Invited Address, Riverside, November 1968; Summer Research Institute on Differential Geometry, Stanford, July 1973; Invited Address, Los Angeles, November 1975; International Congress of Mathematicians, Helsinki 1978; International Congress of Mathematics Education, Berkeley 1980; Special Session on Minimal Submanifolds, San Antonio, January 1980; Special Session on Partial Differential Equations and Differential Geometry, Monterey, November 1982; Special Session on the Lower Division Curriculum in Mathematics, San Luis Obispo, November 1983; Special Session on Geometric Inequalities, San Antonio, January 1987; International Symposium on Differential Geometry, Peñíscola 1988.
Additional Information. Head, Mathematics Branch, Office of Naval Research, 1960-1961; Fulbright Lecturer, Paris, 1965-1966; Guggenheim Fellow, 1976-1977; Lester H. Ford Award, 1980; Mellon Professor of Interdisciplinary Studies, Stanford, 1986-1990; MAA Committee on Publications, 19871990; Deputy Director, MSRI, 19901993; Member: AMS, AAAS, MAA. Selected Publications. 1. Proof of a conjecture of Nirenberg, Comm. Pure Appl. Math. 12 (1959), 229-232; 2. A proof of the regularity everywhere of the classical solution to Plateau's problem, Ann. of Math. 91 (1970), 550-569. MR 42 \#979; 3. with D. Hoffman, The geometry of the generalized Gauss map,

Mem. Amer. Math. Soc. 28 (1980), no. 236, 1-105. MR 82b:53012; 4. with P. Sarnak, A new curvature invariant and entropy of geodesic flows, Invent. Math. 77 (1984), no. 3, 455462. MR 86a:58054; 5. with Xiaokang Mo, On the Gauss map and total curvature of complete minimal surfaces and an extension of Fujimoto's theorem, J. Differential Geom. 31 (1990), 343-355. Statement. Among the goals of the AMS that I would like to foster are (1) encouraging mathematical research, and disseminating the results of this research through expository articles and books; (2) encouraging the interaction between pure and applied mathematics and all mathematics with other fields; and (3) increasing public awareness of the beauty and impact of mathematics, and encouraging underrepresented groups to participate in mathematical activities.

Member-at-Large of the Council Ruth M. Charney
 Professor, Ohio State University

Born. December 30, 1950, New York, New York
Ph.D. Princeton University, 1977
AMS Committees. Committee on Eastern Sectional Meetings (Select Hour Speakers for), 1988-1989 (Chair, 1989). Addresses. Special Session on Homological and Combinatorial Methods in Group Theory, Duluth, August 1979; Special Session on Algebraic K- and L-Theory, Bryn Mawr, March 1982; Special Session on Surfaces and 3-Manifolds, Fairfield, October 1983; AMS Summer Research Conference on Algebraic K-Theory, Boulder, June 1983; Invited Address, Anaheim, January 1985.
Additional Information. NSF Postdoctoral Fellow, 1979-1980; Yale Junior Faculty Fellow, 1982-1983; Executive Committee of the Association for Women in Mathematics, 1990- ; Nominating Committee of the AWM, 1991.

Selected Publications. 1. Homology stability for $G L_{n}$ of a Dedekind domain, Invent. Math. 56 (1980), 1-17. MR 81h:18010; 2. with R. Lee, Cohomology of the Satake compactification, Topology 22 (1983), no. 4, 389-423.

MR 85k:32061; 3. with R. Lee, Moduli space of stable curves from a homotopy viewpoint, J. Differential Geom. 20 (1984), 185-235; 4. On the problem of homology stability for congruence subgroups, Comm. Algebra 12 (17) (1984), 2081-2123; 5. with F. Cohen, A stable splitting for the mapping class group, Michigan Math. J. 35 (1988), 269-283. MR 90a:55021; 6. with M. Davis, Singular metrics of nonpositive curvature on branched covers of Riemannian manifolds, to appear.
Statement. The primary mission of the AMS is to promote outstanding mathematics research. However, this mission must not be interpreted too narrowly. Increased participation of women and minorities, improvements in math education at all levels, and greater communication with the outside world will ultimately contribute toward a stronger research community. The AMS must find creative ways to address these issues as well as the needs of the existing research community.

Carl C. Cowen, Jr.*
 Professor, Purdue University

Born. November 15, 1945, Madison, Indiana
Ph.D. University of California, Berkeley, 1976
Addresses. Special Session on Functional Analysis in Spaces of Analytic Functions, Duluth, August 1979; Special Session on Topics in Complex Variables, San Francisco, January 1981; Special Session on Topics in Complex Analysis, Cincinnati, January 1982; Special Session on Banach Spaces of Analytic Functions, East Lansing, November 1982; Special Session on Operator Theory in Classical Functions Spaces, Evanston, November 1983; Special Session on Function Theoretic Operator Theory, Louisville, January 1984; Special Session on Composition Operators, AMS Summer Institute on Operator Theory, Durham, July 1988 (Organizer); Special Session on Hilbert Spaces of Analytic Functions, South Bend, March 1991.
Additional Information. Co-chair, Wabash Extramural Modern Analysis Seminar, 1984- ; Organizer, Wabash Miniconference in Honor of Allen Shields,

1989; Chair, Indiana Section of MAA, 1982-1983 and 1989-1990; Marshall Scholarship (University of Warwick), 1967; Member: AMS, MAA, AWM.
Selected Publications. 1. An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators, J. Funct. Anal. 36 (1980), no. 2, 169-184. MR 81d:47020; 2. Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), no. 1, 69-95. MR 82i:30036; 3. Composition operators on H^{2}, J. Operator Theory 9 (1983), no. 1, 77-106. MR 84d:47038; 4. with J. J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216-220. MR 86h:47034; 5. with T. L. Kriete, Subnormality and composition operators on H^{2}, J. Funct. Anal. 81 (1988), no. 2, 298-319. MR 90c:47055. 6. Composition operators on Hilbert spaces of analytic functions: A status report, Proc. Symp. Pure Math. 51 (part I) (1990), 131-145.
Statement. Problems with research fund ing and graduate education are among the most difficult facing American mathematics for the next few years. The AMS should continue to advise government on the most effective ways to spend limited research funds and continue to advocate expanding resources to increase the number of individual research grants and graduate students supported. AMS should seek new ideas for support from nontraditional sources. In our graduate schools, domestic students, especially women and minorities, are underrepresented and many domestic students seem inadequately prepared. The job climate yields massive piles of applications and a feeling that the available jobs are not well matched to the education and skills of the applicants. AMS has a role in enhancing recruitment of qualified students and in improving communication between graduate students, their graduate departments, and their future employers.

Although undergraduate and secondary education are not primary concerns of the Society, coordination of our goals with those of sister organizations, especially the MAA, is essential.

Developing a Strategic Plan (January 1991 Notices) is an important priority and should be done with broadly based input. Although the AMS cannot singlehandedly solve all problems, neither can it stand idly by, wringing its hands.

Jacob E. Goodman

Professor, City College, City University of New York
Born. November 15, 1933, Lynn, Massachusetts
Ph.D. Columbia University, 1967
Addresses. Special Session on Combinatorial Geometry and Convex Sets, Davis, April 1980; Special Session on Discrete Geometry and its Applications, Amherst, October 1981; Special Session on Discrete and Computational Geometry, Toronto, August 1982 (Organizer); Sixteenth Annual Symposium on Computer Science and Statistics-the Interface, Atlanta, March 1984; Conference on Combinatorial Geometry, Oberwolfach, September 1984; Conference on Discrete Geometry, Salzburg, May 1985; Special Session on the Geometry of Configurations, Laramie, August 1985; Third International Conference on Combinatorial Mathematics, New York Academy of Sciences, June 1985; Conference on Algorithms in Combinatorial Geometry, Oberwolfach, February 1987; Third International Conference on Discrete Mathematics, Dortmund, June 1987; Special Session on Discrete Geometry and Convexity, Salt Lake City, August 1987 (Co-organizer); Symposium on Polyhedral Combinatorics and Computational Geometry, Institute for Mathematics and its Applications, Minneapolis, September 1987; New York Academy of Sciences, March 1988; ACM Symposium on the Theory of Computing, Seattle, May 1989; Symposium on Combinatorics and Geometry, Stockholm, August 1989; Conference on Combinatorial and Real Algebraic Geometry, Oberwolfach, August 1989; DIMACS Workshop on Arrangements, New Brunswick, March 1990; SIAM Annual Meeting, Chicago, July 1990; Conference on Convex Geometry, Oberwolfach, July 1990.
Additional Information. Co-Editor-inchief, Discrete and Computational Geometry, 1985- ; Co-chairman, Joint

Summer Research Conference on Discrete and Computational Geometry, Santa Cruz, 1986; Organizing Committee, DIMACS Special Year in Discrete and Computational Geometry, 19891990; Editorial Board, Computational Geometry: Theory and Applications, 1990- ; Lester R. Ford Award, Mathematical Association of America, 1990; Fulbright Research Grant, MittagLeffler Institute, Stockholm, 1991. Member: AMS, MAA.
Selected Publications. 1. Affine open subsets of algebraic varieties and ample divisors, Ann. of Math. 89 (1969), no. $1,160-183$. MR 39 \#4170; 2. with A. Landman, Varieties proper over affine schemes, Invent. Math. 20 (1973), 267312. MR 48 \#6114; 3. with R. Pollack, Multidimensional sorting, SIAM J. Comput. 12 (1983), no. 3, 484-507. MR 85c:68082; 4. with R. Pollack, Semispaces of configurations, cell complexes of arrangements, J. Combinatorial Theory Ser. A 37 (1984), no. 3, 257-293; 5. with R. Pollack, Hadwiger's transversal theorem in higher dimensions, J. Amer. Math. Soc. 1 (1988), no. 2, 301-309. MR 89d:52008; 6. with R. Pollack and B. Sturmfels, The intrinsic spread of a configuration in \mathbf{R}^{d}, J. Amer. Math. Soc. 3 (1990), no. 3, 639-651.
Statement. There are a number of problems confronting the American mathematical community that I feel must be addressed if we are to retain our scientific vitality. These are: (1) persisting inequality of access and of opportunity for women and minorities; (2) the draining away of funds from individual researchers to support large institutes, especially at this time when resources are scarce; (3) the declining quality of primary and secondary education in mathematics and the concomitant widespread mathematical illiteracy among our fellow citizens; (4) the critical shortage of jobs for mathematicians, which is being compounded by the influx of increasing numbers of mathematicians from other countries.

I come from an institution thatas much as any-has borne the brunt of the educational crises of the past twenty years, that continues to produce students who are capable of entering
into the front ranks of mathematical researchers and-at the same time-finds that it must also concern itself with thousands of underprepared students who are sometimes unable to perform the simplest arithmetical calculations. This same challenge, of balancing academic excellence. on the one hand, and educational access on the other, is now being faced by increasing numbers of institutions around the country, and the Society must provide leadership in helping them to meet it successfully.

Alfred W. Hales
 Professor, University of California, Los

 AngelesBorn. November 30, 1938, Pasadena, California
Ph.D. California Institute of Technology, 1962
AMS Committees. AMS-MAA Local Arrangements Committee for the Anaheim Meeting, 1985 (Chair).
Addresses. Symposium on Combinatorics, Los Angeles, March 1968; Southern California Algebra Conference, April 1972; Bicentennial Conference on Abelian Groups, Las Cruces, December 1976; International Symposium on Infinite Groups and Group Rings, Warwick 1978; Greek Mathematical Society, Athens, May 1978; Southern California Algebra Conference, May 1981; Special Session on Abelian Groups, Tucson, April 1985; Oberwolfach Conference on Abelian Groups, August 1985, June 1989; Mathematical Sciences Research Institute-Evans Lecture, Berkeley, November 1986; Special Session on Noncommutative Rings, Las Cruces, April 1988; Invited Address, Phoenix, January 1989.
Additional Information. NSF Fellow, Cambridge University, 1962-1963; Peirce Instructor, Harvard University, 1963-1966; Pólya Prize in Combinatorics, SIAM, 1972; Focus Advisory Committee, IDA, 1988-1991; UCLA Department Chair, 1988-1991; Board on Mathematical Sciences (National Research Council) Workshop, June 1990; Member: AMS, MAA, SIAM.
Selected Publications. 1. with R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229; 2. On the nonexistence of
free complete Boolean algebras, Fund. Math. 54 (1964), 45-66. MR 29 \#1162; 3. with P. Crawley, The structure of abelian p-groups given by certain presentations, J. Algebra 12 (1969), 10-23. MR 39 \#307; 4. with E. G. Straus, Projective colorings, Pacific J. Math. 99 (1982), 31-43; 5. Stable augmentation quotients of abelian groups, Pacific J. Math. 118 (1985), no. 2, 401-410. MR 86i:20013; 6. with H. M. Fredricksen and M. M. Sweet, A generalization of Swan's theorem, Math. Comp. 46 (1986), 321-331; 7. with I.B.S. Passi, Integral group rings with Jordan decomposition, Arch. Math., to appear.
Statement. The primary purpose of the AMS is, and should continue to be, the promotion of mathematical research. At the present time specific attention to educational issues and the pipeline problem is essential for the health of mathematical research.

Rebecca A. Herb

Professor, University of Maryland
Born. December 7, 1948, Madison, Wisconsin
Ph.D. University of Washington, 1974 Addresses. Special Session on Representations of Lie Groups, Washington, DC, October 1979 and Providence, October 1980; Special Session on Representation Theory of Finite Groups and Lie Groups, Bryn Mawr, March 1982; Special Session on Representations of Semi-simple Lie Groups, San Diego, November 1984; Special Session on Representations of Reductive Lie Groups, Amherst, October 1985; Special Session on Harmonic Analysis on Reductive Groups, New Orleans, January, 1986 (Organizer); Invited Address, San Francisco, January 1991.
Additional Information. NSF Contracts, 1976-1992; Sloan Fellow, 1982; Member: AMS, AWM.
Selected Publications. 1. Fourier inversion and the Plancherel theorem for semisimple real Lie groups, Amer. J. Math. 104 (1982), no. 1, 9-58. MR 84e:22013; 2. with J. Wolf, The Plancherel theorem for general real semisimple Lie groups, Compositio Math. 57 (1986), 271-355. MR 87h:22020; 3. with J. Wolf, The Schwartz space of a general semisim-
ple group I: Wave packets of Eisenstein integrals, Adv. Math. 80 (1990), 164224; 4. The Schwartz space of a general semisimple group II: Wave packets associated to Schwartz functions, Trans. Amer. Math. Soc., to appear; 5. The Schwartz space of a general semisimple group III: c-functions, Adv. Math., to appear.
Statement. The primary mission of the AMS is to promote high quality mathematics research. However, the AMS must also take an active role on other issues facing the profession of mathematics. We must promote good teaching at all levels, encourage talented young people, especially women and minorities, to enter the field, and improve communication between mathematicians and other scientists and the general public.

Joshua A. Leslie
 Professor, Howard University

Born. February 18, 1933, Jamaica
Ph.D. Paris, France, 1960
AMS Committees. Committee on the Human Rights of Mathematicians, 1984-1986; Committee on Committees, 1991-.
Addresses. Invited Address, Lehigh University, February 1988; Invited Address, University of Massachusetts, Amherst, February 1988; Colloquium on Group Theory and Physics, Lie's Third Fundamental Theorem in Infinite Dimensions, University of Georgia, July 1988; Annual Seminar of the Canadian Mathematical Society-Montreal, A Path Functor for Kac-Moody Lie Algebras, Montreal, August 1989; Invited Address, Howard University, January 1990; Invited Address, Pennsylvania State University, University Park, October 1990.
Additional Information. Chair, Mathematics Department, Howard University, 1990- ; Member: AMS, MAA, NAM, AAAS, NYAS.
Selected Publications. 1. On a differential structure for the group of diffeomorphisms, Topology 6 (1967), 263271. MR 35 \#1041; 2. Some Frobenius theorems in global analysis, J. Differential Geom. 7 (1972), 597-601; 3. Two classes of automorphisms of geometric structures, J. Differential Geom. 5
(1971), nos. 3 and 4, 427-435; 4. On the group of real analytic diffeomorphisms of a compact real analytic manifold, Trans. Amer. Math. Soc. 274 (1982), no. 2, 651-669; 5. On the Lie subgroups of infinite dimensional Lie groups, Bull. Amer. Math. Soc. 16 (1987), 105-108; 6. A path functor for Kac-Moody Lie Algebras, Proceedings of Lie Algebra Seminar, Canadian Mathematical Society, 1989; 7. Some integrable subalgebras on the Lie algebras of the Lie algebras of infinite dimensional Lie groups, Trans. Amer. Math. Soc., to appear.
Statement. We are fortunate to be in a period when the federal government seems prepared to invest in mathematics education and research more generously than in the recent past. This creates a situation of increasing responsibility for organizations of mathematicians. We should find new ways of making our community's thoughts known to the larger society about how best to fund mathematics education and research. We must explain to the community at large why mathematics is best funded by nonmilitary agencies, if that is our judgement, by arguments other than antimilitarism, to be effective.

We must convince the private sector to invest in undergraduate mathematics education through scholarships for talented undergraduates--this is particularly important for the poorer sections of the community, especially for minorities, if mathematics is to compete successfully with the more professionally oriented disciplines for the finest students.

Elliott H. Lieb

Professor, Princeton University

Born. July 31, 1932, Boston, Massachusetts
Ph.D. University of Birmingham, England, 1956
AMS Committees. AMS-SIAM Committee to Select the Winner of the Wiener Prize of 1990; Committee to Select Gibbs Lecturers for 1991 and 1992 (Chair).
Addresses. International Congress of Mathematicians, Vancouver, 1974; Gibbs Lecturer, 1989.

Additional Information. Guggenheim Fellow, 1972, 1978; Heineman Prize for Mathematical Physics, American Physical Society, 1978; President, International Association of Mathematical Physics, 1982-1984; Member, Board of Governors, Institute for Mathematics and its Applications, 1983-1986; Member, Board of Trustees, Mathematical Sciences Research Institute, 1985-1988; Birkhoff Prize, American Mathematical Society and the Society for Industrial and Applied Mathematics, 1988; Editor: Geometric and Functional Analysis, Studies in Applied Mathematics, Letters in Mathematical Physics, and Reviews of Modern Physics; Member: AMS, MAA, NAS, Austrian Academy of Sciences, Danish Royal Society, Dr. h.c., University of Copenhagen.
Selected Publications. 1. Exact solution of the problem of the entropy of two-dimensional ice, Phys. Rev. Lett. 18 (1967), 692-694; 2. Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. Math. 11 (1973), 267-288. MR 48 \#10407; 3. with H. Brascamp, On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal. 22 (1976), 366-389. MR 56 \#8774; 4. The stability of matter, Rev. Modern Phys. 48 (1976), 553-569. MR 56 \#14314; 5. Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys. 53 (1981), 603-641. MR 83a:81080a; 6. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983), 349-374; 7. with F. Almgren, Singularities of energy minimizing maps from the ball to the sphere: examples, counterexamples, and bounds, Ann. of Math. 128 (1988), 483-530.

Statement. Our community is faced with some important problems related to employment and compensation policies, increasing the participation of women and minorities, research funding, and education. The AMS, along with other Societies, is addressing these issues and must continue to do so. Another significant problem that the AMS is well suited to deal with is mathematics publishing. Our libraries are
nearing a financial crisis caused both by changing attitudes of publishers and by increased demand from the mathematics community. I believe that the AMS can and should play a more active role in resolving this problem.

De Witt L. Sumners

Professor, Florida State University
Born. December 2, 1941, Ferriday, Louisiana
Ph.D. Cambridge University, 1967
Addresses. Special Session on Geometric Topology, Tallahassee, March 1976; Special Session on Algebraic Topology, Memphis, November 1977; Special Session on Knots, Links and 3-Manifolds, Pittsburgh, August 1981; Canadian Chemical Society Symposium on Computational and Mathematical Chemistry, Saskatoon, June 1986; Summer Research Conference on Artin's Braid Group, Santa Cruz, July 1986; NATO Advanced Research Workshop on New Directions in Theoretical Physical Chemistry, Maratea, Italy, October 1987; Canadian Mathematical Society Special Session on Knot Theory and Its Applications, Vancouver, December 1987; All-Japan Topology Conference, Shizuoka, Japan, July 1988; Pacific Basin Chemical Societies Symposium on Progress in Mathematical Modelling in Chemistry, Honolulu, December 1989; Conference on Mathematical Approaches to DNA, Santa Fe, January 1990; National Research Council Workshop on Mathematical Problems in Molecular Biology, Fondation des Treilles, Tourtour, France, May 1990; MAA Minicourse on Knot Theory and DNA, Portland, June 1990; SIAM Minisymposium on The Geometry and Topology of DNA, Chicago, July 1990 (Organizer and Speaker); Knots '90 Conference, Osaka, Japan, August 1990; Mexican Mathematical Society, Guanajuato, Mexico, November 1990; AAAS Technical Session on New Interactions Between Topology and Science, Washington, DC, February 1991 (Organizer and Speaker); AMS Short Course on New Scientific Applications of Geometry and Topology, Baltimore, January 1992 (Organizer and Speaker).
Additional Information. Member, In-
stitute for Advanced Study, Princeton, 1974-1975; Visiting Professor, Kwansei Gakuin University, Japan, 1988; Member, Mathematical Sciences Research Institute, Berkeley, 1989; Member, Program in Mathematics and Molecular Biology, University of California, Berkeley, 1988-1993; Member: AMS, SIAM, AAAS, Cambridge Philosophical Society.
Selected Publications. 1. Smooth Zp actions on spheres which leave knots pointwise fixed, Trans. Amer. Math. Soc. 205 (1975), 193-203. MR 51 \#9097; 2. with J. M. Woods, The monodromy of reducible plane curves, Invent. Math. 40 (1977), no. 2, 107-141. MR 56 \#16643; 3. The role of knot theory in DNA research, Geometry and Topology, C. McCrory and T. Schifrin, eds., Lecture Notes in Pure and Applied Math., 105, Marcel Dekker, New York, 1987, pp. 297-318. MR 88c:57012; 4. Untangling $D N A$, The Math. Intelligencer 12 (1990), 71-80. 5. with C. Ernst, A calculus for rational tangles: applications to DNA recombination, Math. Proc. Camb. Phil. Soc. 108 (1990), 489-515.

Statement. Mathematics is a changing discipline in a rapidly changing world. The American Mathematical Society is currently reviewing its mission through strategic planning. Among its strategic goals, the Society seeks to increase participation of women and minorities in mathematics, to improve the way mathematics is taught and learned, and to expand avenues of communication between mathematics and the natural sciences, and mathematics and the public at large. These and other goals must be accomplished without diminishing the promotion of quality mathematical research. The forces of change provide challenges and opportunities for the Society. I would welcome the opportunity to serve on the AMS Council and to help in finding ways to meet these challenges.

Gunther A. Uhlmann

Professor, University of Washington
Born. February 9, 1952, Quillota, Chile Ph.D. Massachusetts Institute of Technology, 1976
Addresses. Joint Summer Research

Conference on Microlocal Analysis, Boulder, July 1983; Symposium on Pseudo-Differential Operators and Fourier Integral Operators with Applications to Partial Differential Equations, Notre Dame, April 1984; Joint Summer Research Conference on Harmonic Analysis, Arcata, July 1985; Joint Summer Research Conference on Integral Geometry and Tomography, Arcata, June 1989; Joint Summer Research Conference on Inverse Problems in Partial Differential Equations, Arcata, July 1989; Joint Sụmmer Research Conference on Inverse Scattering on the Line, Amherst, June 1990; Special Session on Inverse Problems and Applications, Portland, June 1991 (co-organizer); Invited Address, Portland, June 1991.

Additional Information. Annual Prize of Mathematics, CONICIT (Venezuela), 1982; Sloan Fellow, 1984-1986; Member: AMS.
Selected Publications. 1. with R. B. Melrose, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math. 32 (1979), no. 4, 483-519. MR 81d:58052; 2. with V. Guillemin, Oscillatory integrals with singular symbols, Duke Math. J. 48 (1981), no. 1, 251267. MR 82d:58065; 3. Light intensity distribution in conical refraction, Comm. Pure Appl. Math. 35 (1982), no. 1, 69-80. MR 83a:58085; 4. with J. Sylvester, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. 125 (1987), no. 1, 153-169. MR 88b:35205; 5. with A. Greenleaf, Nonlocal inversion formulas for the X-ray transform, Duke Math. J. 58 (1989), 205-240.
Statement. There are three areas, in my opinion, crucial to the future of our profession, to which the AMS should give special attention: (1) Primary and secondary education; (2) More individual research grants from funding agencies; very good researchers are losing grants and this creates serious problems; (3) Improvement of the abysmal job market for recent Ph.D.'s by all possible means. In addition, the AMS should vigorously continue to pursue the policies of getting underrepresented groups into mathematics.

Trustee

Maria M. Klawe

Professor and Head, Department of Computer Science, University of British Columbia
Born. July 5, 1951, Toronto, Ontario
Ph.D. University of Alberta, 1977
AMS Committees. Committee on Corporate Relations, 1983-; Committee on Electronic Exchange of Information, 1989-
Addresses. Special Session on Amenability, Providence, August 1978; Special Session on Algorithms and Complexity, Pittsburgh, August 1981; Special Session on Matrix Searching Algorithms, Ackermann's Inverse, and Lower Bounds, San Francisco, January 1991; Invited Address, San Francisco, January 1991
Additional Information. CMS Direc-tor-at-Large, 1984-1988; Chair, SIAM Activity Group on Discrete Mathematics, 1985-1988; SİAM Council, 1989-; AWM Executive Committee, 1989-; Board of the Computing Research Association, 1990-; President, Canadian Association of Computer Science, 1990-; Member, National Science and Engineering Research Council Policy Committee on Targeted Research, 1990-; Editorial Boards: Combinatorica, SIAM Journal on Computing, SIAM Journal on Discrete Mathematics, Member: ACM, AMS, AWM, CMS, SIAM. Selected Publications. 1. Limitations on explicit constructions of expanding graphs, SIAM J. Comput. 13 (1984), no. 1, 156-166. MR 85k:68077; 2. A tight bound for black and white pebbles on the pyramid, J. Assoc. Comput. Mach. 32 (1985), no. 1, 218-228. MR 87f:68022; 3. with A. Aggarwal, S. Moran, P. Shor, and R. Wilbor, Geometric applications of a matrix-searching algorithm, Algorithmica 2 (1987), no. 2, 195-208. MR 88e:68097; 4. with D. Kleitman, An almost linear time algorithm for generalized matrix searching, SIAM J. Discrete Math. 3 (1990), no. 1, 81-97.
Statement. The AMS should continue to promote and support mathematical research, and should also continue to play a leadership role in other initiatives which affect the long term future of mathematics. I am particularly
interested in initiatives in the following three areas: human resource issues (e.g., attracting and retaining women and minorities, motivating more students to pursue careers in mathematics); mathematical education in grades $\mathrm{K}-12$ (especially exposing students to the delights and challenges of mathematical research); research interactions between mathematics and other disciplines (e.g., computer science, physics, biology).

Charles C. Sims

Professor, Rutgers University, New Brunswick
Born. April 14, 1937, Elkhart, Indiana Ph.D. Harvard University, 1963
AMS Committees. Associate Editor, Mathematics of Computation, 19821983.

Addresses. Special Session on Computational Methods in Abstract Algebra, Evanston, November 1968; Symposium on Computers in Algebra and Number Theory, New York, March 1970; International Congress of Mathematicians, Helsinki, 1978; Summer Research Institute on Finite Group Theory, Santa Cruz, California, 1979; Short Course on Computer Algebra-Symbolic Mathematical Computation, Ann Arbor, August 1980; Special Session on Computational Group Theory, Phoenix, January 1989; Organizer, Special Session on Computational Algebra, Hoboken, October 1989.
Additional Information. Sloan Fellow, 1969; Member, Board of Directors, New Jersey Educational Computer Network, 1975-1980; Visiting Fellow, Australian National University, 1977-1978; Chair, Department of Mathematics, Rutgers University, New Brunswick, 1982-1984; Associate Provost, Rutgers University, New Brunswick, 1984-1987; Editorial Board, Journal of Symbolic Computation, 1985- . Member: AMS, MAA.
Selected Publications. 1. Enumerating p-groups, Proc. London Math. Soc. 15 (1965), 151-166. MR 30 \#164; 2. Computation with permutation groups, Proc. Second Symp. on Symbolic and Algebraic Manipulation (1971), 23-28; 3. with J. S. Leon, The existence and uniqueness of a simple group gener-
ated by (3,4)-transpositions, Bull Amer. Math. Soc. 83 (1977), 1039-1040; 4. Verifying nilpotence, J. Symbolic Comput. 3 (1987), 231-247; 5. Implementing the Baumslag-Cannonito-Miller polycyclic quotient algorithm, J. Symbolic Comput. 9 (1990), 707-723.
Statement. The AMS Bylaws give the Board of Trustees primary responsibility for the financial health of the organization. If elected to the Board, I would consider it my first obligation to insure that the Society has the facilities, staff, and financial resources needed to carry out its programs effectively, both now and in the future. The Bylaws give the Board of Trustees and the Council shared responsibility for the scientific activities of the AMS. I support the recently approved strategic plan for the Society and would welcome the opportunity to help implement its recommendations, particularly those which call for a deeper involvement by mathematicians in mathematics education, an increase in the participation of underrepresented groups in mathematics and related disciplines, and a greater attractiveness for membership in the Society to a broad range of mathematical scientists. For many years I have had a strong interest in the use of computers in mathematics research and instruction. I would like to see the Society take full advantage of computers in its operation and assist its members in making productive use of this important technology in their own professional activities.

Nominating Committee
 Daniel M. Burns, Jr.

Professor, University of Michigan, Ann Arbor
Born. August 25, 1946, Brooklyn, New York
Ph.D. Massachusetts Institute of Technology, 1972
Offices. Member-at-Large of the Council, 1984-1987.
AMS Committees. Contemporary Mathematics Editorial Committee, 19881989 (Chair, 1989).
Addresses. Summer Research Institute on Algebraic Geometry, Arcata, JulyAugust 1974; Summer Research Institute on Several Complex Variables,

Williamstown, July-August 1975; Special Session on Several Complex Variables, Ann Arbor, November 1976; Special Session on Capacity of Several Complex Variables, Atlanta, January 1978; Special Sessions on Several Complex Variables, Iowa City, April 1979, Bryn Mawr, March 1982, Baton Rouge, November 1982, and Albany, August 1983; Invited Address, Notre Dame, March 1981; Symposium on Several Complex Variables, Madison, April 1982; Special Session on Twistor Theory and Four-Dimensional Geometry, Charlotte, October 1986; Special Session on Flat Bundles and Geometric Structures, Lawrence, October 1988; Summer Research Institute on Several Complex Variables and Complex Geometry, Santa Cruz, July 1989; Special Session on Several Complex Variables, Muncie, October 1989.
Additional Information. Associate Editor, Duke Mathematical Journal, 1978-; Sloan Fellow, 1978-1980.
Selected Publications. 1. with C. L. Epstein, A global invariant for three-dimensional $C R$ structures, Invent. Math. 92 (1988), 333-348. MR 89b:53060; 2. with C. L. Epstein, Characteristic numbers of bounded domains, Acta Math. 164 (1990), no. 1-2, 29-71. MR 90k:32063; 3. with C. L. Epstein, Embeddability for threedimensional CR-manifolds, J. Amer. Math. Soc. 3 (1990), 809-841.
Statement. While the primary mission of the Society is to foster mathematical research, this cannot take place in a vacuum. I would hope to find candidates reflecting the breadth and diversity of the Society's membership, and capable, when appropriate, of communicating effectively with society at large and other scientific communities. In particular, candidates should be sensitive to the critical needs in mathematics education and the Society's responsibility to be active in the national debate on such issues.

Hermann Flaschka

Professor, University of Arizona
Born. March 25, 1945, Oeblarn, Austria
Ph.D. Massachusetts Institute of Technology, 1970

AMS Committees. Committee on Steele Prizes, 1985-1988; Committee on Applications of Mathematics, 1990-.
Addresses. Special Session on Nonlinear Waves, Syracuse, October 1978; Invited Address, Duluth, August 1979; Invited Address, SIAM Summer Meeting, Palo Alto, 1982; Special Session on KdV, Phoenix, January 1989.
Additional Information. Co-founding (now co-coordinating) Editor, Physica D: Nonlinear Phenomena, 1980-; Visiting Professor, Research Institute for Mathematical Sciences, Kyoto, 19801981; CBMS Regional Conference Selection Committee, 1981-1983; Editorial Board, Pacific Journal of Mathematics, 1984-1991; Co-organizer, MSRI Conference on Hamiltonian Systems, June 1989.
Selected Publications. 1. with W. G. Strang, The correctness of the Cauchy problem, Advances in Math. 6 (1971), 347-379. MR 43 \#5147; 2. On the Toda Lattice. II. Inverse scattering solution, Progr. Theoret. Phys. 51 (1974), 703-716. MR 53 \#12412; 3. with A. C. Newell, Monodromy- and spectrumpreserving deformations. I. Comm. Math. Phys. 76 (1980), no. 1, 65-116. MR 82g:35103; 4. with M. G. Forest and D. W. McLaughlin, Multiphase averaging and the inverse spectral solution of the Kortweg-de Vries equation, Comm. Pure Appl. Math. 33 (1980), no. 6, 739-784. MR 81k:35142; 5 . with L. Haine, Variétés de Drapeaux et Réseaux de Toda, Math. Z., to appear.
Statement. Promotion of mathematics research has been, and still is, the Society's first goal. Its officers and committees, however, should also take an interest in other issues that affect and complement the research enterprise, among them: demographic changes and uncertainties in public funding, recruitment from underrepresented groups, education at all levels, and mathematical exposition for scientists and laymen.

John B. Friedlander

Professor, University ofToronto,Toronto
Born. October 4, 1941
Ph.D. Pennsylvania State University, 1972
Addresses. Special Sessions on Number Theory, San Francisco, January

1981, Toronto, August 1982; Special Session on Number Theory and Related Parts of Analysis, Austin, November 1981; Special Session on Diophantine Problems and Analytic Number Theory, Denver, January 1983; Special Sessions on Analytic Number Theory, Louisville, January 1990, Orono, August 1991. Additional Information. Visiting Member, Institute for Advanced Study, 19721974 and 1983-1984; Chair, Department of Mathematics, University of Toronto, 1987-1991; Research Professor, Mathematical Sciences Research Institute, 1991-1992; Fellow, Royal Society of Canada; Member: AMS.
Selected Publications. 1. with S. Halperin, An arithmetic characterization of the rational homotopy groups of certain spaces, Invent. Math. 53 (1979), no. 2, 117-133. MR 81f:55006b; 2. with H. Iwaniec, Incomplete Kloosterman sums and a divisor problem, Ann. of Math. 121 (185), 319-350. MR 86i:11050; 3. with E. Bombieri and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta. Math. 156 (1986), no. 3-4, 203-251. MR 88b:11058, Math. Ann. 277 (1987), 361-393, and J. Amer. Math. Soc. 2 (1989), no. 2, 215-224. MR 89m:11087; 4. with A. Granville, Limitations to the equidistribution of primes. I. Ann. of Math. 129 (1989), 363-382. MR 90e:11125; 5. with A. Granville, A. Hildebrand, and H. Maier, Oscillation theorems for primes in arithmetic progressions and for sifting functions, J. Amer. Math. Soc. 4 (1991), 25-86.

Joseph Lipman

Chair, Department of Mathematics, Purdue University
Born. Toronto, Ontario, Canada, June 15, 1938
Ph.D. Harvard University, 1965
AMS Committees. Committee on Centennial Fellowships, 1990-1992.
Addresses. Special Session on Singularities of Varieties and Mappings, Evanston, April 1973; Summer Research Institute on Algebraic Geometry, Arcata, August 1974; Organizer, Special Session on Stratification of Algebraic and Analytic Varieties, Ann Arbor, November 1976; Invited Address, Columbus, March 1978; Special Ses-
sion on Classification and Deformation of Singularities, Charleston, November 1978; Special Session on Commutative Rings and Algebraic Geometry, San Antonio, January 1980; JefferyWilliams Lecture, Canadian Mathematical Society, Ottawa, May 1982; Canadian Mathematical Society Algebraic Geometry Seminar, Vancouver, July 1984; Colloquium in Honor of P. Samuel, Paris, May 1987; Commutative Algebra Program, Mathematical Sciences Research Institute, June 1987; Brazil-United States Algebraic Geometry Workshop, Rio de Janiero, April 1990.

Additional Information. Organizing Committee, Oberwolfach Meetings, July 1976, May 1982, and May 1986; Organizer, Midwest Algebraic Geometry Conference, West Lafayette, May 1984; Research Professor, Mathematical Sciences Research Institute, 1989-1990; Member: AMS, Canadian Mathematical Society.
Selected Publications. 1. Rational singularities with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 195-279. MR 43 \#1986; 2. Picard schemes of formal schemes; application to rings with discrete divisor class group, Classification of Algebraic Varieties and Compact Complex Manifolds, Lecture Notes in Math., vol. 412, Springer-Verlag, Berlin and New York, 1974, pp. 94-132. MR 50 \#7140; 3. Desingularization of twodimensional schemes, Ann. of Math. 107 (1978), no. 1, 151-207. MR 58 \#10924; 4. Residues and traces of differential forms via Hochschild homology, Contemp. Math., vol. 61, Amer. Math. Soc., Providence, RI, 1987. MR 88b:14017; 5. Topological invariants of quasi-ordinary singularities, Mem. Amer. Math. Soc. 74 (1988), no. 388, 1-107. MR 89m:14001.
Statement. The AMS nurtures the mathematical enterprise, primarily by providing forums for communication among researchers, scholars, and users. It should also address itself to other matters directly affecting the vitality of the profession, and develop effective ways to represent mathematics to society at large. The Nominating Com-
mittee should search for committed individuals of proven accomplishment and broad outlook.

Birgit Speh

Professor, Cornell University
Born. November 25, 1949
Ph.D. Massachusetts Institute of Technology, 1977
Addresses. Special Session on Representations of Lie Groups, Providence, October 1980; Special Session on Representation Theory of Finite Groups and Lie Groups, Bryn Mawr, March 1982; Special Session on Representation Theory and Automorphic Forms, College Park, October 1982; Invited Address, Newark, April 1987; Special Session on Lie Groups and Algebraic Groups, Amherst, October 1990.
Additional Information. Member: AMS, AWM.
Selected Publications. 1. Unitary representation of $G L(n, \mathbf{R})$ with nontrivial (g, K)-cohomology, Invent. Math. 71 (1983), no. 3, 443-465. MR 84k:22024; 2. with D. Vogan, Reducibility of generalized principal series representations, Acta. Math. 145 (1980), no. 3-4, 227299. MR 82c:22018; 3. with J. Rohlfs, Automorphic representations and Lefschetz numbers, Ann. Sci. École Norm. Sup., 1989; 4. with J. Rohlfs, On limit multiplicities of representations with cohomology in the cuspidal spectrum, Duke Math. J. 55 (1987), no. 1, 199-211. MR 88k:22010; 5. with J. Rohlfs, Representations with cohomology in the discrete spectrum of subgroups of $S O(n, 1)(\mathbf{Z})$ and Lefschetz numbers, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 89-136. MR 88h:22019.

Carol S. Wood ${ }^{*}$

Professor, Wesleyan University
Born. February 9, 1945, Pennington Gap, Virginia
Ph.D. Yale University, 1971
Offices. Member-at-Large of the Council, 1987-1989.
Addresses. ASL Logic Colloquium, Manchester, July 1984; Special Year in Logic and Computer Science, Maryland, December 1984; Mid-Atlantic Mathematical Logic, New York, February 1986; Special Year in Mathe-
matical Logic, Notre Dame, March 1986; Model Theoretic Algebra, Oberwolfach, 1986, 1990; Midwest Model Theory Conference, Notre Dame 1988; MSRI Model Theory Workshop. 1990.
Additional Information. NSF-Visiting Professorship for Women, Rutgers University, 1985-1986; Co-chair, ASL Membership Committee, 1985-1990; AMS representative, Mathematical Olympiads Awards, 1988; AMS judge, International Science and Engineering Fairs, 1988-1990; Executive Committee, 19881990; AMS representative, MAA Committee on the Undergraduate Program in Mathematics, 1989-1990; CUPM Subcommitee on the Major in the Mathematical Sciences, 1989-1991; CUPM Subcommittee on Undergraduate Research in Mathematics, 1990-1991; Member, MSRI Special Year in Logic, 1989-1990; AWM Offices: PresidentElect, 1990; President, 1991; Member: AMS, ASL, AWM, LMS, MAA, SIAM.
Selected Publications. 1. The model theory of differential fields of characteristic $p \neq 0$, Proc. Amer. Math. Soc. 40 (1973), 577-584. MR 48 \#8227; 2. Notes on the stability of separably closed fields, J. Symbolic Logic 44 (1979), 412-416. MR 81m:03042; 3. with D. Saracino, $Q E$ nil-2 groups of exponent 4, J. Algebra 76 (1982), 337-352. MR 83i:03052; 4. with D. Saracino, Homogeneous finite rings of characteristic 2^{n}, Ann. Pure and Appl. Logic 40 (1988), 1-28. MR 89i:03070; 5. with G. Cherlin and D. Saracino, On homogeneous nilpotent groups and rings, to appear.
Statement. As a consequence of my recent activities in several societies, including my current post at AWM, I have become acquainted with a wide range of mathematicians and their work. I would hope to draw on this knowledge to broaden and strengthen the Society, and, therefore, mathematics.

[^27]AMS Committees. Transactions and Memoirs Editorial Committee (Editor), 1988-1991.
Addresses. Invited Address, Evanston, November 1983.
Selected Publications. 1. with N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19-38. MR 35 \#683: 2. with N. M. Rivière, Systems of parabolic equations with uniformly continuous coefficients, J. Analyse Math. 17 (1966), 305-335. MR 35 \#6972; 3. with N. M. Rivière and B. F. Jones, The initial value problem for the Navier-Stokes equations with data in $L^{\prime \prime}$, Arch. Rational Mech. Anal. 45 (1972), 222-240. MR 47 \#5463; 4. with M. Jodeit, Jr., and N. M. Rivière, Potential techniques for boundary value problems on C^{1}-domains, Acta Math. 141 (1978), no. 3-4, 165-186. MR 80b:31006; 5. with L. Caffarelli, S. Mortola, and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30 (1981), no. 4, 621-640. MR 83c:35040; 6. with D. Jerison and C. Kenig, Multilinear Littlewood-Paley estimates with applications to partial differential equations, Proc. Nat. Acad. Sci. 79 (1982), no. 18, 5746-5750. MR 83k:47035; 7. with D. Jerison and C. Kenig, Necessary and sufficient conditions for the absolute continuity of elliptic-harmonic measure, Ann. of Math. (2) 119 (1984), no. 1, 121-141. MR 85h:35069; 8. with D. W. Stroock, A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash, Arch. Rational Mech. Anal. (1987); 9. with M. Cranston and Z. Zhao, Potential theory for the Schrodinger equation, Bull. Amer. Math. Soc. (N.S.) 15 (1986), no. 2, 213-216. MR 88d:60197; 10. with M. C. Cerutti and L. Escauriaza, Uniqueness for some diffusions with discontinuous coefficients, Ann. Probab., to appear, 1991.

John Fornaess

Professor; Princeton University
Born. October 14, 1946, Hamar, Norway
Ph.d. University of Washington, 1974
Addresses. Special Sessions on Several Complex Variables, Ann Arbor,

November 1976 and Seattle, August 1977; Invited Address, Biloxi, January 1979.

Additional Information. Sloan Fellow, 1978-1980.
Selected Publications. 1. with K. Diederich, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129-141. MR 55 \#10728; 2. with E. Bedford, A construction of peak functions on weakly pseudoconvex domains, Ann. of Math. (2) 107 (1978), no. 3, 555-568. MR 58 \#11520; 3. with K. Diederich, Smoothing q-convex funcnons and vanishing theorems, Invent. Math. 82 (1985), no. 2, 291-305. MR 87b:32029; 4. Sup-norm estimates for $\bar{\partial}$ in \mathbb{C}, Ann. of Math. (2) 123 (1986), no. 2, 335-345. MR 87i:32008.

Bhama Srinivasan

Professor, University of Illinois at Chicago
Born. April 22, 1935, Madras, India
Ph.D. University of Manchester, 1960
AMS Committees. Proceedings Editorial Committee (Associate Editor), 1984; Committee to Select Hour Speakers for Central Sectional Meetings, 1984-1985; Committee on the Cole Prize, 1985; AMS-ASA-IMS-MAA-NCTM-SIAM Committee on Women in the Mathematical Sciences, 1988 1989; Editorial Committee, Mathematical Survevs and Monographs, 1991-.
AMS Addresses. Special Session on Representations of Finite Groups, San Francisco, January 1974; Special Session on Finite Groups, Chicago, November 1975; Special Session on the Representation Theory of p-adic Linear Groups, Columbus, March 1978; Invited Address, Biloxi, January 1979; Organizer, Special Session on Representation Theory of Finite Groups and Lie Groups, Bryn Mawr, March 1982; Special Session on Representation Theory of Finite Groups of Lie Type, Denver, January 1983; Special Session on Algebraic Groups, Chicago, May 1989; Emmy Noether Lecture. AWM, January 1990.
Additional Information. Editor, Communications in Algebra, 1978-1984; President, Association for Women in Mathematics, 1981-1983; Member:

AMS, AWM, Indian Mathematical Society, MAA.
Selected Publications. 1. Representations of finite Chevalley groups. A survey. Lecture Notes in Mathematics, vol. 764, Springer-Verlag, BerlinNew York, 1979. 2. with P. Fong, The blocks of finite classical groups, J. Reine Angew. Math. 396 (1989), 122-191. MR 90f:20065.
Statement. New developments in mathematical research change the editorial needs of journals. One particular example is the recent interactions of mathematics and physics. I would like to play a role in the selection of editors to reflect the new trends in mathematics, as well as to reflect the diversity of the membership of the AMS.

Robert J. Zimmer

Professor, University of Chicago
Born. November 5, 1947

Ph.D. Harvard University, 1975
AMS Committees. Transactions and Memoirs Editorial Committee, 19871990; Committee to Select Hour Speakers for Central Sectional Meetings, 1988-1989.
Addresses. Special Session on Ergodic Theory, New York, March 1978; Special Session on Harmonic Analysis on Real Groups, Chicago, November 1978; Invited Address, Notre Dame, March 1981; Special Session on Differential Geometry and Ergodic Theory, Amherst, October 1981; Invited Address, International Congress of Mathematicians, Berkeley 1986; AMS Summer Research Institute on Differential Geometry, Los Angeles, 1990.
Selected Publications. 1. Amenable ergodic group actions and an application to poisson boundaries of random walks, J. Funct. Anal. 27 (1978), 350372. MR 57 \#12775; 2. Strong rigidity
for ergodic actions of semisimple lie groups, Ann. of Math. 112 (1980), 511529. MR 82i:22011; 3. Ergodic theory and semisimple groups, Birkhäuser Boston Inc., 1984. 4. On the automorphism group of a compact Lorentz manifold and other geometric manifolds, Invent. Math. 83 (1986), 411-424. MR 87j:58019; 5. Arithmeticity of holonomy groups of lie foliations, Journal of Amer. Math. Soc. 1 (1988), 35-58; 6. Representations of fundamental groups of manifolds with a semisimple transformation group, J. Amer. Math. Soc. 2 (1989), no. 2, 201-213. MR 90i:22021. Statement. The Editorial Boards Committee should nominate persons to serve as editors of the Society's journals based on a potential nominee's ability to obtain relevant information, to render a fair judgement based on high mathematical standards, and to do so in a responsible and timely manner.

CRYPTOLOGY AND COMPUTATIONAL NUMBER THEORY

Carl Pomerance, Editor

Proceedings of Symposia in Applied Mathematics, Volume 42
In the past dozen or so years, cryptology and computational number theory have become increasingly intertwined. Because the primary cryptologic application of number theory is the apparent intractability of certain computations, these two fields could part in the future and again go their separate ways. But for now, their union is continuing to bring ferment and rapid change in both subjects.

This book contains the proceedings of an AMS Short Course in Cryptology and Computational Number Theory, held in August 1989 during the Joint Mathematics Meetings in Boulder, Colorado. These eight papers by six of the top experts in the field will provide readers with a thorough introduction to some of the principle advances in cryptology and computational number theory over the past fifteen years. In addition to an extensive introductory article, the book contains articles on primality testing, discrete logarithms, integer factoring, knapsack cryptosystems, pseudo-random number generators, the theoretical underpinnings of cryptology, and other number theory-based cryptosystems. Requiring only background in elementary number theory, this book is aimed at non-experts, including graduate students and advanced undergraduates in mathematics and computer science.

All prices subject to change. Free shipment by surface; for air delivery, please add $\$ 6.50$ per title. Prepayment required. Order from American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 02901-1571, or call toll free 800-321-4AMS (3214267) in the continental U.S. and Canada to charge with VISA or MasterCard.

1980 Mathematics Subject Classification: 11, 94
ISBN 0-8218-0155-4, LC 90-1248, ISSN 0160-7634
171 pages (hardcover), December 1990 Individual member \$34, List price \$57, Institutional member \$46 To order, please specify PSAPM/42NA

Forum

The Forum section publishes short articles on issues that are of interest to the mathematical community. Articles should be between 1000 and 2500 words long. Readers are invited to submit articles for possible inclusion in Forum to:
Notices Forum Editor
American Mathematical Society
P.O. Box 6248
Providence, RI 02940
or electronically to notices@math.ams.com

What Still Needs to Change (for the Good of Women in Mathematics, and for the Good of Mathematics)

Judith Roitman

University of Kansas
The situation of women in the mathematical community has improved remarkably. Unfortunately, the situation of women in the mathematical community still needs remarkable improvement. Some of the problems lie within the mathematical community, and some lie outside it. Here is my short list of problems, with some discussion and suggestions for solutions. Some of the problems in this list are specific to women, but others are rooted in the general isolation of the mathematical community from the rest of society, with the resulting misleading myths and stereotypes-of mathematics, of mathematicians, and of mathematical employment. Many of these problems are being actively worked on by the national organizations from their Washington offices, but Washington is not the nation, and unless we all pitch in there will be little progress.

1. Women still are undervalued and less visible than men.

 This is the root of the problem. That it is not limited to the mathematical community only makes its impact worse. It has been studied (in broad settings) in many guises-the same paper or vita sent out under male and female names to be evaluated; painstaking documentation of verbal behavior in groups; painstaking documentation of the interplay between teacher and student. All of these studies come to the same conclusion: both women and menundervalue and over-ignore women. It would be hubristic and foolish to believe that the mathematical community is immune; anecdotal evidence abounds to the contrary. Even established women mathematicians have stories of insults endured, contributions ignored or misattributed, patronizing comments whose nature was not recognized by the speaker. Even the most prestigious researcher has had the experience of being in a crowd of mathematicians without her nametag on and finding her words undervalued, misunderstood, or even not heard by people who don't know her. Do men-do white men-have similar experiences? Of course. But do they have them with the consistency and predictability that women do, or bearing the particular weight of women's general social vulnerability? Of course not. If it is this way for women whose careers are established, how much worse is it for women students and for young Ph.D.s?
2. The recent calls for a vast infusion of non-whites and non-males into mathematics appear to have suspect origins.
The mainstream mathematical community got excited about the need to recruit girls and "minority" (read non-Asian nonwhite) boys into mathematics exactly when it was noticed that white boys (especially U.S. citizens) won't do it any more. Is this entirely coincidental? If there is a perception that women are being invited in because the big boys are off somewhere else, the invitation will not be accepted. We must be completely clear about this: We want women and minorities doing mathematics because there is mathematical talent in those communities and we do not want to see that talent go to waste.

We must be clear about something else: A girl has no reason to go into a career that boys don't think is good enough for them. To make mathematics attractive to talented girls we must first make mathematics attractive to talented people.

3. The larger culture thinks that math is just about impossible to learn, especially for girls.

We have valuable allies fighting this misconception, in the National Council of Teachers of Mathematics with its new Standards, which is trying to foment a much needed revolution from kindergarten through high school. We need to learn from and work with them. The resulting
alliances, whether formal or informal, have tremendous potential, providing we have enough humility to not reinforce stereotypes of those elitist professors in (what else?) their ivory towers. The message that all children are capable of learning mathematics includes within it the message that girls are capable of learning mathematics.

4. The larger culture thinks that mathematicians are geeks anyway, and if they are girls they're ugly.

Just about every professional mathematics organization is fighting this image with excellent promotional materials, and books like Mathematical People do a good job, but the news hasn't made it down to Mary Worth (who, as I write this, is giving advise to an uptight mathematician), or your average popular kid's book. Grassroots response is necessary here. How do you identify yourself at parties? How do you respond to the inevitably prideful "I'm lousy at mathematics"? How do you respond to passing comments in the media, or bigger blow-ups (such as the national columnist recently devoting a whole column to why nobody needs high school algebra)? Smart kids aren't always geeks; our lousy image is a major reason pubescent girls turn off to mathematics.
5. Unfriendly subcultures exist within the mathematical community.
Here is a dirty little secret that, like most dirty little secrets, needs to be talked about. Certain subcultures encourage outright misogyny (e.g. the nerd subgroup in high school, which is where many teenage boys start to think of themselves as mathematicians) or, at the least, encourage social values with which many women, and not a few men, feel uncomfortable-the monkish ideal of the researcher who lives only for mathematics; the false dichotomy between research and teaching; a teaching ideal in which students are not listened to, but lectured at. None of these attitudes-not even misogyny-is exclusive to men; none of these is shared by all men; and, most importantly, none of these is intrinsic to good mathematics. But if these are the values which are perceived as dominating all others, we can expect most women and many men to be turned off to mathematics.

6. Students come to us with emotional baggage that works against them.

The bright young woman sitting in your class did not spring full-blown from the head of Zeus. Unless she is quite unusual, she is experiencing pressures of gender and self-image which need active intervention on the part of faculty to keep her going. Even at a young age, girls tend to attribute their success to luck and boys their success to talent, while boys tend to attribute their failure to bad luck and girls their failure to stupidity. Many, if not most, successful women feel as if their achievements are illusory, that they can be taken away in an instant.

So tell her when her work is good. Show her how her ideas and questions can lead to further mathematics. Suggest she major in mathematics. Suggest further courses for her
to take. Suggest graduate school. Find apprenticeship opportunities. Invite her to seminars, to departmental functions. Encourage her through personal hard times. Don't just sit back, give her an A, praise her to your colleagues, and call that enough.

7. Family leave policy barely exists; family friendly policies are rare.

My cynical view is that nothing will be done until a lot of men start complaining about how childcare responsibilities are hurting their careers. Someone has to take care of the kids-usually women do substantially more than 50% (have you seen any nursing men lately?). Good policies encourage long-term productivity; bad policies are blinded by short-term vision. Unfortunately, most of the academic world is dominated by short-term vision (and not just in mathematics). Family leave may be the issue that forces academia away from its current near-sightedness, and allows academics to get off the short-term treadmills that many of us are currently on. The analogy with what's wrong with much of American business is obvious; as with American business, looking to the longer term is simply good policy.

8. The employment situation still needs improvement.

Do you have a two-tiered situation? Is your pre-calculus taught largely by smart women in dead-end positions? There are two good reasons why these women should not be exploited: Simple justice, and the message that their current exploitation sends to young women.

As for regular faculty positions-see the May/June Notices for the current situation. If you say that a good woman is hard to hire, here is Marcia Sward's rejoinder: "I've found that offering more money never hurts."

Yes, the mathematics community has improved remarkably in its treatment of women. But we have a lot further to go. As a community, we should not become complacent. What needs to be done is good for both women and mathematics. We can start slipping backwards, or we can use the infusion of energy from our progress so far to move further towards the elusive goal of true equity, when gender becomes as irrelevant to mathematics as hair and eye color.

Moving Beyond Mottoes

David Gale University of California, Berkeley

Seven years ago the National Research Council (NRC) put out the very informative "David Report" which has served as a useful reference on many occasions since that time. Recently, however, the NRC seems to have turned to sponsoring public relations documents such as "Everybody Counts," which according to its own subtitle is "a report to the nation," and now "Moving Beyond Myths: Revitalizing Undergraduate Mathematics," a report which contains a little information and a lot of PR. I want to question whether this is a good policy in general and to raise objections to "Moving Beyond Myths" (MBM) in particular. It seems to
me that it has many of the faults often found in this sort of promotional material; exaggeration, inaccuracies, and, what is most disconcerting, numerous questionable assertions made without any supporting evidence or any indication of where such evidence can be found. Readers who have read the extensive excerpts from the report which appeared in the July/August issue of Notices will have gotten a pretty good impression of what the report contains, for, in fact, the entire text, although the result of a three year project, runs a scant 45 pages of large type with wide margins. For readers who are not familiar with the report, I hope the excerpts which follow will convey the general flavor.

The blurb on the back cover says "Moving Beyond Myths sets forth ambitious goals for collegiate mathematics by the year 2000 and provides a sweeping plan of action to accomplish them," and the first line of the preface reads "The national action plan [of MBM] calls for dramatic change," but the plan itself is summarized in eleven short sentences, also reproduced in the blurb, and calls on the mathematical community to, among other things, "Elevate the importance of undergraduate teaching," "Teach in a way that engages students," "Increase the number of students who succeed in college mathematics," none of which seem either sweeping or dramatic.

In the matter of accuracy, the pamphlet asserts that most jobs these days require quite a bit of mathematics. Here is how the authors put it, using their myth versus reality format.
"Myth: Most jobs require little mathematics. Reality: The truth is just the opposite."
No evidence or references are given for this surprising statement. In fact, there are no references anywhere in the text. A section at the back entitled references is of little use since the cited publications are not correlated with the assertions in the body of the report. As another example, in refuting the myth that women and members of certain ethnic groups are less capable in mathematics they write,
"Experiences of countries such as Holland and Japan belie this myth, as do results from numerous innovative programs in the United States. Such examples demonstrate unequivocally [!!] that most college students can succeed in mathematics . . ."

Holland and Japan? Not the first countries that come to mind in connection with these problems. Why are we not referred to documents, if they exist, which describe these "experiences" and lead to this dogmatically expressed conclusion?

The action plan consists of 120 short vocative sentences addressed to various sectors of the mathematical community. Mathematics faculty are told to "Adapt tested and proven models." The authors may have intended to write adopt rather than adapt since the models have allegedly already been tested and proven. In any case, the reader won't learn from the report what these models are or where to find out about them. Later, faculty are told to "Become familiar with
the evidence that all students can learn mathematics." No clue is given as to where the evidence can be found for this dubious proposition. Note that "most students" has now become "all students". Indeed, the authors seem to warm to their task as they go along. The final paragraph begins "In mathematics the American dream of equal educational opportunity for all need not be a myth. The dream can be achieved. We know how to do it. We know where it is being done." How? Where? The authors aren't telling.

I don't see what purpose is served by making extravagant statements like the one above. Anyone who has spent any time teaching undergraduate mathematics realizes that there are serious problems with our program, that there are many students who have real difficulty with the material who could benefit if we had the resources, skills, knowledge, and techniques to provide the right kind of help. Mathematics departments worry about these questions all the time and, certainly, any thoughtful suggestions in this direction deserve to be widely circulated-but that's not what this pamphlet provides. Instead, it claims we already have the answers and then, in the action plan, it devotes pages to publicly lecturing the mathematical community with jargon (colleges should "Insist that departments mainstream rather than remediate students"), slogans (faculty should "Teach as if each student is a national asset"), and cliches ("Think as deeply about how to teach as about what to teach," "Teach the students you have, not the ones you wish you had," "Set a stringent personal standard-that if my students don't learn, it is I (not my students or their previous teachers) who have failed"). A notable feature of the above admonitions, aside from their triteness, is that none of them has anything to do with mathematics. They could just as well be directed to teachers in any discipline.

The Committee on the Mathematical Sciences in the Year 2000 which is responsible for MBM is made up of many distinguished and respected members of the mathematical community, but it seems to me they would do better to leave the PR to Madison Avenue and the American dream to the politicians and go back to sponsoring carefully thought out and well documented analyses of our problems.

Maybe Myths Matter
 Saunders Mac Lane
 University of Chicago

This is a review of the elegantly prepared report, Moving Beyond Myths (1991) from the committee on Mathematical Sciences in the year 2000, of the National Research Council (NRC). Like all reports from Washington think tanks, this one needs an acronym. I propose MOBY (MOve BeYond). It is concerned with the very substantial difficulties now facing undergraduate mathematics education. MOBY identifies most of the difficulties, but makes no analysis of their causes and proposes only one sweeping solution, addressed to all mathematicians everywhere in the U.S.A.: "Teach better, be sensitive, teach better, reach out, teach better." All this iterated missionary zeal matches that of the
best presbyterian preachers but displays little understanding, gives no analysis, and proposes no real solutions.

MOBY has no mathematical content whatever. The last attempt at a reform of mathematical teaching, chiefly in the schools, was the New Math of 1957-1965. In that case, there was content: For example, probability introduced, calculus courses improved, and set theory touted. The New Math gradually lost out, but only in part because of those zealots who tried to teach set theory in the kindergarten. There is clear evidence that the New Math lost out largely because of opposition from the Education Establishment. According to Leon Cohen, then NSF program director, the establishment cancelled the funds because they did not control them.

Since MOBY has no substantive content, opposition of this form may not now arise. MOBY proposes, for example, that graduate work in mathematics involve some study of the curriculum but it provides no examples of issues. There are such: Epsilons versus intuitive limits, finite math versus calculus or matrices versus linear transformations. These issues never, but never get mentioned here, so it is hardly clear how any graduate department would be able to implement MOBY's proposal for a meaningful semester course on curriculum (p. 27, called in Washington Speak, "Important curricular and policies issues of undergraduate education").

Resources

MOBY does formulate a major difficulty. Colleges and universities do not provide sufficient resources for the proper teaching of mathematics (p. 17 "large enrollments ... (make mathematics) a cash cow for institutional budgets ... large classes.") But the recommendations (p. 38) to colleges and universities are exceeding leery of addressing this financial issue. Instead, all blame is allocated to the mathematics faculty. Page 15 states "The mathematical community sought to handle the increased workload in inexpensive ways, such as larger classes and increased use of graduate teaching assistants, and part time faculty." Some of these improvised solutions, especially the habit of snatching part-time faculty at the last minute from the street, are surely misguided. But it is by no means clear that the mistake is that of the mathematical community, especially in view of the general knowledge of who it is that decides on university budgets.

Graduate Students

MOBY observes (p. 21) that "The number of U.S. students who pursue graduate studies in mathematics is now much smaller than it was twenty years ago." But no explanation is offered. There might be explanations. At present, a graduate student of mathematics faces five or six years of study for a Ph.D., all at modest stipends while working as a teaching assistant in over-large classes and with the prospect that there might be no academic jobs available ... (as there were hardly any in 1991) ... when finished. Such students do
have alternatives: computer science; or law, with three years to a handsome starting salary; or an MBA, with two years to become a financial analyst. If our student does find an academic job, chances are he will not be able to get NSF funds for research. Physics is bigger and better paid.

What does MOBY propose? Parity for women, minorities and the disabled. Now in these days of firmly enforced political correctness, nobody but nobody will doubt this proposal or suggest that maybe these people are being urged for positions which are no longer really attractive. And does "Parity" apply, say to secondary school teachers? How achieved? But did the authors of MOBY consult those economists who have made considerable studies of distributions of jobs by sex?

Scholarship versus Teaching

MOBY earnestly wants (p. 16) a "balanced commitment to scholarship and teaching," repeatedly complains of the absence of such balance and makes no attempt to explain this absence. Nor does MOBY make any distinctions about balance in different types of institutions. And why is there such imbalance? The reader is left to wonder. It may be that research is easier to judge than teaching, expecially when the judgements are made by letters from people elsewhere. On p. 26, MOBY states that there are "institutions where teaching is unquestionably the primary institutional objective." But MOBY does not observe that these very institutions often request letters of reference as if they were appointing a professor at Princeton or Harvard. Whose fault is this?

Teaching Methods

Template style textbooks receive some attention, p. 17. Indeed, many texts are both heavy and dreary. However, MOBY offers no analysis of this circumstance. Do the students expect templates? Do templates save the instructors intrusions on office hours? Why are there college texts on arithmetic? MOBY makes no study and no recommendations to authors or to publishers.

MOBY repeatedly denounces the lecture method but proposes no solutions whatever except a pious chestnut: Emphasize mathematics for all. No other methods are proposed. There was a time, 1920-1935, when the general habit was to send the students to the board to present the problems of the day. What happened to this method? Did it fail? Was it ineffective? Was it hard in big classes? What does MOBY propose?

On p. 37 one reads "Reinterpret high standards to mean that many students learn rather than most students don't." Is this perhaps a prescription for grade inflation?

The well meaning and very earnest MOBY report is full of enthusiasm, but presents no analysis, no effective solutions, and only a long list of naive recommendations. It will be wholly ineffective in meeting the real problems of undergraduate education in mathematics.

Computers and Mathematics

Edited by Keith Devlin

This month's column

One oft-repeated argument in favor of computer algebra systems is that they free the user from large amounts of tedious, messy, detailed calculations, where it is so easy to make a small slip that renders the result at best inaccurate and at worst, if real-world applications are involved, plain dangerous. But of course, just as the old pencil and paper approach carried its own risks of error, so too do today's hightech methods. A slight mistake in typing and who knows what may result?

Take a look at the screen output from a Maple session shown below.

At first glance this looks like a "proof" that

$$
(t+1)^{2}=t^{2}+1 .
$$

If you take a closer look you will see that there is, however, a difference between the two commands, namely one of capitalization. Readers familiar with Maple syntax will recognize what is going on here, but now imagine that, even though you are quite "expert" with Maple, you are in the middle of a long and complicated Maple session, streching over several screenfulls, and you inadvertantly type factor instead of Factor. Maple might well continue to respond obediently to everything you subsequently ask of it, and will gaily produce an answer for you. But it will, of course, be the wrong answer, and you might well be quite unaware of what was, after all, not a mathematical error but
a typing mistake caused by not hitting the shift key at the right moment; a simple error in capitalization that does not cause the program to hiccup, but which renders meaningless the rest of the calculation.

This particular example is taken from the second of this month's two articles, both of which concern these all-purpose mathematics-by-computer systems that many of us are using these days. The first article comes from David Stoutemyer, who has been involved in the development of several such systems. He writes from the standpoint of the system developer, someone who knows some of the dangers and limitations involved in using such systems.

Following Stoutemyer's piece, Charles Livingston describes some work in knot theory he did with Jim Davis at Indiana University, using the computer algebra system Maple.

From the messages I receive, it is obvious that this column is widely read by an eager audience. So it is clearly not going to fade away for lack of readers. There are a great many people out there who are interested in the interplay between mathematics and computing. But, it can only continue if there is a steady supply of articles to print. Contributions are welcomed on all issues to do with computers and mathematics, particularly articles that deal with the use of computers in mathematical research. Just drop me a line if you have something you want to write about. My address is:

Professor Keith Devlin
Department of Mathematics
and Computer Science
Colby College
Waterville, Maine 04901
Correspondence by electronic mail is preferred, to:
kjdevlin@colby.edu

Crimes and Misdemeanors in the Computer Algebra Trade

David R. Stoutemyer*
University of Hawaii and Soft Warehouse, Inc.

As a co-author of the Derive ${ }^{\mathrm{R}}$ and $m u M a t h^{\mathrm{tm}}$ programs, a past contributor to Reduce and Macsyma ${ }^{R}$, and an occassional user of some other computer-algebra systems, I am delighted about the rapidly increasing acceptance of computer algebra.

[^28]However, it is important for users to be aware of some of the limitations of such systems to use them wisely. First, some definitions:

A bug is something bad that a program does contrary to the programmers' intent-such as returning 5 for the result of $2+2$.

A limitation is something a program can't do that a user wishes it could. Theoretical limitations include undecidability results from logic and the theory of computation. The major resource limitation is exhaustion of computer memory due to the size of intermediate or final expressions. Another resource limitation is that a computation might take an unacceptable amount of time. Algorithmic limitations arise from the fact that it is impractical to coordinate all known mathematics and reasoning power in a reasonable-sized program using a reasonable-sized programmer staff for a reasonable length of time. For example, many computer-algebra systems cannot determine a closed-form antiderivative of $|x|^{-1}$, such as $\ln x \operatorname{sign} x$, even though these same systems can determine much more impressive antiderivatives. Such expertise gaps are inevitable.

Computer-algebra systems also rely on various assumptions, such as certain subexpressions being real or nonnegative. Unfortunately, the documentation or displayed results might not state relevant assumptions, and stated assumptions might be inapplicable in a significant portion of applications. Experiment 1: Determine how the computer-algebra systems available to you and your colleagues simplify $\int|x|^{-1} d x$.

1. Bugs

Computer algebra programs tend to be large and complicated. Even when there are no known bugs in the most recent versions of these programs, most authors would admit that earlier versions had some bugs. The empirical evidence thus suggests that it is prudent to make sure that you have the current version and to act as if even the current version has bugs by checking results several ways.

Computer algebra systems don't necessarily have a higher rate of bugs per megabyte than other programs. Rather, based on past history, most programmers would agree that most large or complicated programs have bugs. Examples of large and/or complicated programs include many numerical methods packages, the compilers that compile them, the operating systems under which they run, the CPU microcode in chips on which they run, and the programs that were used to design the chips and computers. Don't despair. These systems are clearly useful despite their bugs. However, results obtained with the help of computers and programs deserve the same scrutiny as results obtained with help of slower devices such as calculators, tables, paper and pencil, or blackboard and chalk.

Be grateful when bugs are spectacular, such as producing obvious nonsense or crashing the program in a way that requires you to abandon the program and restart it or the computer. What we must guard against most is acceptance
of an incorrect result because it superficially looks plausible and we are too gullible or lazy to check it.

One way to check a computer-algebra result is to derive it on more than one computer-algebra system. It is unlikely that two systems have the same bug. However, two systems might employ the same assumptions about branch selection, continuity, etc., and these assumptions might be inappropriate to your problem. Thus it is also important to read the documentation thoroughly to discover stated assumptions. Moreover, the experiments in this paper might reveal some of the unstated assumptions.

For example, you might discover that the default domain of variables is real numbers and that some of the corresponding transformations might be invalid if you substitute complex values after exploiting these transformations.

There is an additional benefit of trying more than one system: Even when the results are equivalent, you might find that different systems produce the most attractive form for various problems. You will also discover that most systems have features that are absent or weaker in others so that you will learn to exploit the best features of each system.

Many operations have an inverse, so an additional way to check a result is to use the inverse operation to see if you obtain a result that is equivalent to the input. It is unlikely that there are self-canceling bugs that transform an incorrect result back into a correct input.

As examples of such checks, invert an inverse matrix, expand a factored result, or differentiate an antiderivative.

This process often yields an expression that is not identical in form to the input: If the input is a form that would not be produced by any of the various simplification alternatives, then you might find it impossible to transform the inverted result to the same form as the input without tedious manual intervention. Consequently, it is usually best to try, instead, simplifying the difference between the input and the inverted result to 0 . Computer-algebra systems are usually much better at simplifying to 0 expressions that are equivalent to 0 than they are at simplifying to a particular form an expression that is not equivalent to a rational number.

However, for the full class of irrational expressions allowed by most computer-algebra systems, it is probably impossible for any algorithm to guarantee simplification to 0 in a finite number of steps an arbitrary finite expression that is equivalent to 0 . Thus, if the above difference does not simplify to an expression that you recognize as equivalent to 0 , try substituting random numbers in the domain of interest for some or all variables and try to simplify that to 0 . For irrational expressions, this usually requires approximate arithmetic and judging whether the residual is convincingly small compared to its components. A programming bug is likely to give a result that appears wrong for most random substitutions. Some design assumptions discussed below entail formula transformations that are invalid for subexpressions that are negative or have an imaginary part outside the interval $(-\pi, \pi]$, so be sure to include sets of such values if they are relevant. Other design assumptions
discussed below entail transformations that are invalid only at isolated points or curves in the complex plane, so these are unlikely to be revealed by random substitutions.

Another way to check a result is graphically. For example, Figure 1 shows a Derive screen in which window 1 in the upper left corner is a plot of expression 1 and window 2 in the upper right corner is a plot of expression 2. Expression 1 is a continuous antiderivative of $(2+\cos x)^{-1}$ computed by Derive, whereas expression 2 is a discontinuous antiderivative specialized from formula 4.3.133 in Abramowitz and Stegun [1]. As illustrated by this comparison, a plot is a quick and comprehensible way to check a result at several hundred sample points.

COMMAND: Algebra Center Belete Help Move Options PIot quit Scale Ticks Windou Zonm
Cross x:1 y:1 Scale x:4 y:4 Deriue 20-plot
Figure 1: Alternative Antiderivatives of $(2+\cos x)^{-1}$
Experiment 2: For all accessible computer-algebra systems plot $(2+\cos x)^{-1}$ and its symbolic antiderivative to determine if the latter introduces spurious discontinuities. To see that most integral tables and textbooks are fallible too, plot an analogous antiderivative from each of the accessible tables and calculus texts. Don't be fooled if gullible plotting algorithms join discontinuities by spurious near-vertical line segments. This class of antiderivatives is discussed by Jeffrey and Rich [2], by Freese and Ortel [3], and by Kahan [4].

2. Theoretical and Practical Limitations

As implied by the preceding remark about the undecidability of recognizing 0 , there are theoretical limitations to what is computable. Surprisingly, one of the theoretical difficulties is recognizing 0 in expressions composed of transcendental constants such as e^{e} or $\pi+e$. For most such compositions, it is unknown whether they are rational or irrational.

For example, suppose a computer-algebra system is requested to divide by the expression

$$
e^{\pi \sqrt{163}}-262,537,412,640,768,745
$$

Could it be 0 ? Six-digit and sixteen digit floating point arithmetic both yield magnitudes small enough compared to the two terms to be attributable to roundoff. Most computer-algebra systems provide arbitrary-precision approximate arithmetic. Consequently, such a system can keep increasing the precision until at, say, 42 digits it obtains a result such as

262537412640768744.999999999999250072597198 ,

which is strong evidence that the expression is not equivalent to 0 . Arbitrary-precision interval arithmetic could enable the system to prove this rigorously by brute force. This wellknown example has been proved irrational by more elegant means, but the point is that there is a general programmable way to prove that constant expressions are not equivalent to 0 . The theoretical difficulty is that this method can never prove that an expression is equivalent to 0 . If an expression really is equivalent to 0 , such as $e^{i \pi}+1$, then the interval always contains 0 , so the system keeps increasing the precision until it exhausts memory, thus aborting the proof.

In practice, a more important limitation on achieving explicit exact solutions is the expressability of polynomial zeros in terms of radicals: This is often impossible for polynomials of degree exceeding 4 , and the exact solution of a general quartic is so unwieldy that it is better not to request it. Even the exact solution to a general cubic is fairly obscene. User's often don't appreciate the implications for solving one polynomial equation or a system of such equations exactly. For example, it is usually impossible to determine the exact eigenvalues and eigenvectors of a matrix exceeding 4×4 and impractical for a matrix exceeding 3×3 unless you are lucky. Similarly, it is usually impossible to obtain an exact explicit antiderivative of a rational function having a random fifth degree denominator.

Another frequent limitation on achieving explicit exact solutions is the size of intermediate or final results. For example, the expanded determinant of the $n \times n$ matrix having n^{2} distinct letters as entries has $n!$ terms, each with n letters, for a total of about $(n+1)$! symbols. The inverse of that matrix has n^{2} entries, each with that determinant as a denominator dividing a numerator that has ($n-1$)! terms, each having $n-1$ letters. Thus, the inverse of the general $n \times n$ matrix is not very useful for n beyond about 3 or 4, depending on your tolerance for lengthy, boring results that convey no insight.

3. Sets of Measure Zero

When asked to determine an antiderivative of x^{k} with respect to x, with k being an unrestricted variable, most systems respond $x^{k+1} /(k+1)$. Although this is incorrect for $k=-1$, the implementor might claim the justification that this is a set of measure 0 among all complex, real or integer exponents. However, a glance through mathematical literature reveals that an exponent of -1 is actually quite
common. Indeed, sets of measure 0 are often the focus of an analysis-for example, the zeros of $\operatorname{det}(A-\lambda I)$.

Some systems might pause to ask the user whether or not $k=-1$ before returning a result appropriate to the response. This is nice, but such queries are baffling when generated indirectly by an intermediate problem that bears no obvious relation to the user's input. For example, an ordinary differential equation solver might ask whether or not 1 equals a dummy variable that the user has never seen before. Moreover, such queries can be inconvenient when you want to be away from your computer during a lengthy computation. Consequently, some systems permit you to declare domain restrictions on variables before starting a sequence of calculations, using these declarations to determine if a candidate result is valid throughout the default and declared domains of variables.

If Derive cannot determine from the default and declared domains of variables that expression k excludes -1 , then it returns $\left(x^{k+1}-1\right) /(k+1)$ for the above antiderivative, following a suggestion of William Kahan's. The limit of this expression is $\ln x$ as $k \rightarrow-1$, so the expression gives the correct result for any specific numeric value of k, provided you use the lim function to replace k by that specific number. Although users are likely first to substitute -1 for k giving $0 / 0$, this indeterminate form suggests that they then use the limit. In contrast, substituting -1 for k in $x^{k+1} /(k+1)$ gives $x^{0} / 0$, which simplifies to its limit $1 / 0$, representing complex ∞ rather than $\ln x$.
Experiment 3: Determine how all accessible systems treat $\int x^{k} d x$ both with and without a declaration that $k \neq-1$.
The above transformation $x^{0} \rightarrow 1$ raises another issue about ignoring a set of measure 0 : The cancellation of polynomial greatest common divisors. Most systems either automatically or optionally transform an expression such as

$$
\frac{x^{3}+2 x^{2}+3 x+2}{x^{3}+4 x^{2}+5 x+6}
$$

to $(x+1) /(x+3)$, thus gratuitously removing the removable singularities at the zeros of $x^{2}+x+2$. This reduction usually gives a more meaningful and concise result, but not always. An algebraist might regard the domain as a quotient field in which the unreduced and reduced expressions are equivalent. An analyst might feel differently.

It would be nice to have the option of simplifying this example to a conditional expression of the form

$$
\text { if } x^{2}+x+2 \neq 0 \text { then }(x+1) /(x+3) \text { else } 0 / 0
$$

However, it would be challenging to simplify thoroughly combinations of such expressions as they grow through a long sequence of calculations. After seeing results laden with complicated provisos or after not obtaining results because of exhaustion of memory or patience, optimistic users might want to suppress this mechanism on all but simple problems. Fateman [5] discusses some experimental work of this nature.

If a system transforms x^{0} to 1 , then, for consistency between the algebra and arithmetic, the system should also transform 0^{0} to 1. Kahan [6] and Graham, Knuth, and Patashnik [7] give different persuasive reasons why 0^{0} should ordinarily simplify to 1 even in a system that does only arithmetic.
Experiment 4: Determine how all accessible calculators, numeric and symbolic programs treat x^{0} and 0^{0}.
David Jeffrey pointed out to me another example of ignoring a set of measure 0 in solving an equation suc̣ as $c x=0$ for x. Most systems return only $x=0$, but if declarations don't exclude $c=0$, then another solution is $c=0$. Since we requested the values of x that satisfy the equation, we could express the solution set somewhat awkwardly as

$$
x=\{\text { if } c=0 \text { then @ else } 0\}
$$

where @ is a unique new variable designating "anything". In contrast, there is less need to worry about the case $c=0$ in solving $c x=1$ for x, because the solution $x=1 / c$ contains a manifest indication of a limit solution at $x=1 / 0=$ complex ∞. It is the invisible failures of a formula that are most dangerous.

A similar issue arises in reducing to row-echelon form matrices having nonnumeric entries. What do we do when the only remaining pivot choices are symbolic expressions that don't exclude 0? For example,

$$
\text { Row Echelon }\left(\begin{array}{ll}
1 & 2 \\
k & 2
\end{array}\right)= \begin{cases}\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right) & \text { if } k=1 \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \text { if } k \neq 1\end{cases}
$$

Corless, Jeffrey, and Nerenberg [8] devised a generalization of the $L U$ decomposition that addresses this.
Experiment 5: Determine how all accessible computeralgebra systems solve $c x=0$ and row reduce the above matrix example.
Most systems permit substitution of $\infty,-\infty$, or complex ∞ for a variable. Thus, to avoid canceling removable singularities at ∞, these systems could conservatively simplify $x-x$ to a conditional expression such as

$$
\text { if }|x| \neq \infty \text { then } 0 \text { else } x-x
$$

Although taking $x=\ln y$ makes $x-x \rightarrow 0$ and $y / y \rightarrow 1$ equivalent misdemeanors, it is safe to say that a system that didn't simplify $x-x$ to 0 would not be widely appreciated. However, a system that permits infinity as a constant should at least resist incorrect transformation of expressions involving that constant.
Experiment 6: Determine how all accessible systems document and automatically simplify $\infty-\infty, \infty / \infty, 0^{\infty}$ and 1^{∞}.
As suggested by the previous sentence, a system that documents assumptions is partially exonerated. The guilt
varies with the ease of locating such warnings in the documentation.

4. Verification Not Included

In order to construct solutions, humans and computer-algebra systems sometimes take steps that might introduce spurious solutions, so each of the candidates thus generated should be verified.

For example, squaring both sides of the equation $\sqrt{x}=1-x$ generates a related quadratic having two solutions, only one of which satisfies the original equation. Unfortunately, it is very hard to verify such candidates in general. For example, the cubic and quartic formulas can generate incredibly large and messy nested radicals or inverse trigonometric expressions, and when they are substituted into the original equation, no computer-algebra system can currently simplify the difference in the two sides to 0 . For this reason, many computer-algebra systems make no attempt at such verification, leaving it to the user. Unfortunately, some of these systems do not state that warning in the documentation or display a warning whenever such a dangerous transformation is done. If there is a prominent warning, then perhaps we could categorize the weakness as an evasion of responsibility rather than a crime. It is better if a system makes an attempt at verification and issues a warning whenever a candidate could be neither verified nor rejected.
Experiment 7: Determine which accessible systems correctly solve the above example. Determine if those that return an incorrect solution warn the user either during the solution or in the documentation.
As another example, if a computer-algebra system can determine an exact antiderivative valid throughout an open interval, then the easiest way to determine a corresponding definite integral over that interval is to compute the difference in the limits of the antiderivative as the integration variable approaches the endpoints from within the interval. Unfortunately, it is impossible to guarantee finding and assessing the integrability of all internal singularities in the integrand even when there are no extra nonnumeric parameters in the integrand, and it takes a lot of sophisticated code to decide about a worthwhile percentage of examples that arise in practice. Again, many computer-algebra systems make no attempt at such verification, leaving it to the user, and unfortunately, some of the systems do not state that warning in the documentation and do not issue a warning whenever attempted verification is indecisive.
Experiment 8: Determine how the systems available to you and your colleagues document and treat

$$
\int_{-3}^{2} x^{-2} d x \text { and } \int_{a}^{b}(x-c)^{-2} d x
$$

A growing community of computer scientists believe that hardware and software should routinely verify every operation including those that should not generate spurious solutions. For example, every multiply would be checked
by a divide. This would increase the program size and computing time, but the rapid increase in computer power should increase acceptance of this idea.

5. Branch Abuse and Sins of Omission

It is desirable for simplification to commute with substitution or limits. In other words, it is desirable for a transformed expression to give the same result as the original when numbers in the domain of interest are substituted for variables. Failing that, it is desirable that the limit of the original and transformed expressions should be equivalent as each variable therein approaches any number in the domain of interest. An earlier section described common violations of the first goal or both at sets of "measure zero".

This section describes commonly employed computeralgebra transformations that violate both goals for at least half the real numbers or for almost all complex numbers. If we designate the measure-0 offenses as misdemeanors, then these must be felonies. They all derive from a cavalier treatment of multiply-branched expressions.

Fractional powers, logarithms, and inverse trigonometric functions return only a single number on numeric calculators and numeric computer programs. Calculators and programs that do not support complex arithmetic might use the real branch for a fractional power of a negative number if the denominator if the exponent is odd. Otherwise, it is increasingly common to use the principal branch: $-\pi<\operatorname{phase}(z) \leq \pi, \pi<\mathcal{F}(\ln z) \leq \pi, z^{m / n}=\left(z^{1 / n}\right)^{m}$, and $\operatorname{phase}\left(z^{1 / n}\right)=\operatorname{phase}(z) / n$, etc.

Based on experience with calculators and numeric programs that return a single branch, most users expect and want the same behavior for numeric subexpressions on computeralgebra systems. For example, users expect $32^{1 / 5}$ to simplify to 2 rather than the set $\left\{2 e^{2 n \pi i / 5} \mid n=0,1,2,3,4\right\}$. Similarly, they expect $\ln (1)$ to simplify to 0 rather than the infinite set $\{2 n \pi i \mid n \in \mathbf{Z}\}$. Built-in functions for solving equations might construct the full set from the principal branch when needed, and users are free to do so too if they wish.

A more compact way to represent all branches is to leave $\ln (1)$ as is and to transform $32^{1 / 5}$ only to $2 \times 1^{1 / 5}$, with both results representing all branches. There is merit to this approach, but it requires bravely forcing a massive attitude adjustment on users. I can imagine all the angry phone calls and letters asking why $\ln (1)$ doesn't simplify to 0 and $1^{1 / 5}$ doesn't simplify to 1 .

Carrying the all-branch idea even further in the algebraic case, a computer-algebra system could use an implicit representation such as Zeros0f $\left(z^{5}+z+1\right)$ to represent a set of algebraic number associates that aren't expressible as radicals or nested radicals. Some systems have add-on algebraic number packages of this nature. However, users must take special care to prevent the mechanism from being sabotaged by the one-branch automatic simplification of the underlying systems. Moreover, these systems generally require users to anticipate and specify all of the algebraic extensions in advance as a single minimal polynomial rather
than let the extensions automatically accumulate separately only as necessary. For consistency, these systems also generally require the user to express even radicals such as the set $\pm \sqrt{2}$ in this implicit notation as Zeros0f ($z^{2}-2$). Note how I used $\pm \sqrt{2}$ to avoid the ambiguity about whether $\sqrt{2}$ designates all or one particular branch. No wonder confusion abounds!

We train students to seek explicit solutions as the holy grail, so such unnecessarily implicit results are doomed to poor acceptance. The desire for explicit solutions is so strong that most users prefer necessarily approximate explicit results to necessarily implicit exact results. Thus, it is doubtful that many users understand or appreciate these add-on algebraic number packages.

If fractional powers, logarithms, and inverse trigonometric functions return one particular branch for numeric arguments, then automatic transformations for nonnumeric arguments should also be valid for that particular branch. Otherwise, substitution and limits give different results when variables become numbers in the original versus transformed expressions.

For brevity, each felony described in this section is merely one example of a whole class of felonies.

5.1. Fractional-Power Felonies and Sins

Most computer-algebra systems automatically distribute fractional exponents over products or conversely collect such exponents without verifying that it is valid throughout the declared or default domains of contained variables when using the one particular branch used for numeric bases. As a more specific example, many systems employ one of the following two transformations even when both u and v could be negative:

$$
\begin{equation*}
(u v)^{1 / 2} \rightleftharpoons u^{1 / 2} v^{1 / 2} \tag{1}
\end{equation*}
$$

For example,

$$
((-1)(-1))^{1 / 2} \rightarrow 1^{1 / 2} \rightarrow 1,
$$

whereas

$$
(-1)^{1 / 2}(-1)^{1 / 2} \rightarrow i^{2} \rightarrow-1 .
$$

Some systems shift guilt to the user by making these transformations optional, with the default being to avoid the transformations. This can be done with a control variable. For example, a variable named TransformFractionalPowers could have a default value of false, with optional settings of collect or distribute. Another way to provide such optional transformations is by extra transformation functions with names such as CollectFractionalPowers and DistributeFractionalPowers.

Either way, the default is then a \sin of omission because the safe default is to exploit such transformations when they are valid. Otherwise, you can end up with bulky divisors such as

$$
(|x| y)^{1 / 2}-|x|^{1 / 2} y^{1 / 2}
$$

that are equivalent to 0 .

Moreover, the choice between total distribution or collection of fractional exponents and no distribution or collection is too extreme. As the default, the transformations should be exploited where valid, and only there. For example, if x and y can be negative, then the default simplification can validly transform

$$
\frac{(4 x y)^{1 / 2}}{2 x^{1 / 2}}
$$

to $(x y)^{1 / 2} / x^{1 / 2}$, but not all the way to $y^{1 / 2}$.
There can be an override mechanism to force transformations even when the program cannot determine validity. If the default simplification is good, then users will rarely be tempted to gamble by overriding the default. In Derive, the override mechanism is to set the branch selection to Any rather than the default value Principal. There is also a Real choice that causes $(-1)^{1 / 3}$ to simplify to -1 rather than to the principal branch $\sqrt{3} / 2+i / 2$.
Experiment 9: For the systems available to you and your colleagues, use automatic or optional simplification to validly transform $\left(x y|z|^{2}\right)^{1 / 2} /\left(x^{1 / 2}|z|\right)$ only to $(x y)^{1 / 2} / x^{1 / 2}$. Does each system treat $\operatorname{sqrt}(x y)$ the same as $(x y)^{1 / 2}$?
Many systems also automatically employ the transformation

$$
\begin{equation*}
\left(u^{2}\right)^{1 / 2} \rightarrow u \tag{2}
\end{equation*}
$$

even when the phase of u could be outside the interval $\left(-\pi / 2, \pi / 2\right.$]. For example, $\left((-1)^{2}\right)^{1 / 2} \rightarrow 1^{1 / 2} \rightarrow 1 \neq-1$. However, if the declared or default domains of variables make expression u real, then the left side can be simplified to u, which can further simplify to u if u is nonnegative. Although transformation (2) is a mathematically special case of transformation (1) in which $u=v$, the transformations are usually syntax based, hence separately programmed. Thus it is possible for a system to be guilty of one felony but not the other.
Experiment 10: For all accessible systems, determine if $\left(z^{2}\right)^{1 / 2}$ simplifies to z when z is declared real, then complex, then positive.
Another felony is the transformation

$$
(1 / u)^{1 / 2} \rightarrow 1 / u^{1 / 2}
$$

even when u could be negative. For example, $(1 /-1)^{1 / 2} \rightarrow$ $(-1)^{1 / 2} \rightarrow i$, whereas $1 /(-1)^{1 / 2} \rightarrow 1 / i \rightarrow-i$.
Experiment 11: For all accessible systems, see if $(1 / x)^{1 / 2}-$ $1 / x^{1 / 2}$ improperly transforms to 0 .
Another related felony is to employ one of the transformations

$$
(\exp z)^{1 / 2} \rightleftharpoons \exp (z / 2)
$$

even when z could have an imaginary part outside the interval $(-\pi, \pi]$. For example, $\exp ^{1 / 2}(2 \pi i) \rightarrow 1^{1 / 2} \rightarrow 1$, whereas $\exp (\pi i) \rightarrow-1$.
Experiment 12: For all accessible systems, see if you can correctly simplify $(\exp (i y))^{1 / 2}-\exp ((i y) / 2)+$
$(\exp x)^{1 / 2}-\exp (x / 2)$ by cancelling only the last two terms, with x and y declared real. Beware that different systems use different notations for the imaginary unit and the base of the natural logarithms. If in doubt, use $(-1)^{1 / 2}$ and the exp function and beware of possible case sensitivity. Beware also of mixed notations: Does each system treat $\exp u-e^{u}+i-(-1)^{1 / 2}$ the same as $e^{u}-e^{u}+i-i$?

5.2. Logarithm Felonies and Sins

Another common felony is to exploit either of the transformations

$$
\ln (u v) \rightleftharpoons \ln u+\ln v
$$

even when both u and v could be negative. For example, $\ln ((-1)(-1)) \rightarrow \ln 1 \rightarrow 0$, whereas $\ln (-1)+\ln (-1) \rightarrow$ $\pi i+\pi i \rightarrow 2 \pi i$.

Some systems avoid some logarithm felonies by requiring users first to write their own corresponding rewrite rule. This cleverly shifts blame for a naive transformation to the user. However, such systems are even more guilty of a \sin of omission: An experienced system implementor has a better chance of implementing a valid rule than does a naive user, and we have seen that such transformations are vital to good simplification.
Experiment 13: For all accessible systems use appropriate automatic simplification, control variables, functions, or rewrite rules to simplify validly $\ln (x y|z|)-\ln |z|-$ $\ln x$ only to $\ln (x y)-\ln x$. Beware of possible case sensitivity and that the natural logarithm is spelled log on some systems.
Another felony is to employ either of the transformations

$$
\ln \left(u^{2}\right) \rightleftharpoons 2 \ln u
$$

when u could be negative. For example, $\ln \left((-1)^{2}\right) \rightarrow \ln 1 \rightarrow$ 0 , whereas $2 \ln (-1) \rightarrow 2 \pi i$.
Experiment 14: For all accessible systems use appropriate automatic simplification, control variables, functions or rewrite rules to simplify validly $\ln \left(x^{2}\right)-2 \ln x+$ $\ln \left(|y|^{2}\right)-2 \ln |y|$ by canceling only the last two terms.
Another felony is to employ either of the transformations

$$
\ln (1 / u) \rightleftharpoons \ln u
$$

when u could be negative. For example, $\ln (1 /-1) \rightarrow$ $\ln (-1) \rightarrow \pi i$, whereas $\ln (-1) \rightarrow-\pi i$.
Experiment 15: For all accessible systems, use appropriate automatic simplification, control variables, functions, or rewrite rules to simplify validly $\ln (1 / x)+\ln x+$ $\ln (1 /|y|)+\ln |y|$ by canceling only the last two terms. Another felony is to employ the transformation

$$
\ln (\exp z) \rightarrow z
$$

when z could have an imaginary part outside the interval $(-\pi, \pi]$. For example, $\ln \exp (3 \pi i) \rightarrow \ln (-1) \rightarrow \pi i \neq 3 \pi i$.

Experiment 16: For all accessible systems use appropriate automatic simplification, control variables, functions, or rewrite rules to simplify validly $\ln (\exp x) \ln (\exp (i y))$ only to $x \ln (\exp (i y))$, where x and y are declared real.

5.3. Trigonometric Felonies and Sins

Not many computer-algebra systems provide either automatic or optional half-angle simplification. Given the usual principal-branch implementation of square roots, valid halfangle transformations for all real x are

$$
\begin{aligned}
\sin (x / 2) & \rightleftharpoons \operatorname{sign}(\sin (x / 2))((1-\cos x) / 2)^{1 / 2} \\
\cos (x / 2) & \rightleftharpoons \operatorname{sign}(\cos (x / 2))((1+\cos x) / 2)^{1 / 2} \\
\tan (x / 2) & \rightleftharpoons \sin x /(1+\cos x) \\
\cot (x / 2) & \rightleftharpoons(1+\cos x) / \sin x
\end{aligned}
$$

The sign factors severely restrict the applicability of the first two identities.
Experiment 17: For all accessible systems, use appropriate automatic simplification, control variables, funtions, or rewrite rules to simplify validly $\sin (x / 2) /(1+$ $\tan x \tan (x / 2)$) only to the equivalent $\sin (x / 2) \cos x$.

5.4. Inverse Trigonometric Felonies and Sins

A common inverse trigonometric felony is to transform $\operatorname{atan}(\tan u)$ to u even when u could be outside the domain $[-\pi / 2, \pi / 2]$, and similarly for the other inverse trigonometric functions outside appropriate domains. For example, $\operatorname{atan} \tan \pi \rightarrow \operatorname{atan} 0 \rightarrow 0 \neq \pi$.
Experiment 18: For all accessible systems, use appropriate automatic simplification, control variables, functions, or rewrite rules to simplify validly $\operatorname{atan} \tan x+$ atan $\tan \sin y$ only to atan $\tan x+\sin y$ for unrestricted real x and y. Beware of possible case sensitivity and that atan is spelled arctan on some systems.

6. Concluding Remarks

You might be alarmed at the results if you make the recommended experiments. Good. The goal here is to inspire caution. These systems can be extraordinarily useful if users are aware of the underlying assumptions and of their responsibility to verify results. The same warnings apply to most software and hardware. For example, Kahan [9] describes surprises that should inspire similar caution for use of numerical calculators and programs. Manual computation is even more dangerous now that such skill is becoming a lost art.

There is not much that implementors can do about the theoretical limitations described in section 2 , and no one has yet implemented a system that avoids all of the other above limitations. Some of them will be difficult to overcome. However, we are working on it, and some of the other implementors probably are too-at least after they try the above experiments. Be patient and enjoy what is already available, but make your desires known.

References

[1] Abramowitz, M. and Stegun, Irene A., editors, (1965) Handbook of Mathematical Functions, Dover Publications, Inc., N.Y., p. 78.
[2] Jeffrey, D. J. and Rich, A. D., "Continuous antiderivatives of trigonometric expressions", preprint, University of Western Ontario.
[3] Freese, Ralph and Ortel, Marvin, "The $u=\tan \theta / 2$ Substitution in Calculus and Computer Algebra Systems," preprint, University of Hawaii.
[4] Kahan, W., "Periodic Integrals vs. Prohibition of $\tan (\pi / 2)=$ ∞," preprint, University of California at Berkeley.
[5] Fateman, Richard J. (1990), "On the Systematic Construction of Algebraic Manipulation Systems," Symbolic Computations and Their Impact on Mechanics, editors A. K. Noor, I. Elishakoff, and G. Hulbert, The American Society of Mechanical Engineers, 345 East 47th Street, United Engineering Center, N.Y., N.Y. 10017, pp. 3-14.
[6] Kahan, W. (1987), "Branch Cuts for Complex Elementary Functions or Much Ado About Nothing's Sign Bit," The State of the Art in Numerical Analysis, editors A. Iserles and M. J. D. Powell, Clarendon Press, Oxford, pp. 165-212.
[7] Graham, R. L., Knuth, D. E., and Patashnik, O. (1989), Concrete Mathematics, Addison-Wesley Publishing Company, p. 162.
[8] Corless, R. M., Jeffrey, D. J., and Nerenberg, M. A. H., "The Row Echelon Decomposition of a Matrix," preprint, University of Western Ontario.
[9] Kahan, W., (1983) "Mathematics Written in Sand--the hp-15C, Intel 8087, etc.," Proceedings of the American Statistical Association, pp. 12-26.

Periodic Knots and Maple

Charles Livingston*
Indiana University

Jim Davis and I recently completed a project in knot theory that involved a significant amount of computing using the mathematical program Maple. Until then, our experience with computing had been limited to programming in Basic, Fortran, and Pascal, and neither of us was an enthusiast for the use of computers in pure mathematics. In this article, I will describe our experience with Maple and hopefully illuminate a role that programs such as Maple have in pure mathematics.

This article will not offer a detailed description of the capabilities of Maple nor a comparison with similar programs, such as Derive, Macsyma, or Mathematica. Barry Simon's recent article in Notices [S] is an excellent source for such information.

Our initial work was done using Maple, version 4.2, working both on a Macintosh Plus (with 1 megabyte of memory) and a Macintosh IIx. Once the calculations became more lengthy, we switched to a VAX computer. In writing this article, I have repeated some of our work using version 4.2.1 of Maple on a Macintosh IIx, and version 4.3 on a VAX. It is clear that these newer versions

[^29]offer improvements (notably in the online help) that would have eliminated some of our difficulties and frustrations. However, it is fair to say that the experience would have been much the same no matter what version we had at the time.

Periodic Knots and the Alexander Polynomial

Figure 1 illustrates two knots in R^{3}. With a little effort, it is not hard to show that the second knot can be deformed to look like the first. Notice that the second diagram illustrates a "periodic" symmetry that is hidden by the first. Formally, a knot is called periodic, of period n, if it can be deformed into a position in R^{3} so that a rotation of R^{3} of angle $2 \pi / n$ about an axis carries the knot back to itself. Hence, the second diagram of Figure 1 shows that the illustrated knot has period 2.

Figure 1
The problem of determining the periods of a knot is difficult, and it has repeatedly served as a testing ground for new methods of low-dimensional topology. The work of Thurston on hyperbolic structures, that of Meeks and Yau on minimal surfaces, and that of Jones on polynomial invariants of knots, have all seen application to the study of periodic knots; for instance, see [AHW, E, T]. In an article in this column of Notices [A], Adams described a computer program, Snappea, written by Weeks, that was used in [AHW] to study periodicity of knots.

My work with Davis was based on two results of Murasugi concerning Alexander polynomials of periodic knots [M]. There are many definitions of the Alexander polynomial of a knot; all that we need here is that to each knot K there is associated an integral polynomial, $\Delta_{K}(t)$, with the property that if J can be deformed into K, the polynomials $\Delta_{K}(t)$ and $\Delta_{J}(t)$ will be the same, modulo a multiple of $\pm t^{k}$; that is, $\Delta_{K}(t)= \pm t^{k} \Delta_{J}(t)$ for some integer k. (The converse, that if $\Delta_{K}(t)$ and $\Delta_{J}(t)$ are the same then K can be deformed into J, is false.) Tables of knots [BZ, R] include a listing of their Alexander polynomials, and there are now computer programs available dedicated to computing this and other knot invariants.

Murasugi's first result concerning the Alexander polynomial of a periodic knot states that if K is of period p^{r}, with p prime, then (modulo $\left.\pm t^{k}\right) \Delta_{K}(t)$ factors as

$$
\Delta_{K}(t) \equiv\left(\delta_{\lambda}(t)\right)^{p^{r-1}}(\bar{\Delta}(t))^{p^{r}} \quad(\bmod p)
$$

where $\bar{\Delta}(t)$ is an integral polynomial dividing $\Delta_{K}(t)$, and $\delta_{\lambda}(t)=\left(1-t^{\lambda}\right) /(1-t)=\left(1+t+\cdots+t^{\lambda-1}\right)$, where λ is an integer relatively prime to p.

The second result of Murasugi states that if K is of prime period p, then its Alexander polynomial Δ satisfies $(\Delta / \bar{\Delta})=\prod_{i=1}^{p-1} f^{\sigma_{i}}$, where $\bar{\Delta}$ is some integral polynomial factor of Δ satisfying the previous congruence, and f is a polynomial in $\mathbf{Z}\left[\zeta_{p}\right][t]$, ζ_{p} a p th root of unity. Here σ_{i} denotes the Galois automorphism in $\operatorname{Gal}\left(\mathbf{Q}\left[\zeta_{p}\right] / \mathbf{Q}\right)$ taking ζ_{p} to ζ_{p}^{i}.

As an example, for the period 3 knot in Figure 2, $\Delta_{K}(t)=t^{8}-4 t^{7}+4 t^{6}+2 t^{5}-5 t^{4}+2 t^{3}+4 t^{2}-4 t+1=\left(t^{2}-t+\right.$ 1) $\left(t^{6}-3 t^{5}+5 t^{3}-3 t+1\right)$. Letting $\bar{\Delta}=\left(t^{2}-t+1\right), \Delta_{K}(t)$ factors as $\Delta_{K}(t) \equiv(1+t)^{8} \equiv \bar{\Delta}^{3}(1+t)^{2} \bmod (3)$, and thus satisfies the first condition with $\lambda=2$. Furthermore, $\Delta / \bar{\Delta}$ factors as $\left(t^{3}-\left(1-\zeta_{3}^{2}\right) t^{2}-\left(1-\zeta_{3}\right) t+1\right)\left(t^{3}-\left(1-\zeta_{3}\right) t^{2}-\left(1-\zeta_{3}^{2}\right) t+1\right)$ in $Z\left[\zeta_{3}\right][t]$, and the second condition is satisfied as well.

Calculations with Maple

In previous surveys of periodic knots, Murasugi's first condition seems to have been routinely applied. On the other hand, the second condition seems to have been ignored. As both conditions concern the factoring of polynomials, Maple seemed well designed for the task.

Testing Murasugi's first condition proved to be simple for Maple. A sample of the work is as follows, where lines beginning with a. represent input, and each following line the response:

$$
\begin{aligned}
& \cdot \operatorname{del}:=t^{* *} 8-4^{*} t^{* *} 7+4^{*} t^{* *} 6+2^{*} t^{* *} 5-5^{*} t^{* *} 4+2^{*} t^{* *} 3+ \\
& 4^{*} t^{* *} 2-4^{*} t+1 ; \\
& \operatorname{del}:=t^{8}-4 t^{7}+4 t^{6}+2 t^{5}-5 t^{4}+2 t^{3}+4 t^{2}-4 t+1
\end{aligned}
$$

.factor(del);
-Factor(del) $\bmod (2)$;

$$
\left(1-t+t^{2}\right)\left(t^{6}-3 t^{5}+5 t^{3}-3 t+1\right)
$$

-Factor(del) $\bmod (3)$;

$$
\left(t^{2}+t+1\right)^{4}
$$

$$
(t+1)^{8}
$$

The first line defines the polynomial del, the second gives its irreducible integral factorization, and the next gives its mod (2) and mod (3) irreducible factorizations. A straightforward application of Murasugi's first condition shows that any knot with this polynomial cannot have period 2. Of course, period 3 is possible. It is a simple exercise to use Murasugi's first condition to rule out all other possible prime periods. The observation that if a knot has period n, then it has period d for all divisors d of n, shows that the only possible periods of the knot in Figure 2 are powers of 3. Period 9 can also be ruled out, but the argument requires a generalization of Murasugi's second condition to the composite case.

Figure 2
Mastering Maple to the extent necessary to do this calculation was easy. The main difficulty was in remembering details of the syntax: For instance, when factoring integrally, the command "factor" is not capitalized; it is capitalized when working $\bmod (p)$. The following pair of commands illustrates how critical such details can be.

$$
\begin{array}{ll}
\cdot \operatorname{Factor}\left(t^{* *} 2+4^{*} t+1\right) \bmod (2) ; & \\
(t+1)^{2} \\
\cdot \operatorname{factor}\left(t^{* *} 2+4^{*} t+1\right) \bmod (2) ; & t^{2}+1
\end{array}
$$

In the midst of a complex program, an almost invisible typo can create serious errors that do not prevent the program from running, and the program might even produce reasonable looking results.

The only other hurdle at this elementary level was in problems with the Maple interface with the Macintosh. For instance, Maple was incompatible with desk accessory word processors and there were a large number of system crashes associated with "memory overflow." (Many of these interface problems, but not all, seem to have been corrected in version 4.2.1.)

The next step of the project, checking Murasugi's second condition, was much more difficult, even though Maple has built-in programs to factor polynomials in algebraic number fields. An interesting example is the knot in Figure 3, having Alexander polynomial $t^{6}-8 t^{5}+22 t^{4}-29 t^{3}+22 t^{2}-8 t+1$. This knot is listed as possibly having period 7 in [BZ].

Figure 3
One proof that this knot does not have period 7 has recently appeared in [AHW], and depends on deep results
beyond an analysis of the Alexander polynomial. Murasugi's second condition (along with the first to show that $\bar{\Delta}=1$) implies that if K is of period 7 , then its Alexander polynomial would factor as the product of 6 linear factors in $\mathbf{Z}\left[\zeta_{7}\right][t]$. The Maple commands, although not intuitive, are easily culled from the manual:

$$
\begin{aligned}
& \text { del }:=t^{* *} 6-8^{*} t^{* *} 5+22^{*} t^{* *} 4-29^{*} t^{* *} 3+22^{*} t^{* *} 2- \\
& \text { del }:=t^{6}-8 t^{5}+22 t^{4}-29 t^{3}+22^{2}-8 t+1 ; \\
& \text { zeta }:=\operatorname{RootOf}\left(Z^{* *} 6+Z^{* *} 5+Z^{* *} 4+Z^{* * *} 3+\right. \\
& \text { zeta }:=\operatorname{RootOf}\left(Z^{6}+Z^{5}+Z^{4}+Z^{2}+Z^{2}+Z Z_{1}+1\right) \\
& \text { evala(Factor(del),zeta) } ;
\end{aligned}
$$

The first line defines the polynomial del. The second defines zeta to be a primitive seventh root of unity (recall that $\left.\left(Z^{6}+Z^{5}+Z^{4}+Z^{3}+Z^{2}+Z+1\right)(Z-1)=Z^{7}-1\right)$. For the Maple RootOf function, the variable must be named _ Z. The third command asks for the evaluation in an algebraic number field of the factorization of the polynomial del, where the zeta specifies what number field.

The response to the last command is not given. Running on a Mac Plus, calculations such as this would repeatedly lead to system crashes. On the Mac IIx, running version 4.2.1, there was no apparent crash, however, during the calculation the usual "terminate current computation" command became inaccessible and after 15 minutes of waiting the system has to be rebooted in any case. Running version 4.3 on a VAX, the calculation took several seconds, and gave a result that proves that the knot does not have period 7:

$$
\begin{aligned}
& \left(t^{2}-3 t-\% 1^{3} t-\% 1^{4} t+1\right)\left(t^{2}-2 t+\% 1^{2} t+\% 1^{3} t+\right. \\
& \left.\% 1^{4} t+\% 1 t+1\right)\left(t^{2}-3 t-\% 1^{2} t-\% 1^{5} t+1\right) \\
& \% 1:=\operatorname{RootOf}\left(Z^{6}+Z^{4}+Z^{4}+Z^{3}+Z^{2}+Z+1\right)
\end{aligned}
$$

In the face of the difficulties involved in the last calculation, and the fact that it seems to be at the limit of the capabilities of Maple even in the best computing environment, we were fortunate to find an alternative approach for testing the factorability of polynomial in $\mathbf{Z}\left[\zeta_{p}\right][t]$. If q is a prime congruent to $1 \bmod (p)$ then there is a ring homomorphism from $\mathbf{Z}\left[\zeta_{p}\right]$ to Z_{q} which sends ζ_{p} to a p th root of unity in Z_{q}. There is an induced homomorphism from $\mathbf{Z}\left[\zeta_{p}\right][t]$ to $\left.Z_{q}\right][t]$, and a factorization of an integral polynomial in $\mathbf{Z}\left[\zeta_{p}\right][t]$ induces a factorization of the mod (q) reduction of the polynomial in $Z_{q}[t]$. In the previous example, one can let $q=29$ and compute

- Factor(del) $\bmod (29) ;$

$$
\left(t^{2}+8 t+1\right)\left(t^{2}+23 t+1\right)(t+11)(t+8)
$$

This again shows that del does not factor into linear factors in $\mathbf{Z}\left[\zeta_{7}\right][t]$.

Programming in Maple

One of our interests in this work was to test the effectiveness of generalizations of the Murasugi conditions; another concerned issues of sufficiency. For both reasons, it became necessary to scan many examples, and writing a program
in Maple to carry out the above calculations was essential. Learning to write elementary programs was easy; more sophisticated programming was both difficult and called for an understanding of some of the finer details of the workings of Maple.

Polynomials could be entered as a text file, using coefficient vectors. For instance, " $P 5:=[1,5,-11,5,1]$," represents the polynomial $p_{5}(t)=t^{4}+5 t^{3}-11 t^{2}+5 t+1$. After writing a procedure "formpoly" to convert these vectors into polynomials, a simple program to find the $\bmod (3)$ factorizations of the first fifty polynomials consisted of a single line

- for i from 1 to 50 do; Factor(formpoly(P.i)) mod (3); od;

On the other hand, the complete program to test each polynomial to see whether or not it satisfied Murasugi's first condition, and, if so, for which values of p and λ, was over 100 lines long, and took a week to write and debug, including the time spent learning the language.

As a simple example of the type of issue that arises, consider the following sequence of statements:

$$
\cdot f:=t+1 ; t:=5 ; g:=f+2 ; t:={ }^{\prime} t^{\prime} ; \operatorname{print}(f, g) ;
$$

Maple returns $t+1,8$. It is not hard to learn the conventions Maple uses that lead to the value of 8 for g instead of $t+3$. If one is to program in this environment, learning them well is clearly essential. This example also illustrates how delicate programming is. For instance, if the assignment of $t:=5$ took place conditionally, (e.g. "if $x>100$ then $t:=5$ ") then later in the program it would be unknown what type of quantity g was.

I assume that these difficulties in learning Maple programming are inherent in any language of similar capabilities, and in fact, were less difficult then I anticipated. Maple comes with a simple and useful 140 page tutorial (First Leaves) as well as a reference manual and excellent online help. What is especially useful in learning the environment, at least on a Macintosh, is that all of the built-in functions in Maple, such as those that compute determinants of matrices or ged's of polynomials, are accessible. In effect, one has access to thousands of working examples.

Our program to check Murasugi's first condition was given a list of the 552 knot polynomials of "11-crossing" knots of K. Perko. On a Mac IIx it took about 4 hours to run. On our fastest computer the run took 20 minutes.

Results

The value of the Maple calculations we did in our research was limited. We were able to resolve the possible periods of five knots that had been listed as questionable in [BZ], and also detected several errors in the tables there. We also tested new criteria that we had developed, and extracted several more examples. This demonstrated the power of algebraic methods, in particular, those of Murasugi, which had not been fully appreciated. These examples certainly made our
work more interesting. On the other hand, I must admit that none of the principal results of our work depended on, or were even inspired by, the outcomes of any of the calculations.

Conclusions

Maple is a powerful language that comes with libraries of functions in areas such as linear algebra, number theory, and statistics, to name just a few. It is easy to learn the basics of the language, and with a small amount of programming, that basic knowledge goes fairly far. Learning Maple to the extent necessary to write programs for tasks that are well beyond the built-in procedures is much more difficult.

For working with examples, it is excellent, and I have used it in several projects in knot theory. Whether or not that sort of analysis will lead to important insights remains to be seen. And if Maple calculations play a central role in the proof of a theorem, serious questions about the reliability of the programs, and of Maple, will have to be addressed.

For basic calculations, Maple runs satisfactorily on a Macintosh Plus with one megabyte of memory. Harder
calculations seem to benefit considerably from additional memory. Although much improved over earlier versions, the program is still hampered by occasional crashes.

References

[A] C. Adams, "SNAPPEA, the Weeks hyperbolic 3-manifolds program," Notices of the AMS., 37 (1990), 273-275.
[AHW] C. Adams, M. Hildebrand, and J. Weeks, "Hyperbolic invariants of knots and links," Trans. AMS., to appear.
[BZ] G. Burde, and H. Zieschang, Knots, de Gruyter Studies in Math. 5, Berlin, 1985.
[DL] J. Davis and C. Livingston, "Alexander polynomials of periodic knots," Topology, to appear.
[E] A. Edmonds, "Least area Seifert surfaces and periodic knots," Topology and its Applications 18 (1984), 109-113.
[M]. K. Murasugi, "On periodic knots," Comment. Math. Helv., 46 (1971), 162-174.
[R] D. Rolfsen, Knots and Links, Publish or Perish, Inc., Berkeley, CA., 1976.
[S] B. Simon, "Four computer mathematical environments," Notices of the AMS., 37 (1990), 861-868.
[T] P. Traczyk, " 10_{101} has no period 7: a criterion for periodicity of links," Proc. of the AMS., to appear.

COMPUTER-AIDFD VERIFTCATTON '90

 E. M. Clarke and R. P. Kurshan, Fditors

 E. M. Clarke and R. P. Kurshan, Fditors Proceedings of a DIMACS Workshop, Volume 3

This volume, published jointly with the Association for Computing Machinery, contains the proceedings of the second workshop on Computer-Aided Verification, held at DIMACS at Rutgers University in June 1990. The motivation for the workshop was to bring together researchers working on effective algorithms or methodologies for formal verifilication (as distinguished from, for exámple, attributes of logics or formal languages). The theoretical results leading to new or more powerftil verification methods include advances in the use of binary decision diagrams, dense time, reductions based on partial order representations, and proof-checking in controller verification.

The general focus of this volume is on the problem of making formsi verification feasible for various models of computation. Specific emphasis is on models associated with distributed programs, protocols, and digital circuits. The general test of algorithmifeasibility is to embed it into a verification tool and to exercise that tool on realistic examples. This volume provides a look at the latest theoretical advances in this exciting and important area of research.

All prices subject to changee free shipment by surface; for air delivery, please add $\$ 6.50$ per title. Prepayment requiredi Order from American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 02901-1571, or call toll free 800-3214AMS (321-4267) in the continental U.S. and Canada to charge with Visa or MasterCard.
1991 Mathematics Subject Classification: 68. ISBN 0-8218-6594-3, LC 91-8815, ISSN 1052-1798, 628 pages (hardcover), May 1991
Individual member \$58, List price \$96, Institutional member \$77,

To order please specify DIMACS/3NA

Inside the AMS

Reviewing at Mathematical Reviews

Gerald J. Janusz
 Executive Editor, Mathematical Reviews

Mathematical Reviews (MR) is the most important product the American Mathematical Society provides to the community of mathematical researchers. The journal, or more properly, the Mathematical Reviews database, contains bibliographic information and reviews for mathematical papers published around the world in nearly 2000 scholarly publications. Although the journal is produced by a staff of 87 employees of the American Mathematical Society in the Ann Arbor office, the success of Mathematical Reviews is due to the generous contribution of time and expertise by the panel of reviewers.

There is a long history of prominent researchers serving as reviewers that started with the publication of Volume 1 in 1940. When Robert Bartle, Executive Editor of Mathematical Reviews in 1990, gathered information for the celebration of the 50th Anniversary of Mathematical Reviews, he discovered that 19 mathematicians who had published reviews in 1940 were still reviewers 50 years later. The dedication of some of the original reviewers sets a remarkable example.

Of course, there is a significant difference between the volume of mathematical activity of 50 years ago and the volume of activity now. For example, the first issue of Mathematical Reviews contained reviews of 184 articles from 47 journals; the January 1990 issue contains roughly 4000 reviews from nearly 1000 journals. Some of the individual sections of $M R$ contain more reviews than that entire first issue; for example, Section 35, Partial Differential Equations, in January 1990, contains reviews of approximately 240 articles taken from about 100 journals. The growth of the mathematical literature has been accompanied by an increase in the number of reviewers. The list of about 300 reviewers who published in Volume 1 has grown to nearly 12,000 reviewers in the current reviewer database. Reviewers, located in nearly every country of the world, bring their language and mathematical skills to assist in the enormous task of reviewing the world's mathematical publications.

The mathematical literature is classified according to the 1991 Mathematics Subject Classification into 61 sections, each of which is further divided into many subsections.

The classification numbers are used to identify the subject matter of a paper and then to match the paper to the declared interest of a reviewer. Some of the subject areas are much more active than others and, as a result, require the services of more reviewers. To illustrate the lack of balance, we point out that about half of the reviews published in Mathematical Reviews fall into 10 of the 61 subject classifications. An individual who becomes a reviewer for Mathematical Reviews gives the classification numbers of the areas of his or her special interests. The number of reviewers in each area does not always show the same distribution as the number of papers in the areas. There is a shortage of reviewers in certain areas and a surplus of reviewers in other areas. More seriously, however, there appears to be a growing lack of interest, especially on the part of some American research mathematicians, in writing reviews for Mathematical Reviews.

Reviewing does not seem to carry the same prestige as, say, refereeing. The community of research mathematicians generally does feel a civic duty to referee papers because the continued production of mathematical works requires that some process be in place to maintain the high quality of articles published. The research community has no less at stake in the continued maintenance of a complete database of reviews of mathematical research papers. If the quality of the secondary journal is to be maintained, there must be cooperative research mathematicians who provide reviews of published mathematical works.

Graduate students in mathematics are among the most enthusiastic users of Mathematical Reviews. Sometime after successful years of research activity, the enthusiam (and perhaps the time) for reviewing diminishes. In the short term, it would be helpful if department chairs (and others) would recommend young (and old) members of their faculty to Mathematical Reviews so an invitation to become a reviewer may be extended. In the long term, we hope that department chairs come to regard reviewing as an important scientific activity and appropriately recognize those providing the service. Of course, there would be immediate improvement of the reviewing panel if more established research mathematicians would return to (or start) the practice of writing reviews for Mathematical Reviews.

What is involved in writing reviews for Mathematical Reviews? Papers are received at the office of Mathematical Reviews at the rate of about 4500 per month and are classified by the editors, who then decide on the treatment each item should receive. The possibilities are: Send out for review; use the author abstract as a review; list the bibliographic information in the Current Mathematical Publications and $M R$ index but do not publish a review; do nothing with the item. The majority of the items treated at all are sent out for review. Thus, the editor must select a suitable reviewer for the item from the current reviewer list. Every effort is made to match the stated interest of the reviewer with the subject matter of the paper. Reviewers are selected for papers (not papers for reviewers) so that reviewers receive items for review at irregular intervals. At any one time, a reviewer has no more than a maximum of between one and six items in hand (depending on the reviewer's stated volume preference) and usually fewer than this. Reviewers are asked to return the review for an item within six weeks (or at the rate of one per month when they have several items in hand). The written review should contain a brief indication of the contents of the paper and its relation to other work. Sufficient information should be given to permit the reader to decide if the paper should be consulted. For important papers, an evaluative review is particularly appreciated. The reviewer is not expected to give another referee's report on the paper, however. Mathematical Reviews also reviews books of interest to the research community; some modification of the above procedures is made in case the item for review is a book. [More information about the operation of Mathematical Reviews can be found in the article "From Published Paper to MR Review: How Does It Happen?" by Jane E. Kister, Notices of the American Mathematical Society 36 (1989), No. 10.]

Many reviewers comment that their reviewing activity provides valuable contact with current activity in their research area. Readers who browse through Mathematical Reviews occasionally find a style of scientific writing that is usually absent from a technical paper. Reviewers are required to be objective, fair, and precise in making critical comments; in some cases a reviewer has seized the opportunity to make a succinct statement where the critical message is almost subliminal. Here are some examples:

> "The author proves a slightly weakened version of one of his earlier results."

The complete text of the review of a privately printed "solution" of Fermat's Last Problem reads:
"An error has been made in the proof of Lemma 2."
A much quoted, but possibly aprocryphal (*), review states
"This paper fills a much needed gap in the literature."

[^30]The editorial staff at Mathematical Reviews urges those of you who are not already reviewers and who are active in mathematical research to consider joining the panel of distinguished mathematicians around the world as an $M R$ reviewer. To be considered, please send details of your mathematical interests, your publications, and your language skills to Mathematical Reviews, P.O. Box 8604, Ann Arbor, MI 48107-8604 (or by email on INTERNET to mathrev@math.ams.com).

e-MATH Update

Several new services are already or will shortly be available on the e-MATH system. These include:

- an author look-up facility for items appearing since 1985 in Mathematical Reviews and Current Mathematical Publications that returns the $M R$ review number, or CMP volume and issue for recent or index-only citations. Authors are identified by name string. A list of individuals matching the name string and ALL known variations those individuals have published under is returned. When a particular individual is then selected, the $M R$ numbers and CMP issue are displayed. Results of searches can be emailed.
- on-line electronic distribution of the Bulletin of the American Mathematical Society, in TEX format, beginning with the 1992 issue year. A list of issues of the AMS Bulletin from which articles can be selected is displayed. Author searches across issues are supported. Specific articles can then be viewed on-screen or emailed to the user. The abstract for the article, if one exists, can also be viewed.
- a selection that opens a connection to "Archie," the searcheable database of software archive sites on the Internet developed and maintained by the School of Computer Science at McGill University. One component of Archie is a compressed collection of directory listings from about 600 Internet ftp archive sites. Each archive site is polled monthly by Archie to keep listings up-to-date. A second component is a program that allows users to search the archive site database for specific name strings. Successful searches return an emailable list consisting of hosts which contain entries with the search string, the size and last modification date of the software at each host, and the software's ftp location on each host. Archie also maintains a database of names and descriptions of much of the software found at the ftp archive sites.

Prototype Electronic Journal

A number of experiments are underway on the Internet to create refereed electronic journals. At least three distinct paradigms are possible:

- Bulletin board applications: articles are posted which subscribers can browse and selectively request.
- LISTSERV applications: all articles are automatically delivered to all individuals on the subscriber list.
- Network document database application: an integrated environment that supports editorial, production, and distribution.
All existing electronic journals (about 25 by latest count; none in mathematics) implement either the bulletin board or LISTSERV paradigm. A small number implement the peer review process; most do not. A Directory of Electronic Journals, Newsletters, and Academic Newslists has been recently published by the Association of Research Libraries, 1527 New Hampshire NW, Washington, D.C. 20036 ($\$ 20$ prepaid; 180 pages)

The mathematics research community has embraced TEX/ETEX as a de facto standard for document processing and transport. The AMS has developed a robust electronic work environment for the publication production process, including database applications that support bibliographic retrieval, manuscript-tracking and production. There is a sophisticated order processing and distribution system which supports subscription and membership fulfillment, as well as automated warehouse and mail management. There is sophisticated library-management processing, reviewer assignment processing, author identity/verification processing, and automated publishing tools. Experimentation with scanning and optical storage of text and images is scheduled. With e-MATH and MathSci, the AMS has staked initiatives in both electronic communication and publishing.

This technology, knowledge, and experience base lends itself to developing an on-line editing capability and, by extension, a model for refereeed electronic journals that is based on integrated editorial, production, and distribution environments. e-MATH staff are working to develop a proof-of-principle model electronic journal for the mathematical sciences. An initial version was demonstrated at the Joint Summer Meeting in August. It supported:

- on-line editing capability that supports annotation and revision control.
- an underlying relational (SQL) document database.
- LETEX import/export capability.

Documents are stored in SGML format. SGML (Standard Generalized Markup Language) is an international standard (ISO 8879) that defines rules for specifying the logical organization of elements (item lists, headers, footnotes) in documents. The system is implemented on a UNIX platform under X-Windows. It is attached to the Internet and the system can be accessed and used remotely through the e-MATH system. With continued, strong support from the NSF, additional work has been scheduled. A prototype system will be demonstrated at the Winter Joint Meeting in Baltimore.

Accessing e-MATH

e-MATH can be accessed via telnet (telnet e-math.ams.com or telnet 130.44.1.100). Login and password are e-math. The requirements for a successful connection to e-MATH are:

- a connection to an INTERNET host.
- VT100 connectivity in communications software and host operating system.
- terminal tabs set at every eight columns.

To access the e-MATH CML name look-up service, type the following:

```
telnet 130.44.1.100 2050 (UNIX hosts)
```

telnet 130.44.1.100/port=2050 (VMS hosts)
At the "Enter Name" prompt, enter the last name of the person you would like to look up in the CML database. First names may be given in the following manner: "Last:First," with no spaces around the " $:$ ". The search wildcard "*" may be used in the name string.

For further information, or for assistance accessing and using e-MATH services, send e-mail to:
support@e-math.ams.com.

GUANTUM LINEAR GROUPS

Brian J. Parshall and Jian-pan Wang • Memoirs of the AMS, Volume 439

This volume begins with a general discussion of the theory of quantum groups. The authors view the theory as a natural extension of the theory of affine group schemes. They establish a number of foundational results, including the theory of induced representations and spectral sequences for quantum group cohomology. They then apply these results to give a detailed study of the quantum general linear group and its representation theory. Some of the central topics included are a development of quantum determinants, Frobenius kernels and their representation theory, high weight theory, and the generalization of various important theorems concerning the cohomology of vector bundles on the flag manifold. Finally, the authors use the theory to give a treatment of q-Schur algebras, proving, for example, that q-Schur algebras are quasi-hereditary.

1980 Mathematics Subject Classifications: 20, 14
ISBN 0-8218-2501-1, LC 90-19310,
ISSN 0065-9266
168 pages (softcover), January 1991
Individual Member \$14, List Price \$23,
Institutional Member \$18
To order please specify MEMO/439NA

All prices subject to change. Free shipment by surface; for air delivery, please add $\$ 6.50$ per title. Prepayment required. Order from American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 02901-1571, or call toll free 800-3214AMS (321-4267) in the continental U.S. and Canada to charge with Visa or MasterCard.

News and Announcements

Trevor Evans 1925-1991

Trevor Evans, Fuller E. Callaway Professor of Mathematics of Emory University, died on May 20, 1991. Born December 22, 1925 in Wolverhampton, England, Evans received his B.A. in 1946, his M.A. in 1950, and his D.Sc. in 1960, all from Oxford University. He also earned an M.Sc. in 1948 from Manchester University.

Evans served as an assistant lecturer in pure mathematics at Manchester University from 1946 to 1950, when he came to the United States to take a position as an instructor at the University of Wisconsin. He became a member of the Institute for Advanced Study in Princeton in 1952 and then moved to the University of Chicago in 1953 as a research associate. In 1954, he went to Emory University, serving as head of the mathematics department from 1963 to 1978. He was named Fuller E. Callaway Professor of Mathematics at Emory in 1980. He held visiting positions at the University of Nebraska (1959-1960), the California Institute of Technology (1968), and Technische Hochschule in Darmstadt, West Germany (1975). In addition, he was a member of the committee on examinations of the Mathematics Achievement Test for the College Entrance Examination Board since 1964, serving as chair of the committee since 1969.

His research interests included algebraic aspects of combinatorics, decision problems in algebra, and algebraic varieties.

Magnus Hestenes 1906-1991

Magnus Hestenes, professor emeritus at the University of California at Los Angeles, died May 31, 1991. Born in 1906, Hestenes received his Ph.D. from the University of Chicago in 1932. He was an associate professor at Chicago, and in 1947 he accepted a professorship at UCLA, where he remained through his retirement in 1973, serving as department chair from 1950 to 1958. While at Chicago and UCLA, he supervised the theses of thirty-four students.

In addition to his essential role in building the UCLA mathematics department, he had an outstanding research career. He was best known for his work on the problem of Bolza, for his 1951 paper on quadratic forms in Hilbert space, and for his development of the conjugate gradient method. He received Guggenheim and Fulbright awards and was an invited speaker at the International Congress of Mathematicians in Amsterdam in 1954. He also presented invited addresses at the April meeting of the AMS in Chicago 1941 and at the April meeting in Palo Alto in 1949.

An active member of the Society, Hestenes was a member-at-large of the Council (1944-1946) and vicepresident (1961-1962), in addition to serving on a number of committees. He also served as a representative in the Division of Physical Sciences of the National Research Council (19471950) and on the Council of the American Association for the Advancement of Science (1945, 1952-1953).

Bergman Prizes Awarded

The July/August 1991 issue of Notices (page 587) carried a piece about the Bergman Prize, which was awarded this year to Steve Bell of Purdue University and Ewa Ligocka of the Institute of Mathematics at the Polish Academy of Sciences. At the time that issue of Notices went to press, biographical information about Ligocka was not available. Since then, however, Notices has succeeded in securing that information.

Ewa Ligocka
Ewa Ligocka was born October 13, 1947 in Katowice, Poland. In 1970, she earned her M.S. in mathematics from Warsaw University and took a position there. She studied analytic functions with W. Zelazko and with J. Siciak during a stay in Cracow in 1971. She earned her doctorate in 1973, under the supervision of W. Zelazko. Her thesis and first three papers were in the area of
analytic functions on topological vector spaces.

She worked at Warsaw University until 1977, when she lost her position for political reasons. In 1976, she began working with M. Skwarezyniski, who gave her the inspiration to study the Bergman kernel and related topics. Her work on Fefferman's theorem, which she began in 1978, led to the joint paper with Steve Bell, for which the two received the Bergman Prize. Later, she wrote a series of papers devoted to Sobolev-Besov spaces of holomorphic and harmonic functions. Since 1979, she has held the position of docent at the Institute of Mathematics at the Polish Academy of Sciences.

Mathematical Scientists Receive MacArthur Awards

Two mathematical scientists were among the thirty-one MacArthur Fellows named in June 1991 by the John D. and Catherine T. MacArthur Foundation. David Donoho, professor of statistics at Stanford University, was awarded $\$ 225,000$, and Sergiu Klainerman, professor of mathematics at Princeton University, was awarded $\$ 260,000$.

The five-year MacArthur Fellowships range from $\$ 150,000$ to $\$ 375,000$, depending upon the age of the recipient. Awardees may use the funds in any way they wish. More than 100 nominators in a variety of areas across the country make nominations to a twelve-member selection committee, which meets eight or nine times a year. Final approval for the fellowships comes from the Foundation's Board of Directors.

David Donoho's work includes the nonlinear recovery of signals from massively incomplete data, recovery of curves from noisy statistical data in a theoretically optimum manner, and robust methods for treating contaminated high-dimensional data. In addition to these theoretical developments, Donoho has made significant contributions to applied computational statistics. He wrote a program that is the basis of two statistical systems, one centered in Berkeley and one at the Massachusetts Institute of Technology. Donoho was a designer of the computer program

MacSpin, which in 1987 won the Best Scientific/Engineering Software Award from MacUser magazine. The MacSpin package studies three-dimensional data clouds by rotation. Donoho was a National Science Foundation (NSF) Graduate Fellow from 1979 to 1982 and was selected as an NSF Presidential Young Investigator in 1985. He received his B.A. from Princeton University (1978) and his Ph.D. from Harvard Unversity (1984). He is currently at Stanford University on leave from the University of California at Berkeley.

Sergiu Klainerman works primarily on nonlinear partial differential equations. His recent work has helped to clarify aspects of the Einstein equations. This work was done in collaboration with D. Christodoulou of the Courant Institute at New York University. The two were able to prove the nonlinear stability of the Minkowski spacetime. Klainerman's honors include a Miller Fellowship (1978-1980) and a Sloan Foundation Fellowship (19831985). He received his Diploma de Licenta from the University of Bucharest (1973) and his Ph.D. from New York University (1978).

LMS Prizes for 1991

The London Mathematical Society has announced a number of prizes.

The Pólya Prize was awarded to I. G. Macdonald in recognition of the excellence of his research in algebraic geometry, the theory of algebraic groups, number theory, and combinatorial theory, as well as for his outstanding gifts as a writer and lecturer.

The Senior Whitehead Prize was awarded to W. B. R. Lickorish for his fundamental work in geometric topology, especially in knot theory and the theory of three-manifolds.

The Junior Berwick Prize was awarded to W.W. Crawley-Boevey for his papers "On tame algebras and bocses" (Proc. London Math. Soc., (3) 56 (1988), 451-483), "Functorial filtrations and the problem of an idempotent and a squarezero matrix" (J. London Math. Soc., (2) 38 (1988), 385402), "Functorial filtrations II: Clans and the Gelfand problem" (J. London Math. Soc., (2) 40 (1989), 9-30), and
"Functorial filtrations III: Semidihedral algebras" (J. London Math. Soc., (2) 40 (1989), 31-39).

The Junior Whitehead Prizes were awarded to N. S. Manton for his work in mathematical physics and to A. J. Scholl for his work in arithmetical algebraic geometry.

Ford Foundation Awards Minority Fellowships

Two Ford Foundation programs, administered by the National Research Council, have awarded fellowships to minority scholars in a range of academic disciplines. The Ford Foundation Predoctoral and Dissertation Fellowships Program made awards to fifty-five predoctoral students and thirty doctoral disserations candidates. The Ford Foundation Postdoctoral Fellowships for Minorities Program made awards to twenty-three doctoral degree recipients.

There were two awardees in the mathematical sciences, both receiving predoctoral fellowships. One is David Alvarez, whose field is analytical mathematics, and the other is Roderick Moten, whose field is applications of mathematics. Both attend the University of California at Berkeley.

Plans for the 1992 fellowship competitions are now under way. For more information, consult the Stipends for Study and Travel section in the October issue of Notices, or write to: Fellowship Office, National Research Council, 2101 Constitution Avenue, NW, Washington, DC 20418.

U.S. Mathematical Olympiad Winners

Eight mathematically talented high school students have won Olympiad Medals in the twentieth annual USA Mathematical Olympiad (USAMO). The winners were honored in ceremonies held in Washington, DC at the National Academy of Sciences and the Department of State on June 9-10, 1991.

The USAMO winners are: Ruvim Breydo, Stuyvesant High School, New York, NY; Michail G. SunitSky, Stuyvesant High School, New York, NY; J. P. Grossman, Northern Secondary School, Toronto, Ontario, Canada; Joel E. Rosenberg,

Hall High School, West Hartford, CT; Lenhard Lee Ng, Chapel Hill Senior High School, Chapel Hill, NC; Kiran Kedlaya, Georgetown Day High School, Washington, DC; DEan R. Chung, Mountain Lakes High School, Mountain Lakes, NJ; and Robert D. Kleinberg, Iroquois Central High School, Elma, NY.

The winners (with AMS President Michael Artin) are from left to right: Lenhard Ng, Kiran Kedlaya, Michail Sunitsky, Joel Rosenberg, Robert Kleinberg, Ruvim Breydo, and J.P. Grossman. Missing from photo is Dean R. Chung.

These eight winners joined sixteen others who did well on the USAMO to participate in an intensive, fourweek training session for the International Mathematical Olympiad (IMO), held this summer at the U.S. Military Academy at West Point. From this pool of students, seven of the USAMO winners (all but Grossman, who will participate on the Canadian team) were selected to form the IMO team. The IMO was held on July 12-23, 1991, in Sigtuna, Sweden; at the time of this writing, the winning nations of the IMO had not been announced.

The selection process for the IMO team begins with a sequence of three examinations prepared by the Committee on the American Mathematics Competitions, which is sponsored by the Mathematical Association of America and other mathematical organizations, including the AMS. First is the American High School Mathematics Examination, taken by nearly 400,000 students. The American Invitational Mathematics Examination is taken by as many as 4000 students and culminates in the USAMO, taken by about 140 students. The USAMO is an essay-proof requiring insight an ingenuity.

MAA Establishes Awards for Outstanding Teaching

 The Board of Governors of the Mathematical Association of America (MAA) recently established annual awards to recognize outstanding teaching. The MAA Committee on Awards for Distinguished College or University Teaching of Mathematics, chaired by Henry L. Alder of the University of California at Davis, has developed the selection process and is now soliciting nominations for the awards.In the first level of awards, each of the twenty-nine MAA sections will select a recipient of the Section Award for Distinguished College or University Teaching of Mathematics. The awardees will be honored at the spring 1992 meetings of the Sections and will then be the Section candidates for the national MAA Awards for Distinguished College or University Teaching of Mathematics. There will be at most seven national awardees the first year (and at most three in subsequent years), each of whom will be honored at the Joint Mathematics Meetings in January 1993 and will receive a check for $\$ 1000$ and a certificate.

Nominations must be submitted on a "Nomination Form," prepared by the national Committee. Each Section Secretary will solicit nominations by sending the necessary information and Nomination Forms to all chairs of departments of mathematical sciences within the Section and to others who may wish to make nominations. Anyone may make a nomination, but nominations from department chairs are especially encouraged. Self-nomination is not permitted. Section Secretaries will specify their own deadlines, generally around November 1, 1991.

For more information, contact the relevant MAA Section Secretary, or Henry L. Alder, Department of Mathematics, University of California, Davis, CA 95616-8633; telephone 916-752 1073, 916-752-0827; electronic mail hlalder@ucdavis.edu.

Call for Nominations for AWM Hay Award

In 1991, the Association for Women in Mathematics (AWM) established the

Louise Hay Award for Contributions to Mathematics Education. The purpose of the award is to recognize outstanding achievements by a woman in any area of mathematics education, to be interpreted in the broadest possible sense. The awardee will be selected by a committee appointed by the AWM president and will receive a citation at the AWM Business Meeting at the winter Joint Mathematics Meetings.

The first Hay Award was presented in San Francisco in January, 1991 to Shirley M. Frye, past president of the National Council of Teachers of Mathematics (NCTM) and a mathematics teacher for more than twenty years. Frye provided strong leadership for the national presentation of the NCTM's Curriculum and Evaluation Standards for School Mathematics.

Nominations for the award should be sent by October 7, 1991 to: The Hay Award Committee, c/o Patrica N. Cross, Association for Women in Mathematics, Box 178, Wellesley College, Wellesley, MA 02181.

Proposals Sought for IUTAM Symposia

The United States National Committee for Theoretical and Applied Mechanics (USNC/TAM) is seeking proposals from U.S. authors and institutions to host the International Union of Theoretical and Applied Mechanics (IUTAM) Symposia any time during the calendar years 1994-1995.

The aim of an IUTAM symposium is to assemble a group of active scientists within a well-defined field for the development of science within that field. In order to achieve effective communication with the group, the number of active participants is necessarily limited. All IUTAM symposia are therefore reserved for invited participants. Invitations to participate are made by the Scientific Committee solely on the basis of scientific merit. Typical symposia invite approximately 60 scientists of whom about 25 present prepared lectures.

Proposals to host a symposium should be made on a prepared form which may be obtained from the Secretary of the USNC/TAM. The com-
pleted application should be sent to the Secretary not later than November 15, 1991. Applications will be competitively screened by the USNC/TAM. A maximum of five for the two year period will be forwarded to IUTAM where they will compete with those from other countries. Final decisions will be made at the meeting of the General Assembly of IUTAM at the International Congress in Haifa, Israel, August 1992. Approximately 12 to 20 symposia will be scheduled for 19941995.

For each proposal accepted, IUTAM will appoint a Scientific Committee. The chairman will normally be the submitter of the invitation, but the other members will be chosen from the international scientific community. The proposal may indicate a preference for 1994 or 1995, but actual scheduling within the year will be worked out jointly by the Scientific Committee and IUTAM.

IUTAM provides a small amount of financial support to pay some travel expenses, primarily for young scientists and for scientists from developing countries. Organizers of symposia are encouraged to seek additional financial support from other sources.

On request, the Secretary of USNC/ TAM will send a Symposium-Invitation Kit consisting of an application form, some examples of previously approved applications, and a list of recent symposia. Please address all inquiries to Professor Philip G. Hodge, Jr., Secretary, USNC/TAM, 107 Akerman Hall, University of Minnesota, Minneapolis, MN 55455, 612-625-3444 or -8000, email: pghodge@vx.acs.umn.edu or @umnacvx.bitnet.

Lavery Named to BMS Post

John E. Lavery, formerly scientific officer for the Applied Analysis program of the Office of Naval Research, has been appointed staff director of the Board on Mathematical Sciences (BMS) of the National Research Council.

Lavery earned his Ph.D. in mathematics from the University of Maryland. He began his professional career as an aerospace technologist at NASA Goddard Space Flight Center in Green-
belt, Maryland. He was a university professor at Tunghai University and Soochow University in Taiwan, and a researcher at the Computing Center of the Academy of Sciences of the USSR in Novosibirsk. From 1980 to 1982, he was a Humboldt Scholar at the Technical Unversity of Munich, and then took a position as associate professor of mathematics at Case Western Reserve University. From 1986 to 1989, he was at NASA Lewis Research Center in Cleveland.

Lavery's research is in analytical and numerical procedures for partial differential equations. He developed a posteriori error bounds and a class of iterative methods for quasilinear elliptic equations. He created the l_{1} procedure, a method for solving conservation laws that yields accurate solutions with sharp, nonoscillatory discontinuities.

Lavery can be reached at: Board on Mathematical Sciences, National Research Council, 2101 Constitution Avenue, NW, Washington, DC 20418; telephone 202-334-2421.

News from the Mathematical Sciences Institute Cornell University

Richard Shore of Cornell's Department of Mathematics is organizing a conference on The Logical Analysis of Mathematics and Computer Science to be held in Ithaca, New York in early June 1992 on the occasion of the 60 th birthday of MSI Director Anil Nerode. This conference will be preceded by a three-day workshop on Feasible Mathematics to be organized by J. Remmel (UCSD) and P. Clote (Boston College).

Other meetings currently being planned include a workshop on Computational Geometry organized by J. Mitchell (SUNY Stony Brook), on Hydrodynamic Limits by S.R.S. Varadhan (Courant Institute), on Cellular Automata by D. Griffeath (Wisconsin), on Stochastic PDE's by C. Mueller (Rochester), and on Patch Dynamics by J. Guckenheimer (Cornell).

Recently completed meetings at the MSI include workshops on Hybrid Systems, Patch Dynamics, Probability, and Combinatorics and Discrete Geometry. An abstracts volume is available for the
workshop on Combinatorics and Discrete Geometry by writing MSI, 409 College Ave., Ithaca, New York 14850.

Also available from the above address are abstracts volumes of the following meetings: Mathematics of Computation in Partial Differential Equations (in honor of James H. Bramble), January 1991; Partial Differential Equations (in honor of Larry Payne), October 1990; Eighth Army Conference on Applied Mathematics and Computing, June 1990; Percolation Models of Material Failure, May 1990; Computer Algebra and Parallelism, May 1990; Modern Perspectives in Mathematics: Mathematics as a Consumer Good, Mathematics in Academia, March 1990; Stable Processes, January 1990; Classical and Quantum Transport in Hamiltonian Systems, November 1989; Geometric and Algebraic Integration Algorithms, November 1989; Large-Scale Numerical Optimization, October 1989; Geometric Phases in Mechanics, October 1989; Formal Hardware Verification, July 1989; Mathematical Theory of Modern Financial Markets, July 1989; The Packing and Mechanics of Aggregates of Spheres, June 1989; Feasible Mathematics, June 1989; Markov Processes on Functional Spaces, May 1989; Mathematical Methods in Plasma Physics, October 1988; Application of Kinetic Equations, October 1988; Groeb ner Basis, October 1988; Theoretical Aspects of Multiphase Flow, October 1988; Mathematical Theory of Queuing Systems, August 1988; Algorithmic Aspects of Geometry and Algebra, July 1988; Symmetry and Groups in Nonlinear Continuum Mechanics, June 1988; Mathematical Analysis of Material Microstructure, June 1988; Gauge Theories of Continua, June 1988; MatrixBased Signal Processing Algorithms and Architecture, June 1988; Construction of Quantized Gauge Fields, May 1988; and Order and Disorder in Random Systems, April 1988.

News from the Mathematical Sciences Research Institute Berkeley, California

The 1991-1992 year opens on September 3,1991 with two year-long pro-
grams in place, one devoted to Statistics, and the other to Lie Groups and Ergodic Theory with Applications to Number Theory and Geometry. The Statistics program will have two areas of emphasis during the fall: "Empirical processes and applications" and "Semiparametric models and survival analysis." Three workshops have been scheduled for this period: "Statistical Methodology for Study of the AIDS Epidemic," September 30-October 4, 1991, "Discrete Groups, Number Theory, and Ergodic Theory," November 18-22, 1991, and "Statistical Methods in Imaging," December 2-6, 1991.

Research Professorships for 19911992 have been awarded to Sheldon Axler of Michigan State University, Robert Boyer of Drexel University, Christopher Croke of the University of Pennsylvania, John Friedlander of the University of Toronto, Jonathan King of the University of Florida, Gainesville, Mina Ossiander of Oregon State University, and Audrey Terras of the University of California, San Diego.

Applications for Research Professorships for 1992-1993 must be submitted by the end of September 1991. For details, please see the advertisement elsewhere in this issue of Notices.

Project Kaleidoscope Issues Report

Project Kaleidoscope, funded by the National Science Foundation, has released a report containing a blueprint for improving science and mathematics education in the nation's liberal arts colleges. The report, "What Works: Building Natural Science Communities," is part of a two-year research
effort by a 29 -member committee of liberal arts educators. Copies of the report are available for $\$ 15$ each from: Project Kaleidoscope, Independent Colleges Office, 1730 Rhode Island Avenue, NW, Suite 1205, Washington, DC 20036.

NSF Congressional Report Available Via Email

The Office of Legislative and Public Affairs of the National Science Foundation (NSF) periodically prepares and distributes the "Congressional Report," which summarizes congressional events of interest to the NSF and the National Science Board.

From time to time, short one- or two-page updates are also prepared. NSF now has the capability to distribute these updates through NSFnet and Bitnet. If you would like to receive this material, send a message asking to be put on the mailing list to Joel Widder, jwidder@nsf.gov (Internet) or jwidder@nsf (Bitnet).

NSF Publications Available Online

STIS is a new electronic dissemination system which provides easy access to publications of the National Science Foundation (NSF). The full text of publications can be searched online and copied from the system. There is no charge for connect time and no need to register a password.

The publications available through STIS include: the NSF Bulletin, Guide to Programs, grants forms, program announcements, press releases, the NSF Telephone Book, reports of the National

Science Board, descriptions of research projects funded by NSF (with abstracts), and analytic reports and news from the International Programs Division. New materials are added weekly.

Some will be removed or replaced as they become out of date, while others will remain on STIS permanently.

On the Internet, STIS can be accessed by using a single command, telnet stis.nsf.gov. Users with a modem and communications software to emulate VT-100 can access STIS (202-357-0359 or 202-357-0360). Users will pay a phone charge if the call is long distance. STIS is available at 1200 , 2400 , and 9600 baud rate. After connecting to STIS either via the Internet or by modem, use the login name public and key in a personal identifier of up to eight characters; the identifier can be used for future STIS sessions. Users can conduct file transfers, request that a publication be delivered via electronic mail, and print material from a screen display.

For more information about STIS, call the STIS Help Line at 202-3577555, or send electronic mail to stis@ nsf.gov (Internet) or stis@nsf (Bitnet).

Erratum

The Background and Introduction to the report of the Society's Strategic Planning Task Force (Notices, July/August 1991, page 573) incorrectly reported that "The ECBT voted unanimously to endorse the report". Although the vote was not officially recorded, there was at least one abstention. Notices regrets any misunderstanding caused by this error.

Funding Information

for the Mathematical Sciences

Mathematical Sciences
 Postdoctoral Research Fellowships

The National Science Foundation's (NSF) Mathematical Sciences Postdoctoral Research Fellowship program is designed to permit recipients to choose research environments that will have maximal impact on their future scientific development. Awards will be made for appropriate research in pure mathematics, applied mathematics and operations research, and statistics at an appropriate nonprofit United States institution.

The fellowships will be offered only to persons who 1 . are citizens, nationals, or lawfully admitted permanent resident aliens of the United States as of January 1, 1992; 2. will have earned, by the beginning of their fellowship tenure, a doctoral degree in one of the mathematical sciences; 3. will have held the doctorate for no more than five years as of January 1, 1992; and 4. will not previously have held any other NSF postdoctoral fellowship. Typically, between 25 and 30 fellowships have been awarded. It is expected that in FY 1992, 30 to 40 awards will be made. The evaluation
of applicants will be based, in part, on ability as evidenced by past research work and letters of recommendation, likely impact on the future scientific development of the applicant, and scientific quality of the research likely to emerge. Applicants' qualifications will be evaluated by a panel of mathematical scientists.

For copies of the application brochure or further information, contact the Office of Special Projects, Room 339, Division of Mathematical Sciences, National Science Foundation, 1800 G Street, NW, Washington, DC 20550; telephone 202-357-3453; or the American Mathematical Society at telephone 401-455-4000.

The deadline for applications is October 15, 1991. Please note that this deadline is one month earlier than in prior years.

NSA Mathematical Sciences Program

The National Security Agency supports mathematical research through its Mathematical Sciences Program. The areas of focus are algebra, number theory, discrete mathematics, probability, statistics, and cryptology.

Funding is offered in four distinct categories. The Young Investigator Grant, which supports promising investigators who have not yet received tenure, consists of two months of summer salary each year for two years. The Standard Grant provides up to two months summer salary each year for the principal investigator, financial suport for (a) graduate student(s), and miscellaneous expenses for supplies, travel, etc. The Senior Investigators Grant provides partial salary support for one or more graduate students, with no salary support for the principal investigator. The Conferences, Workshops, and Special Situations Grant provides singleyear funding for a specific conference, special year, or any other innovative program in one of the six designated research areas.

There will typically be one deadline of October 15 each year. For more information, contact: Charles F. Osgood, Director, NSA Mathematical Sciences Program, National Security Agency, Attention: RMA, Ft. George G. Meade, MD 20755-6000; telephone 301-859-6659; Internet electronic mail msp@titan1.math.umbc.edu.

Acknowledgment of Contributions

The officers and the staff of the Society acknowledge with gratitude gifts and contributions received during the past year. Contributing members of the Society paid dues of $\$ 150$ or more. In addition to contributions to the AMS Centennial Fellowship Fund, there were a number of unrestricted general contributions. Some of the contributors have asked to remain anonymous. All of these gifts provide important support for the Society's programs. Also listed are AMS members who contributed, through the Society, to the International Mathematical Union's Special Development Fund for travel grants to young mathematicians from developing countries. The names listed below include those whose contributions were received during the year ending March 31, 1991.

CONTRIBUTING MEMBERS

Akemann, Charles A.
Al-Droubi, Akram
Amir-Moez, Ali R.
Andrews, George E.
Assmus, Edward F., Jr. Babcock, William W Beechler, Barbara J. Bressoud, David M. Brown, Terrell N. Clifford, Alfred H . Cohn, Richard M. Colon, Ivan E.
Cootz, Thomas A.
Corrigan, Thomas Carney
Daverman, Robert J. DeFacio, Brian DeLeon, Morris Jack Demana, Franklin D. DeMarr, Ralph E. Dickerson, Charles E.

Eckhardt, William
Epstein, D. I. Farrell, Roger H. Forbes, Stephen H. Gibson, Thomas L., Jr. Goodrich, Allen Gould, Henry W. Graves, Robert L. Greif, Stanley J. Grimmer, Ronald C. Gromov, Mikhael Haddix, George F. Hassinger, Bill, Jr. Hedlund, Gustav A. Higgins, Stanley B. Hironaka, Heisuke Hochster, Melvin Howe, Roger E. Hufford, George A. Hunt, Richard A.

Hutchinson, George A.
Jaco, William H.
Kelly, John B.
Killeen, John
Kopala, Conrad Krause, Ralph M. Krueger, Charles G. Lemay, William H.
Lenard, Andrew Mamelak, Joseph S. Mathsen, Ronald M. Meder, Albert E., Jr.
Mislin, Guido
Muhly, Paul S.
Nishiura, Togo
Orlik, Peter P.
Osofsky, Barbara L.
Otermat, Scott C.
Palais, Richard S. Palmer, Theodore W.

Papanicolaou, George C. Singmaster, David B Partridge, Eric Dorsey Spencer, Joel H. Pearson, Robert W. Sternberg, David Perry, William L. Polking, John C. Pratt, Vaughan R. Ratliff, Louis J., Jr. Redheffer, Raymond M. Reedy, Christopher L. Riney, John S. Rovnyak, James L. Sally, Paul J., Jr. Samit, Jonathan Sawyer, Stanley A. Seligman, George B. Sexauer, Norman E. Shabazz, Abdulalim A. Shahidi, Freydoon
Shelstad, Diana Frost

Spencer, Joel H.
Sternberg, David
Strauss, Frederick B. Strichartz, Robert S. Sullivan, Richard W. Taft, Margaret W. Uhlenbeck, Karen Unal, Aynur
Veech, William A.
Warren, William E. Weintraub, Steven H. White, George N., Jr. Whitmore, William F. Wilson, Robert Lee Xenos, Philippos John Yahya, S. M. Yohe, J. Michael Anonymous (3)

Corporate Members and Institutional Associates

The Society also acknowledges with gratitude the support rendered by the following corporations, as Corporate Members or Institutional Associates of the Society during the past year.

Corporate Members
AT\&T Bell Laboratories
General Motors Corporation
IMSL
International Business Machines Corporation
National Security Agency

[^31]
GENERAL CONTRIBUTIONS

Abbott, Catherine Ann
Aissen, Michael I.
Allen, J. Thomas, III
Antman, Stuart S.
Aribaud, F.
Assmus, Edward F., Jr. Babcock, William W.
Bachman, George
Baker, Edward D.
Ball, N. Hansen
Balser, Arienne S.
Barety, Julio Edgardo
Beachy, John A.
Bernstein, Joseph N.
Berriman, Lloyd G., Jr.
Blair, William D.
Blanc, M. L.
Blatmer, Robert J.
Blum, Dorothee Jane
Booker, T. Hoy
Boos, William
Bragg, Arthur E.
Brauer, Fred
Brown, Ron
Brown, Terrell N.
Bruno, Vincent J.
Bryn, Milo F.
Buianouckas, Francis R.
Bulger, Leonard L.
Bumby, Richard T.
Burns, Daniel M., Jr.
Campbell, Harold E. A.
Canjar, Mike

Carlson, Bengt G.

Carmichael, Richard D.
Chandrasekharan, P. S.
Chinn, William G.
Christensen, Chris
Cohen, Daniel I. A.
Cohen, Henry B.
Cohen, Martin J.
Cohn, Richard M.
Colby, Robert R.
Cole, Paul Dana
Coleman, A. John
Colon, Ivan E.
Comenetz, Daniel
Conrad, Bruce P.
Copeland, Arthur H., Jr.
Crane, George E. de Oliveira, Carlos S. S. Dedecker, Paul Deprima, Charles R. Di Biase, Fausto Di Paola, Jane W. Donaldson, James A. Dossa, Marcel

Duren, William L., Jr.
Dutton, Charles Everett
Dydak, Jerzy
Ecklund, Earl F., J.
Eggers, John D.
Einstein, David M.
Eisman, Sylvan H.
Elko, Constance B.
Emery, Carol J. Reinhard
Enomoto, Kazuyuki
Ern, Alexandre
Feinsilver, Philip
Ferrari, Carlo
Ferriby, John D.
Fleming, Richard J.
Fleury, Patrick J.
Friedberg, Solomon
Frohlich, Jurg M.
Fujiwara, Daisuke
Fukuda, Komei
Furutani, Kenro
Gantos, Richard L.
Garrison, Betty B.
Gibson, Thomas L., Jr.
Gilsdorf, Thomas E.
Glover, Robert A.
Goldman, William Mark
Gordon, Robert W.
Green, Jọhn W.
Greville, Thomas N. E.
Griess, Robert Louis, Jr.
Griffin, E. L., Jr.
Griffiths, H. Brian
Gross, Louis J.
Haber, Seymour
Harrington, Walter J.
Heller, Steven
Herring, Susan Kay
Hettling, Karl F.
Hilbert, Stephen R.
Hildebrandt, Theodore W.
Hironaka, Heisuke
Hochwald, Scott H.
Hodgson, Jonathan P. E.
Hoffman, William C.
Honda, Kin-Ya
Hoye, Laurence G.
Hsieh, Wan-Chen
Hurley, James F.
Isaacson, Eugene
Jacob, Niels
Janusz, Gerald J.
Johnson, D. Randolph, Jr.
Johnson, Donald G.
Kahn, Donald W.
Kakihara, Yûichirô

Kaplan, Wilfred
Katz, Talbot Michael
Kautzmann, Frank N.. III
Kaye, Steven M.
Kent, George A.
Kido, Kazuo
King, L. Richardson
Klatman, David S.
Kraus, Jon E.
Kronstein, Karl M.
Krumpholz, Gary R.
Kumagai, Donna J.
Kunimura, Dennis E.
Kuo, Hung-Ju
Kurshan, Robert P.
Kurtzke, John F., Jr.
Laderman, Julian David
Lander, Felix I.
Larson, Richard G.
Lax, Peter D.
Lebow, Arnold
Leger, George F .
Lehrer, Gustav I.
Lewis. Charles J.
Li, Bingxi
Libby, Richard Allan
Lichnerowicz, Andre
Litchfield, Kay P.
Long, John M.
Longbotham, Harold G.
Louhivaara, Ilppo Simo
Louton, Tom
Luecking, Daniel H.
Maeda, Hironobu
Malm, Dennis R.
Mamelak, Joseph S.
Marchand, Margaret O
Margulies, William
Marshall, David Imler
Matchett, Andrew J.
Mayor, John R.
Mayost, Daniel
McConnell, Terry R.
McGill, Richard E.
McKay, Thomas G.
Meyer, Burnett C.
Mickens, Ronald E.
Molino, Pierre
Moller, Raymond W.
Mooney, John J.
Moore, John C.
Morris, Robert A.
Morse, Burt J.
Moschovakis, Joan Rand
Mullin, Albert A.
Murphy, Grattan P.

Nagase, Michihiro
Nelligan, John D.
Nelson, Larry D.
Nevai, Paul
Nichols, Edward
Nishiura, Togo
Noh, Sunsook
Noor, Khalida Inayat
Oguchi, Kunio
Ohta, Haruto
O'Neill, Barrett
Onishi, Hironori
Otermat, Scott C.
Palmer, Theodore W.
Parker, Francis D.
Partridge, Eric Dorsey
Patton, Charles M.
Peabody, Mary K.
Peck, N. Tenney
Perrine, Serge
Pesotan, Hoshang
Phillips, Ralph S.
Pichorides, Stylianus
Pribitkin, Wladimir de Azevedo
Protter, Philip E.
Pursell, Lyle E.
Reitwiesner, George W.
Restrepo, Guillermo
Rickman, B.
Robinson, Raphael M.
Rodriguez-Exposito, Jose
Rose, N. J.
Rosenberg, Steven
Ruess, W.
Ruymgaart, Peter A.
Sahab, Salem M.
Samelson, Hans
Sanderson, Donald E.
Sarafyan, Diran
Sarason, Donald E.
Sastri, Chelluri C. A.
Schauer, Richard L.
Schlesinger, Emest C.
Schmidt, Kenneth C.
Schreiner, Erik A.
Scollo, Giuseppe
Shah, Kishor M.
Sharp, Henry, Jr.
Shawcroft, Paul H.
Shelly, Eugene P.
Shillor, Meir
Shorter, William Ivan
Silberger, Allan J.
Silliman, Sherwood D.
Smith, Gregory Holloway
Smith, James L.

Smith, Roy C. T
Solomon, Louis
Sprecher, David A.
Stark, Richard K.
Steele, Alfred T.
Steele, William F.
Steinberg, Robert
Sterba-Boatwright, Blair D.
Sturm, Teo
Sugrue, Kevin P.
Sun, Hugo Sui-Hwan
Takesaki, Masamichi
Tartakoff, David S.
Tatevossian, Leon H .
Taylor, Angus E.
Taylor, B. A.
Tepedino A., Gaetano
Thomas, P. Emery
Thron, Wolfgang J.
Tin, Saw
Titi, Edriss Saleh
Tits, Jacques L.
Tjiok, Mouw-Ching
Toll, Kathryn B.
Tolsted, Elmer
Tsang, Man-Wah Philip
Tsukui, Yasuyuki
Tugue, Tosiyuki
Tung, On-Ki A.
Tuzar, Jaroslav
Uhlenbeck, Karen
Umeda, Tomio
Unai, Yasushi Unai
Vasconcelos, Wolmer V.
Vodola, Paul A.
Ward, John T.
Weaver, John C
Western, D. W.
Whitney, D. Ransom
Whitall, Gerald B.
Wickerhauser, Mladen Victor
Wilson, Andrew Thomas
Wong, Sherman K.
Wong, Yim-Ming
Wright, David J.
Yamasaki, Masayuki
Yasubara, Ann
Yasuhara, Mitsuru
Yokoi, Hideo
Zalcman, Lawrence A.
Zanolin, Fabio
Zara, Francois
Zeilberger, Doron
Ziebur, Allen D.
Zilmer, Delbert E.
Anonymous (80)

AMS CENTENNIAL FELLOWSHIP FUND IMU SPECIAL DEVELOPMENT FUND

The following list consists of contributors to the AMS Centennial Fellowship Fund and/or the IMU Special Development Fund. The * indicates a contribution to the AMS Centennial Fellowship Fund. The \bullet indicates a contribution to the IMU Special Development Fund. A listing with neither symbol indicates a contribution to both.

Aarts, Johannes M.
Abadie, Jean M.
Abate, Marco
*Abatt, George
*Abbena, Elsa L.
Abbott, Catherine Ann
Abbott, H. L.
Abbott, Rita A.
Abe, Terutake
Abellanas, Pedro
Abello, James
*Abels, Herbert Abikoff, William Abolt, James A.
Abraham, Ralph H.

- Abramovici, Flavian
*Abrams, William P.
Abujabal, Hamza A. S.
A'Campo, Norbert
Achmatowicz, Richard L.
Adachi, Masabisa
Adams, Colin C.
Adams, Dennis R.
- Adams, Edmon L.

Adams, Jeffrey
Adams, Scot Robert
Adams, William W.
*Addington, Susan L.
Adelani, Lateef A.
Adelberg, Arnold M.
Adler, Alfred
Adler, George
Adler, Irving
Adier, Robert J.
Adluni, Indrasena
Adney, Joseph E., Jr.
Adolphson, Alan C.
Afuwape, A. Uyi
Agard, Egbert
Agoston, Max K.
Aharonov, D.
Ahlbrandt, Gisela

- Ahlfors, L. V.

Ahmad, Hamid K.
Ahrens, James Dwight
Ahuja, O. P.
Aidoo, Emmanuel B.
Aissen, Michael I.
*Aitsahlia, Farid
Aizawa, Sachiko
Ajan, K. S.
Akagi, Hatsue
Akiba, Tadatoshi
Akin, Ethan J.
Aksoy, Asuman G.
*Akyildiz, Ersan
Aladro, Gerardo
Alajbegovic, Jusuf
Alarcon, Francisco
Al Assaad, Al Ayham A.
*Alavi, Yousef
Al-Bassam, Mohammed Ali A.

Albee, Elizabeth Ann
Alber, Solomon
Albugues, Alain Vincent
*Alcom, David P.
Alder, H. L.
Alderton, lan W.
Aldous, David J.
Al-Droubi, Akram
Alegria, Carlos A.
Alexander, Elaine E.
Alexander, James C.
Alexander, John R., Jr.
Alexander, Kenneth S.

- Alexander, Roger K.

Alexander, Stephanie B.
Alexanderson, Gerald \mathbf{L}.
Alfonso, Fermin Jorge
Alford, Neill H., III
Ali, Hydar
Ali, M. Kursheed
Alif, Metod
*Alikakos, Nicholas D.
Alladi, Krishnaswami
Allan, James A.
Allard, William K.
Allday, Christopher J.
Allegretto, Walter
Allen, David L.
Allen, Harry P.
Allen, Howard
Allen, J. Thomas, III
Allen, Randal Thomas
Allen, William C., III
*Allgower, Eugene L.
Alltop, William O .
Al-Medhadi, Nora Seif
*Almeida, Jorge M. M. G.
Alonso, Agustin
Alonso, Javier
Alpay, Daniel A.
Alpern, Steven
Alsholm, Preben
Alsina, Claudi
Alspach, Dale E.
Althoen, Steven C.
*Al-Thukair, Fawzi Ahmed
Altomare, Francesco

- Altschuler, Steven J.

Aluffi, Paolo
*Alvarez, Josefina
*Alvarez G., Jairo Ivan
*Alvarez-Pereíra, Carlos
Ambrose, Richard D.
*Ambrosio, Luigi

- Ames, Karen A.

Amiran, Edoh Y.
Amirkhanian Jolfai, Vrege
Ammar, Gregory S.
Amplo, William Joseph
Amrine, Brian
Amsbury, Wayne P.
*Anagnostakis, Christopher
*Anantharam, Venkatachalam
Anastasio, Salvatore
Ancel, Fredric Davis
*Andersen, Kurt Munk
Andersen, Lars Dovling
Anderson, Allan G.
Anderson, Bertil
Anderson, Donald W.
*Anderson, Douglas R.
Anderson, Florence R.
Anderson, Joel H.
Anderson, John D.
Anderson, John T.
Anderson, Marlow E.
Anderson, Michael T.
Anderson, Ronald M.
Andersson, Lars
Andima, Susan
Andler, Martin J.
Ando, Shiro
Ando, Tsuyoshi
Andre, Peter P.
Andreadakis, Stylianos
Andreoli, Dorothy W.
Andriamanalimanana, Bruno
Andrus, Jan F.
Angad-Gaur, Hendrik W. K.
*Angenent, Sigurd B.
Anger, Frank D.
Angotti, Rodney
Anichini, Giuseppe
Anick, David Jay
*Anker, Jean-Philippe
Anshel, Michael
Ansorge, Rainer
Anthony, Alan C.
Anton, Jose Manuel
Antoniadis, Anestis A.
*Aoki, Kenichiro
Applebaum, Joseph A.
Appling, William D. L.
*Arad, Zvi
*Araki, Huzihiro
Araki, Shoro
Arapostathis, Aristotle
Araujo, Jesus
*Arazy, Jonathan
*Archbold, Robert J.
Archer, Myla M.
*Arena, Orazio

- Arenstorf, Richard F.

Arias, Fermandez Arturo
Aribaud, F.
Arima, Satoshi
Arisaka, Nakaaki
Arkin, Joseph
Arkowitz, Martin A.
Arlinghaus, Sandra L.
Arlinghaus, William C .
Armbrust, Manfred K.
Armentrout, Steve
Armitage, John V.

Arms, Judith M.
Armstrong, Mark Anthony
Armstrong, Thomas E.
*Arnberg, Robert L.
Arnold, David M.
Arnold, Douglas N.
Amold, Leslie K.
*Arnold, Ludwig
Armold, Timothy K .
Arnoux, Pierre
Aron, Richard M.
Aronson, Donald G.
*Arosio, Alberto
Arrington, Thomas R.
*Artola, Michel
Arveson, William B.
Arzberger, Peter W.
Asano, Kouhei
Asano, Shigemoto
Ascenzi, Maria-Grazia
Aschbacher, Michael
Asensio Mayor, Jose
*Ashbaugh, Mark S.

- Assmus, Edward F., Jr.

Atela, Pau
Atiyah, Michael F.
Atkin, Joy H.

- Atkinson, Frederick V.

Atkinson, H. R.
Atkinson, Stuart L.
Atsuji, Masahiko
Aull, Charles E.
Ault, J. C.
Auslander, Bernice L.
*Auslander, Joseph

- Auslander, Louis

Auslander, Maurice
Aust, Catherine C.
Austin, George M.
Au-Yeung, Yik-Hoi
Avellaneda, Marco Marcelo
Avelsgaard, Roger A.
Aversa, Vincenzo L.
*Aviles, Patricio U.
Avrin, Joel D.
Avrunin, George S.
Axelsson, Reynir
Ayoub, Christine W.
Azarnia, Nazanin
Baayen, Pieter C.
Babcock, William W.
Bacciotti, Andrea
Bach, Eric
*Bacher, Roland
Bachman, George

- Bachmuth, Seymour
*Back, Allen H.
Bade, William G.
Baderian, Armen Robert
Badiozzaman, Abdul Jabbar
*Badrikian, Albert
Bae, Soon-Sook

Bagby, Richard J.
Baginski, Frank E.
*Bagley, Scott
*Bahri, Anthony Peter
*Baica, Malvina Florica
Bailey, Edgar D., Jr.
Bailey, Evelyn C.
Bailey, G. H.
Bailey, Robert E.
Baillieul, John B.
Bailyn, Paul M.
Bajpai, Shri Dhar
Baker, Charles R.
Baker, Edward D.
Baker, Kirby A.
Baker, Peter Fritz
Baksa, Dennis John
*Baksbi, Jagjit
Baladi, Viviane
Baldi, Paolo
*Baldin, Yuriko Y.
Baldwin, John T.
Bales, John W.
Balibrea, Francisco
Balkanyi, Leslie R.
Balkema, A. A.
Ball, N. Hansen
Ball, Richard Neal
Baloglou, George

- Balser, Arienne S.

Banchoff, Thomas F.
Bandle, Catherine
Bandler, Wyllis
Bang, Chang Mo
-Bang, Hyunsoo
Bang, Seung Jin
Bannai, Eiichi
Baouendi, M. Salah
*Barbeau, Edward J., Jr.
Barber, William E.
Barbieri, Francesco
Barbosa, J. Lucas M.
*Barcelo, Hélène
Bardaro, Carlo
*Barendregt, Henk P.
Barety, Julio Edgardo
*Barger, Samuel F.
Bari, Ruth A.
Barja, José M.
Barkauskas, Anthony E.
Barker, William Heary
Barnard, Roger W.
*Barnard, Russell I.
Bamer, Klaus
Bamer, Martin
Bames, Allen
Barnes, David C.
Bames, John P.
Bames, Ward C.
Bamet, Frank
Barnett, Steven G.
Baron, John J.

Baron, Simson
Barozzi, Elisabetta
Barre, Raymond C.
*Barrett, Wayne W.
Barros-Neto, Jose
Barsky, Daniel
Bart, H.
Barth, Karl F.
de Bartolomeis, Paolo
-Baruch, Herbert Mark, III
Barwise, Kenneth J.
Basak, Gopal Krishna
Basile, Achille
*Basor, Estelle
Bass, Hyman
*Bassan, Bruno
Bastian, Gregory A.
Batle Nicolau, Nadal
Batt, Jurgen O.
Batterson, Steven L.
Batty, Charles J. K.
Bauer, Frances B.
*Bauer, Heinz
Bauldry, William C.
-Bauman, Patricia E.
*Baumann, Volker H.
Baumgartner, James E.
Baumslag, Gilbert
Baur, Lynne A.
*Baur, Walter
Baxendale, Peter H
Baxter, Kathleen
*Bayer, Margaret M.
Bayer-Fluckiger, Eva M.
Bazinet, Jacques
Beachy, John A.
Beadle, Allen Jay
Beals, R. Michael
Beals, Richard W.
Bean, Phillip W. Bean, Ralph J.
Beaudoin, Robert E.
*Beauzamy, Bernard M.
Bechtel, Robert D.
Beck, William A.
Beckenstein, Edward
*Becker, David S.

- Becker, James C.
*Becker, Ronald I.
*Becker, Thomas
*Beckett-Lemus, Lynn Beckman, Frank S.
*Beckmann, Sybilla K. Beckmann, William H. Beckner, William Bedard, Robert Bedford, Eric D. Beechler, Barbara J.
Beekman, John A.
*Beekmann, Wolfgang
Beers, George S.
Behncke, Horst
*Behnke, K.
*Beidleman, James C.
*Belair, Luc
- Bell, Carol Jean

Bell, Howard E.
Bell, Murray Gordon
Bell, Wolfgang
Bellenot, Steven F.
Belley, J. M.
Bellissard, Jean V.
Bellow, Alexandra Belshoff, Richard G.

Bemelmans, Josef
Benardete, Diego
Ben-Artzi, Asher
Bence, James Kenyard
Bencsáth, Katalin A.
Bender, Paul J.
Benedict, James M.
Benes, Vaclav E.
-Bengtson, Thomas E.
Benham, James W.
Ben-Israel, Adi
Benitez, Carlos
Benkart, Georgia M.
Bennett, Fredricka T.
*Benson, Dave
Benson, David Bernard
Benson, F. Chal
Berbee, Henry C. P.
Berestycki, Henri
*Berg, Christian
Berg, Gene A.

- Berg, I. David

Berg, Michael C.
Berger, Charles A.
Berger, Marcel
Berger, Marsha J.
*Berger, Ruth I.
Bergeron, Françò̀s
Berglund, John F.
*Bergmann, Arthur
Bergstrom, Roy C.
Bergum, Gerald E.
Bergweiler, Walter
Berin, Alec
Beringer, Alfred
Berlekamp, Elwyn R.
Berman, David R.
Berman, J. Michael
Bermudez, Alfredo
Bernfeld, Stephen R.
Bemi, Betty
Bernis, Francisco
*Bernstein, Allen R.
Bernstein, Joseph N.
Berresford, Geoffrey C.
*Berrick, A. J.
Berriman, Lloyd G., Jr.
Bers, Lipman
Berterman, John E.
Bertin, Emile M.
Berzsenyi, George
Bessenrodt, Christine
Betancourt, Carlos M.
Bethelmy, David G.
Betsch, Gerhard
Beylkin, Gregory
Bezdek, Andras
Bhattacharya, Rabi N.
*Bialek, Paul R.
Bianco, Lucio

- Bickel, Marilyn S.

Bidwell, Leonard N.
Biech, Ted H.
Bierstedt, Klaus D.
Bierstone, Edward
Biles, Charles M.
Billera, Louis J.
Billigheimer, Claude E.
Billik, Martin
$*$ Billotii, Joseph E.
Bilodeau, Gerald G.
Bindschadler, David E.
Bing, Kurt
Bingen, Franz

Birch, Bryan J.
Biriuk, George
Birman, Joan S.
Bimir, Bjorn
Biroli, Marco
Bischi, Gian-Italo
Bishop, Alan A.
Bishop, Richard L.
Bishop, Wayne
Bisson, Terrence Paul
Bisztriczky, Tibor
Bjorklund, Peter B.
Blackmore, Denis L.
Blackwell, David K.
Blair, William D.
Blais, J. A. R.
Blakemore, Carroll F.
*Blanc, David
Blanch, Gertrude
Blanche, Ernest E.
Blanchet-Sadri, Francine
Blanton, George R., Jr.
Blasius, Don M.
Blatter, Christian
Blattner, Robert J.
Bleiler, Steven A.
Blij, Frederik Van Der
Blitch, Patricia M.
Bloch, Ethan D.
*Bloch, Spencer J.
Bluher, Antonia Wilson
Blum, Dorothee Jane
Blum, Joseph
*Blümlinger, Martin
Blyth, Russell David
Blyth Rentzsch, Barbara J.
Boardman, John M.
Bobisud, Larry E.
Bodnar, Istvan
Bodnarescu, M. V.
Boeckle, Gebhard
Boehme, Thomas K.
*Boff, Giandomenico
*Bogar, Gary A.
Bogart, Kenneth P.
Bohn, S. Elwood
*Bohnke, G. C.
Boivin, Andre
Bojanic, Ranko
Bolis, Theodore S.
Bolker, Ethan D.
Bollman, D. A.
Bollobás, Béla
Boman, Jan
Bonadio, Allan R.
*Bonahon, Francis
Bonar, Douglas E.
*Bond, Robert Joseph
Bonet, Jose
*Booker, T. Hoy
Boos, Johann
Boos, William
Booth, George W.

- Boothby, William M.

Borcea, Ciprian
Borchers, Hans-Jurgen

- Borel, Armand
*Borelli, Mario
Borgers, Christoph
Bormand, Georges
*Boros, Endre
Borrelli, Robert L.
Borucki, Leonard John
Bosch, Carlos

Bosch, William W.
Bossavit, A.
Boswell, Rupert D., Jr.
*Bottazzini, Umberto
Bottema, Murk J.
Bottoms, Charles L.
*Bouchard, Pierre
Boultbee, Nan
Bourgeat, Alain P.
*Bourgeois, Sister Denise
Bousfield, Aldridge K.
*Boutot, Jean Francois
Bouzar, Nadjib
*Bowen, Carol A.
Bowers, Philip Lee
*Boyd, David W.
Boyd, Geraldine Fuller
Boyd, John P.
Boyer, Delmar L.
*Boyle, Jeffrey
Boyle, Mike
Bozonis, Petros
Braaksma, B. L. J.

- Brace, John W.

Brackx, Freddy F.
Bradie, Brian D.
Bradley, John S.
Bradley, Robert E.
*Bradlow, Steven B.

- Brady, Wray G.

Bragg, Arthur E.
Bragg, Louis R.
Brakke, Kenneth A.
*Bralver, Peter Jeffrey
*Brandenburg, Harald

- Brandli, Emil R.

Brandt, Dennis E.
*Branson, Thomas Patrick
Brant, Larry J.
*Brasselet, Jean-Paul
*Brattstrom, Gudrun B.
Brauer, Fred
Bravo, Raul
Bray, Georges Alexandre
Breckenridge, John C.
Breckon, William R.
Breen, Lawrence S.
*Bremermann, Hans J.
Brennan, Joseph P.
Brenneman, Franklin S.
Brenner, Alfred E.
Brenner, Philip
Bressler, David W.
Bresson, Maurice J.
Bressoud, David M.

- Breves Filho, J. A.

Brewster, Stephen Thomas
*Bridges, Douglas S.
-Briem, E.
*Brieskom, Egbert
Brigham, Robert C.
Brin, Matthew G.
Brin, Michael I.
*Brinkmann, Hans-Berndt
Brislawn, Christopher M.

Britt, Laura A.
Britton, John L.
Bro, Per
Broline, Duane M.
Brommundt, Eberhard W.
Brons, Kenneth A.
Brons, Morten
Brooks, Burrow P.
Brooks, Robert
Brothers, John E.
Broue, Michel
Browder, William
Brown, Douglas K.
Brown, Edgar H., Jr.
Brown, George B.

- Brown, Howard H.

Brown, Jack B.
Brown, Kenneth S.
Brown, Lawrence G.
Brown, Patrick J.
Brown, Richard H.
Brown, Richard L. W.
*Brown, Robert Bruce
Brown, Robert Dillon
Brown, Ronald
*Brown, Russell M.
Brown, Sharan Inez
Brown, Sue Jane
Brown, William G:
Browne, Patrick J.
Brozikova, Elena
Bruck, Ronald E., Jr.
Bruckner, Andrew M.
Bruckstein, Alfred M.
Brueggemann, Woifgang
Bruesch, Sandra A.
*Brummer, G. C. L.
Bruni, Anthony \mathbf{J}.
Brunner, Hermann
Bruno, Vincent J.
Bruns, Winfried
Brunschwig, Mildred C.

- Brunson, Barry W.

Brunswick, Natascha A.
Bruter, Claude P.
Bryant, John G.

- Bryant, John L.

Bryant, Robert L.
Bryce, Gerald M.
Brydges, David C.
Brylinski, Jean-Luc
Bryn, Milo F.
*Bryson, Elmer J.
Brzenk, Ronald M.
Brzezinski, Juliusz
Bshouty, Daoud
Bube, Kenneth P.
Buccino, Alphonse
Buchanan, Thomas
Buchmann, Johannes A.
Buckley, Joseph T.
Bucy, Richard S.
Buddrus, Lee Edward
Budnik, Paul, Jr.
Buechler, Steven Allen

GEORGE D. BIRKHOFF PRIZE
 CONTRIBUTION

IN MEMORY OF GEORGE D. BIRKHOFF
Garrett Birkhoff Barbara B. Paine

Buehler, Royce E.	Camina, A. R.	Chan, Jack-Kang	Choi, Kyu Hyuck	Cohn, Donald L.
Buekenhout, F.	Campanino, Massimo	Chan, Jor-Ting	Choi, U. J.	Cohn, George I.
Buhler, Joe P.	Campbell, Harold E. A.	*Chan, Kit Chak	Choksi, Jal R.	Cohn, Leslie
Buianouckas, Francis R.	Campbell, L. Andrew	-Chandler, Bruce	Cholewinski, Frank M.	Cohn, Richard M.
Bulger, Leonard L.	Campbell, Paul J.	*Chandler, Buel E.	Choo, Koo-Guan	-Cohn, William S.
Bulirsch, Roland Zdenek	Campiti, Michele	Chandra, Jagdish	Chosid, Leo	Colboum, Charles J.
Bullen, P. S.	*Candiotti, Alan	*Chandrasekar, Srinivasan	*Chouikha, Raouf	Colby, Robert R.
Bumby, Richard T.	Candy, Gregory T.	Chandrasekharan, P. S.	Chouteau, Charles C.	Cole, Charles A.
Bump, Daniel Willis	Canjar, Mike	Chang, Bomshik	Chover, Joshua	Cole, Herman D.
- Bunch, Henry Forrest	Cannon, James W.	Chang, Chao P.	Chow, Pao-Liu	Cole, Paul Dana
Bungart, Lutz	Cantoni, Vittorio	Chang, Der-Chen Edward	Chow, Yuan S.	Coleman, A. John
Bunge, Marta C.	Cantor, David G.	*Chang, Derek Kong	Christ, F. Michael	\bullet Coleman, Courtney S.
-Buonocore, Michael H.	Cantrell, James C.	Chang, Eugene J.	Christensen, Chris	*Coleman, Donald B.
Burchard, Hermann G.	Cantwell, John C.	Chang, Gerard J.	Christian, Floyd L., Jr.	Coleman, Robert
Burckel, Robert B.	*Capasso, Vincenzo	Chang, I-Lok	*Christofi, Stavros N.	Coleman, William
Burgess, C. Edmund	Capozzi, Alberto	Chang, Ping-Tung	Chu, Chinku	Collier, Jarrell D.
Burgess, Richard Dennis	Capria, Carlo Mamone	Chang, Shyang	Chu, Tienchen	Collier, William G., Jr.
Burgess, Walter D.	Card, Edward Frank	Chang, Sun-Yung A.	Chuang, Pi-Chun	*Collins, Benjamin V.
Burillo Lopez, Pedro	Caricato, Gaetano	Chang, Yu	*Chuaqui, Rolando B.	*Collins, Dennis G.
*Burkard, Rainer E.	Carlisle, Ronald L.	Chanillo, Sagun	Church, Philip T.	*Colliot-Thelene, J. L.
Burkhart, Jerry C.	Carlson, Bengt G.	Chao, J. A.	Churchill, Edmund	Colon, Ivan E.
Burleson, Scott T.	*Carlson, David H.	Chaperon, Marc	Churchill, Richard C.	Colquitt, Landon A.
Burns, Anne M.	Carlson, David L.	Chapin, Steven Arthur	Ciarlet, Philippe G.	Comenetz, Daniel
Burns, Daniel M., Jr.	Carlson, Jon F.	*Chapman, Frederick W.	Čibej, Jože Andrej	Comfort, Steven H.
Burns, Keith H.	*Carlson, Philip R.	Chamey, Ruth M.	*Cieply, Rosalie E.	*Comfort, W. Wistar
Burr, Stefan A.	Carlson, Robert C.	Chaterji, Srishti D.	*Cifarelli, Victor V.	Comiskey, Daniel C.
Burris, Stanley N.	Carmichael, Richard D.	*Chauveheid, Paul G.	*Cifuentes, Patricio	Compton, Kevin J.
Burstall, Francis E.	do Carmo, Manfredo P.	Chawla, Lal M.	*Cinlar, Erhan	Conlon, Joseph G.
Burton, Leonard P.	Camahan, Robert	Chee, Pak Soong	*Cipriani, Fabio	Conlon, Lawrence W.
Burzynski, Lawrence L.	*Carnes, Jerry	*Chein, Orin N .	*Cirina, Marco	Connelly, Robert
Busenberg, Stavros N.	Carpenter, Sarah A.	Chen, Concordia C.	Clapp, Michael H.	Connor, Jeffery S.
Buser, Peter 5.	Carroll, Edward M.	Chen, Cyndi Shiou-Hua	* Clapp, Robert E.	Connors, Edward A.
*Busey, David M.	Carroll, Francis W.	Chen, Daniel K. C.	Clare, Loren Paul	Conrad, Bruce P.
Bushnell, Colin J.	Carroll, Jeffrey S.	Chen, Gui-Qiang	*Clark, Cathy Ann	Conrad, Eric van Fossen
Bushnell, Michael L.	* Carroll, Robert W.	-Chen, Kwan-Wei	Clark. Jeffrey W.	Conrey, J. Brian
Businger, Walter A.	Carroll, Timothy B.	Chen, Louis H. Y.	*Clark. John	Constantinescu, Corneliu
Busqué, Claudi	Carruth, James H.	Chen, Patrick B.	Clark, Kenneth D.	Contessa, Maria
Butcher, John C.	Carson, Andrew B.	Chen, W. W. L.	*Clark, W. Edwin	Cook, Joseph M.
Butcher, Ralph Stevens	Cartan, Henri	*Chen, Wenxiong	Clarke, Charles L. A.	Cook, Thurlow A.
Butler, Allen	Catter, David W.	Chen, Y. W.	*Clarke, Francis	Cooke, Roger Lee
Butler, George M.	Carter, J. Scoit	Chen, Yongzhuo	Clarke, Graham Thomas	Cooley, Clifford R.
*Butnariu, Dan	Catter, Thomas J.	Cheney, E. W.	*Clarke, Thomas G.	Coolsaet, Arnold A.
Butts, Thomas R.	Carton-Lebrun, C.	Cheng, Horace Burk	*Clarkson, Peter A.	Coonen, Jerome T.
Byerly, Robert E.	Carver, George E.	Cheng, Jih-Hsin	Clary, Stuart	Cooper, J. B.
*Byers, Ralph	Casazza, Peter G.	Cheng, Kuo-Shung	Claus, Elly	Cooper, Jeffery M.
Bylander, Mark J.	Case, Bettye Anne	Cheng, Raymond S.	Clee, William A.	Cooper, Mark A.
Byrne, Catriona M.	Case, Kelley E.	Cheon, Seok-Hyeon	-Clement, Philippe P.	Cope, Davis K.
Byme, Charles L.	Casey, Robert Francis	Chern, I-Liang	\bullet Clendenning, Lester M.	Copeland, Arthur H., Jr.
Byrne, George D.	Casey, Stephen D.	Chern, T. Y. Peter	Cliborn, James H.	Coppotelli, Fred
Byrnes, James S.	Casimir, John F. R.	Cherniavsky, John C.	Clivio, Andrea Giovanni	Coram, Donald S.
Byrnes, Raymond Albert, Jr.	Casler, Burtis G.	Cherowitzo, William E.	Closs, Joseph N.	Corbett, John V.
*Byun, Chang Ho	Castagnoli, Erio A.	Cherruault, Yves	Clover, William J., Jr.	Cordero, Luis A.
*Byun, Hyeja	Castore, Glen M.	Cheung, B. K. S.	Cochran, James A.	-Cordes, Craig M.
*Caboz, Régis	*Castro, Alfonso	Cheung, Chi-Keung	- Cochran, Tim D.	Cordes, Heinz O.
Caccianotti, Luciano	Cateforis, Vasily C.	*Chi, Wenchen	Cochran, W. George	Corduneanu, Constantin
Cadogan, Charles C.	Cavallini, Fabio	Chiarenza, Filippo	Cockburn, Julio Bernardo	Corlette, Kevin David
Caflisch, Russel	Cavaretta, Alfred S.	Chicks. Charles H.	Cockcroft, Wilfred H.	Cornell, Gary
Cahen, Paul-Jean	Cavicchioli, Alberto	*Chicone, Carmen C.	Coddington, Earl A.	Cornet, H.
Cahill, Rotraut G.	Caviness, B. F.	Chidambaraswamy, Jayanthi	Coen, Salvatore	Comette, James L.
*Cai, Wei	Cawley, Robert	Chihara, Theodore S.	*Coffee, Terence	Corsi Tani, Gabriella
Cain, Bryan E.	Cazzaniga, Franco	Chikuse, Yasuko	Coffey, John	Cosgrove, Christopher M.
Cain, George L., Jr.	Cecil, Thomas E.	*Childs, Lindsay N.	Coffman, Julianne M.	Cosner, George C.
Caines, Peter E.	*Cegrell, Urban	Chillag, David	Cogburn, Robert F.	*Costa, Douglas L.
- Cairoli, R.	Cerda, Joan	*Chillingworth, David R. J.	Cogdell, James Wesley	Costantini, Cristina
Calderbank, Robert	Cerruti, Umberto	Ching, Wai-Sin	*Cogswell, Richard L.	*Costenoble, Steven R.
Calderon, Alberto P.	Certain, Melinda W.	Chinn, William G.	Cohen, Arjeh M.	Cotter, Christopher S.
Calhoun, William C.	deCesare, Kenneth M.	Chiswell, Ian M.	Cohen, Daniel I. A.	Cotton, Robert M.
Calica, Arnold B.	Chabert, J. L.	Chiu, Amy Hui-Lin	Cohen, Frederick R.	Couch, W. Eugene
Callahan, James J.	Chaiken, Seth D.	Cho, Jung R.	Cohen, Henry B.	Couch, William Garrant, Jr.
*Callan, C. David	Chakerian, Gulbank D.	Cho, Koji	Cohen, Joel M.	Countryman, William Mark
Callegari, Andrew J.	*Chalice, Donald R.	Cho, Young Hyun	Cohen, Marshall M.	*Coury, Nicholas J.
Camacho, James, Jr.	Chalmers, Bruce L.	Choe, Geon Ho	Cohen, Martin J.	Couty, R.
Camargo, Samuel N.	*Chalmers, Graham D.	Choi, Byung-Mun	Cohen, Moses E.	Covington, Jacinta Ann
Cameron, Douglas E.	Champagne, Carol Z .	Choi, Kwok-Pui	Cohen, Ralph L.	Cowan, Jack D.

Cowan, John C., III
Cowan, Richard E.
*Cowen, Carl C., Jr.
Cowen, Lenore J.
Cowens, J. Wayne
*Cowling, Michael G.
Cowsar, Lawrence C.
*Cox, Cassandra L.
Cox, Steven J.
Coxeter, H. S. MacDonald
Cozzens, Margaret Barry
Craft, George A.
Craggs, Robert F .
Craig, Jessica Marguerite
Craig, Walter L.
Crandall, Michael G.
Crane, George E.
*Crane, Jane P.
Crapo, Henry H.
Crauder, Bruce C.
*Craven, Bruce D.
*Craven, Thomas C.
Creede, Geoffrey D.
*Creese, Franklyn G.
Creese, Thomas M.
Crittenden, Richard J.
Crone, Lawrence J.
Cronin, Bernard

- Cross, James J.

Cross, Ronald W.
Crothers, Derrick S. F.
*Crow, Edwin L.

- Crumb, Cyndi A.
*Cryer, Colin W.
Cude, Joe E.
Cudia, Dennis F.
Cummings, James
Cunkle, Charles H.
Cunningham, Daniel W.
Cunningham, Frederic, Jr.
Cuntz, Joachim
Cuoco, Albert A.
*Currey, Bradley N.
Curry, James H.
Curry, John D.
Curtin, Eugene
Curtis, Charles W.
Curtis, Philip C., Jr.
Curto, Raul E.
Cushing, Jim M.
Cusick, David A.
-Cusick, Thomas W.
Cutler, Colleen Diane
Cwikel, Michael
*D'Alotto, Louis A. D^{\prime} Ambrosio, Ubiratan
D'Aprile, Margherita
*Dad-Del, Ali Akbar
Dadok, Jiri
Daepp, Ulrich
Dahlin, Rolf B.
*Dajczer, Marcos
*Dale, Knut T.
*Dales, H. Garth
- Daly, John F.

Damiano, David B.
Damon, James Norman
Dana, Martin P.
Daney, Charles G.
*Danforth, Katrine
Dangello, Frank Ralph
Daniels, Peg M.
Daras, Nicholas
Dark, R. S.

*Darken, Joanne S. Darling, Donald A.	
*Darst, Richard B.	
	Das, Anadijiban
Dasef, Martha E.	
D'Atri, Joseph E.	
Datskovsky, Boris A.	
D'Attore, Terrance R.	
*Dauben, Joseph W.	
	Davenport, Dennis E.
Daverman, Robert J.	
*Davey, Brian A.	
*Davidson, Kenneth R.	
*Davidson, Stuart	
Davies, Ian M.	
	Davies, Morton J.
- Davis, Gregory J.	
Davis, James F.	
	Davis, Jon H.
*Davis, Linda M.	
Davis, Martin D.	
Davis, Paul L.	
Davis, Paul W.	
Davis, Richard L.	
Davis, Robert B.	
	Davis, William J.
\bullet Davitt, Harold H.	
Dawes, A. M.	
	Dawson, Donald A.
*Dawson, John W., Jr.	
Day, B. J.	
Day, Wayne	
	Dayton, Barry H.
*Dazord, Jean	
Dean, Andrew P.	
Dean, Carolyn A.	
Dean, Richard A.	
DeAngelis, Kathleen R. De Bouvere, Karel L.	
*De Cecco, Giuseppe de las Obras, Carmen de Oliveira, Carlos S. S.	
\bullet de Pillis-Lindheim, Lisette G. De Snoo, Hendrik S. V.	
- Dechene, Lucy I.	
Dedecker, Paul	
DeFacio, Brian	
DeFelica, Patricia Ann	
DeGray, Ronald W.	
*Dehesa, Jesus Sanchez	
Deift, Percy Alec	
Dekleine, Herbert A.	
Deiahunty, Michael D.	
- Delaney, Matthew S.	
*Delanoe, Philippe	
*Delchamps, David F.	
Deleanu, Aristide	
DeLeon, Morris Jack	
Dell'Antonio, Gianfausto	
Delporte, Jean	
Del Riego de Del Castillo, L. Demana, Franklin D. Deming, Robert W.	
- Demko, Stephen	
Demmel, James W.	
*Dencker, Nils	
Dennin, Joseph B.	
Deodhar, Vinay Vithal	
Deprima, Charles R.	
*Derdzinski, Andrzej J.	
	- Derwent, John E.
	*Désarménien, Jacques
	- DeShalit, Ehud
	*Detrez, Eric Louis

- DeTurck, Dennis
*Deuber, Walter Alfred
Deumens, Erik
Devaney, Robert L.
*Devecchi, James M
Deveney, James K.
*Devinatz, Ethan S.
Dewallens, Jean H.
Dhaliwal, Ranjit S.
Dhooghe, Paul F. J.
Diamond, Beverly E. J.
Diamond, Fred I.
Dias, Frédéric
Diaz, Gerald Jerry
Diaz-Miranda, Antonio
Di Biase, Fausto
Di Concilio, Anna
*Dickenstein, Alicia M.
Dickerson, Charles E.
Dickinson, Arthur F .
Diener, Karl-Heinz
Dieter, Ulrich
Dijksma, Aalt
Dikshit, G. D.
Dilcher, Karl H.
Dillah, Kenrick L.
Dillon, Meighan Irene
Di Maio, Giuseppe
DiMilo, Anthony J.
Diminnie, Charles R.
Dimsdale, Bemard
*Dinitz, Jeffrey Howard
*Dion, Gloria S.
*Dionne, Benoit
Dionne, Philippe A.
Di Paola, Jane W.
Dipper, Richard T.
Di Prisco, Carlos A.
Divis-Poracka, Zita M.
Diab, Vlastimil
Dodds, Peter G.
Dodds, Theresa K.
Dodson, Christopher T. J.
Dodziuk, Jozef
Doerfler, Willibald
Doering, Boro
*Doggett, Deborah
Dolan, James M.
*Dolan, Peter C.
Dolbeault, Pierre E.
Dold, Albrecht E.
Dolgachev, Igor
Dollard, John D.
Domic, Antun
Dominijanni, Roberto
Domino, Laurence E.
*Donaldson, James A.
Donaldson, Simon K.
Dooley, Thomas J.
Doppel, Karl
Dordal, Peter L.
Dorlas, Tony C.
Dorman, David R.
*Domer, Bryan C.
Dorroh, James R.
Dorsett, Charles I.
Dossa, Marcel
*Dos Santos, Antonio F.
Dou, Alberto M
*Dougherty, Randall
Douglas, Jim, Jr.
Douglas, Ronald G.
*Doust, Ian R.
Dovermann, Karl Heinz

Dow, Alan
Dowd, Robert E.
Dowds, Richard E.
Dowers, J. F.
Dowling, Diane M.
Dowling, Thomas A.
Downey, Rodney G.
Doyen, Jean
Drager, Lance D.
Drake, Frank R.
Draper, Jeanne Marie
Drazin, Michael P.
Drew, Gerald C.
Driver, Bruce K.
Drouilhet, Sidney James, II
*Du, Michael S. W.
Dubson, Alberto S.
Duchamp, Thomas E.
*Du Cloux, Fokko
Duer, John L. L.
Duff, George F. D.
Dugas, Manfred H.
Duke, William D.
Dukelow, James S., Jr.
Dummigan, Neil P.
Dunbar, William Dart, Jr.
Duncan, Cecil E.
Dunham, Douglas J.
Dunlap, Judith M.
*Düntsch, Ivo
Dupont, Johan L.
DuPre', Arthur Mason
Durand, Loyal
Duren, Peter L.
*Durfee, Alan H.
Durkin, Marilyn B.
*Durnota, Bohdan P.
*Durrett, Richard T.
Durst, Lincoln K.
Duskin, John W., Jr.
Dutton, Charles Everett
*Dwork, Bernard M.
Dydak, Jerzy
Dykema, Kenneth J.
Dynkin, Eugene B.

- Ealy, Clifton E., Jr.
-Earle, Clifford J., Jr.
Easton, Richard J.
Eberlein, Patrick Barry
*Ebrahimi Vishki, Hamid Reza
Echenique, Marcial Luis
Ecklund, Earl F., Jr.
Edelstein-Keshet, Leah
*Eden, Alp
Edet, Silas B.
Edington, Bruce Leon
Edmonds, Allan L.
Edmonds, George F.
Edmondson, Don E.
Edrei, Albert
Edwards, C. M.
Edwards, Charles H., Jr.
Edwards, David Albert
Edwards, Kathleen R.
Edwards, Wallace B., Jr.
-Efrat, Isaac Y.
Eggers, John D.
Ehlers, F. Edward
*Ehrlich, Karel
Ehrlich, Paul Ewing
Eifrig, Bemd
Eigel, Edwin G., Jr.
Eigen, Stanley J.
Eilenberg, Samuel

Einstein, David M.
Einthoven, Isabella H.
Einwohner, Theodore H.
Eirola, Timo J.
Eisenbud, David
Eisenstadt, B. J.
Eisenstat, Stanley C.

- Eisman, Sylvan H.
*Ekeland, Ivar
Eklund, Anthony D.
Elam, John R.
Eldridge, Klaus E.
*El-Helaly, Sherif Taha
Elia, Michele
Elias, Uri
Eliashberg, Yakov
Eliasson, Halldor I.
*Eliasson, Lars Hâkan
Elich, Joe
Elko, Constance B.
Ellett, Scott A.
Elliger, Sigurd
Ellingham, Mark N.
Ellingsrud, Geir
Elliott, Brady A.
Elliott, George A.
Elliott, Joanne
Elliott, P. D. T. A.
Elliott, Sheldon E.
Ellis, Kathryn P.
Ellis, Robert
Ellis, Sharon Theleman
Ellis, Wade, Jr.
Ellison, Robert J.
*Elmroth, Tony G.
Eloe, Paul W.
*Elson, Constance McMillan
El-Zahar, Mohamed Hamed
*Emamirad, Hassan
Emch, Gérard G.
-Emert, John Wesley
Emery, Carol J. Reinhard
Emmer, Michele
*Enayat, Ali
Engber, Michael
Engle, Jessie Ann
Engler, Hans P.
Engstrom, Philip G.
Enneking, Marjorie
Enomoto, Kazuyuki
Enomoto, Masatoshi
Enquist, Arne
Ensey, Ronald J.
*Eoff, Carolyn Melton
Epp, Helmut P.
Epstein, Benjamin
Epstein, Charles L.
Epstein, D. I.
Erbe, Lynn H.
*Erbland, John P.
Erdahl, Robert M.
Erdelyi, Ivan N.
Erdelyi, Tamas
Erdman, John M.
*Erdos, John
- Erdos, Paul

Erickson, Roger P.
*Erkama, Timo
Erlander, Sven
*Erlandsson, Thomas
*Erle, Dieter H.
Ern, Alexandre
*Ernst, Claus
Eron, Mary B.

Errico, Thomas G.
Eryynck, Gontran J. O. H.
Escassut, Alain
Eskew, Thomas Eugene
Eskin, Gregory
Esquinas, Jesus
Essen, Matts R.
Esser, Anne-Marie Simon
Estep, Donald J.
*Estrada, Luis

- Etgen, Garret J

Etheridge, William L.
*Eudave-Munoz, Mario
Evans, Eric J.
Evans, Trevor
*Evens, Samuel R.

- Everingham, Susan M. Sohler

Ewacha, Kevin
Ewer, J. Patrick
*Ewing, John H.
Ewy, Daniel J.
Exner, George R.
Eyles, Joseph W.
Eymard, Pierre Henri
Ezeilo, James O. C.
*Ezin, Jean-Pierre O.
-Ezzo, Daryl L.
Fabec, Raymond C.
Fabes, Eugene B.
Fabrykowski, Jacek W.
Fadell, Albert G.
Faierman, Melvin
Fair, Wyman G.
Fairgrieve, Thomas F.
Faith, Carl
*Falcone, Maurizio
*Falk, Michael J.
Falkner, Neil F.
Faltings, Kai
Faran, James J.
Farb, Benson S.
*Farber, Michael
*Faridani, Adel
*Farmer, William Michael
-Farrell, Kevin John
Farris, Frank A.
*Farsi, Carla E.
Fathi, Albert
*Faudree, Ralph J., Jr.
Faulkner, Frank D.
Fauntleroy, Amassa C.
Fearn, Dean H.
Feamley, Anne
Feehan, Paul Matthew Niall
*Feeman, Timothy G.
Feferman, Solomon
Fegan, H. D.
Fegreus, John F.
$*$ Fehribach, Joseph D.
Feichtinger, Hans Georg
Feighn, Mark E.
Fein, Burton I .
Feinsilver, Philip
Feit, Paul
*Fejer, Peter Andrew
Feldman, Arnold D.
Feldman, Jacob
Feldman, Norman
Feliciano-Dodonoff, Manuel
Fell, James M. G.
Fellers, Norman V., Jr.
Fellman, Johan
Fender, Timothy N .
Fendrich, John W.

Fenley, John C.
Fenley, Sergio Roberto
Fennell, James G.
Fenske, Christian
*Ferguson, David R.
Ferguson, Helaman
Ferlini, Vincent J.
Ferrari, Carlo
Ferreira, Andrew \mathbf{P}.
Ferreira Rosa, José Humberto
Ferrer, Jesus
*Ferreyra, Guillermo Segundo
Ferri, Massimo
Ferris, Ian M.
Ferro, Alfredo
Ferro, Ruggero
Ferry, Steven C.
Feser, Victor G.
-Feuer, Albert
Feuerbacher, Gary A.
*Field, Michael J.
Finbow, Arthur S.
-Finch, David V.
Finch, Steven Richard
Fine, Benjamin
*Fine, Jonathan
Finkelstein, Leib
Finkelstein, Louis D.
Finston, David R.
Fischer, H.
Fischer, Hans R.
Fischer, Ismor
Fishback, William T.
Fisher, Stephen D.
Fishman, Louis
*FitzGerald, Gilbert C.
Fitzgerald, Robert W.
Fitzgibbon, William E.
Fitzsimmons, Patrick J.

- Fixman, Uri

Fjelstad, Paul T.
Flaherty, Francis J.
-Flahive, Mary Elizabeth
*Flaminio, Livio
Flanders, Harley
Flanigan, Francis J.
*Flapan, Erica L.
Fleckinger, J.
Fleishman, Bernard A.
Fleissner, William G.
Fleming, Daniel J.
Fleming, Richard J.
Fleming, Wendell H.
Flensted-Jensen, Mogens
*Fletcher, Peter
*Fleury, Patrick J.
*Flodin, Michael
Florence, John B.
Flosser, H. O.
Floyd, Denis R.
Floyd, Edwin E.
*Floyd, William J.
Flytzanis, E.
Fogel, Micah E.
de Foglio, Susana F. L.
Foias, Ciprian Ilie
Folk, Thomas F.
Fôllmer, Hans
Fong, Kirby W.
*Fong, Paul
*Font, Josep M.
Fontenot, Robert A.
Foote, S. Ashby
Foran, James

Forbes, Stephen H.
Ford, David
Ford, David James
Forman, Robin
Fornaess, John Erik
Forrest, G. Martin
Fórster, Klaus-Júrgen

- Forsythe, Keith W.

Forte, Bruno
Foster, Andrew
Foulis, David J.
Foulser, David A.
Fournelle, Thomas A.
*Fournier, John J. F.
Fowler, Franklin H., Jr.
Fowler, Frederick C.
Fox, Jeffrey Stephen
Fox, John Michael
Fox, Ralph
*Fraga, Robert J.
Fragoso, Marcelo D.
Frame, Michael Lee
Franke, Daniel G.
Franke, Jens S.
Franks, John M.
Fransen, Arne
Frantz, Henry W., III
Frappier, Clement
Frawley, William J.
Frazier, Michael W.
Frech, Bruce
Frederickson, Paul O.
Freed, Daniel S.
Freedman, Allen R.
Freeland, Mark S.
Freeman, Robert S.
Freese, Ralph S.
Freidlin, Mark
Freiman, Gregory A.
*Freire, Alexandre S.
Freire Nistal, J. L.
*Freyd, Peter J.
Fricker, Francois
Fridman, Buma L.
Friedberg, Solomon
Friedberg, Stephen H.
Friedland, Shmuel
Friediander, John B.
Friedlander, Leonid
Friedman, Ben William
Friedman, Jane E.
Friedman, Merwyn M.
Friedman, Robert David
Friedman, Sy D.
Friese, John L.
Friesen, Donald K.
Fritsch, Rudolf
Fritsche, Richard T.
Froese, Richard G.
Frohardt, Daniel E.
Frohlich, Jurg M.
Frosali, Giovanni
*Fruchtenicht, Wiebke
Frye, Roger \mathbf{E}.
Fu, Yen-Tzu
Fuchs, Peter Rudolf
Fuchssteiner, Benno
Fuhrken, E. Gebhard
Fuji-Hara, Ryoh
Fujisaki, Rieko
Fujiwara, Daisuke
Fujiwara, Hidenori
Fujiwara, Masahiko
Fukuda, Komei

Fuller, F. Brock
Fuller, Mark Edward
Fuller, Robert Arthur
Fulton, John D.
Fuqua, Jeffry B.
Furutani, Kenro
Futia, Carl A.
Fwu, Chihchy
Gaal, Lisl Novak
Gaalswyk, Arie
Gabardo, Jean-Pierre
Gabay, Jacques
Gabriel, Steven Allen
Gacs, Peter
Gaier, Dieter
Gaito, Stephen T.
Galbiati, Margherita
Gale, Carolyn Spencer
*Gale, Jose E.
Gallagher, Patrick X.
Gallardo, Luis
Gallian, Joseph A.
Gallier, Jean H.
Galliher, Herbert P.
Galvin, James W.
Gambaudo, Jean-Marc
Gamelin, Theodore W.
Ganelius, Tord H .
Gani, Joseph M.
Ganser, Carl C.
Gantner, Thomas E.
Gantos, Richard L.
*Gao, Feng
Gao, Weiqi
García, José Luis
Garcia, Josefa I.

- Garcia, Octavio C.

Garcia-Loygorri, Cristobal
*Gardiner, Cyril F.
Garding, Lars
Gardner, Robert A.
*Garg, Krishna M.
Gargano, Fred
Garimella, Ramesh V.
-Garland, Howard
Garrett, John W.
Garrett, Paul B.
Garsia, Adriano M.
Garvan, Frank G.
Garzon, Max H.
Gatica-Perez, Gabriel N.
Gatterdam, Ronald W.
Gattozzi, Marianna S.
Gauchman, Hillel
*Gauld, David B.
Gauthier, Paul M.
Gaviano, Marco
Geckler, Richard D.
*Gelbart, Stephen S.
Geller, Daryl Neil
Geman, Donald J.
Gentili, Graziano
Georgiou, John C.
Geramita, Anthony V.
Geramita, Joan M.
Gerhardt, C.
Gerig, Stephen R.
Gerisch, Wolfgang
Gerlach, Eberhard G. P.
Germain, Paul
Gershenson, Hillel H.
Gerstenhaber, Murray
*Gerszonowicz, Jorge A.
*Gervais, Jean Jacques

Gerver, Joseph L.
*Gessaman, Margaret P.
Gessel, Ira M.
*Gesztesy, Friedrich
Getu, Seyoum
*Getzler, Ezra
*Gevirtz, Julian
Gewirtz, Stephen J.
Ghanaat, Patrick H.
-Ghent, K. S.
Ghisa, D.
*Ghosh, Parimal K.
Giambalvo, Vincent W.
Gibson, Peter M.
*Gieraltowska-Kedzierska, Maria
Gieringer, John D.
Gierz, Gerhard
*Gieseker, David
Gilat, David
Gilbarg, David
Gilbert, Freeman
Gilbert, Michael D.
Gilbert, Michael S.
Gilchrist, Martin P.
Gildenhuys, Dion
Giles, John C.
*Giles, John R.
Gilewicz, Jacek
Gill, Tepper L.
Gillard, Roland D.
Gillman, Daniel W.
Gilman, Jane P.
Gilsdorf, Thomas E.
Gioia, Anthony A.
Giordano, George
Girela, Daniel
Giroux, Gaston O.
Gitler, Samuel
Giuli, Eraldo
Gladue, Earl C.
Glass, Michael S.
Glauberman, George
Glaz, Sarah
Glazebrook, James F.
Gleason, Andrew M.
Glenn, Paul G.
Glover, Henry H.
Glover, Robert A.
Gluck, Herman R.
Glynn, John J.
Goblirsch, Richard P.
Goddard, J. D.
Goddyn, Luis A.
Godfrey, Colin
Godin, Paul J.
Goebel, K.
Goerss, Paul G.
*Gokhman, Dmitry
*Golan, Jonathan S.
Golber, David L.
Gold, Robert
Goldberg, David
*Goldberg, David M.
Goldberg, Samuel
Goldberg, Seth I.
Goldberg, Seymour
*Goldblatt, Robert I.
Golden, Kenneth M.
Goldfeld, Dorian
Goldhaber, J. K.
*Goldin, Gerald A.
Goldman, Jerry
-Goldman, William Mark
Goldston, Daniel A.

*Golec, Janusz S.	Greenspan, Bernard D.	Hackenbroch, Wolfgang	Harnad, John P.	Hefley, Gerald L.
Golightly, William L., Jr.	*Gregorac, Robert J.	Haddad, Hadi M.	*Harper, James D.	Heifetz, Daniel B.
Golomb, Michael	Greicar, Richard K.	Haddad, Labib S.	Harper, Lawrence H.	Heijmans, Johannes G.
Gomez Pardo, Jose Luis	Greif, Anthony David	Haddix, George F.	Harrell, Ronald E.	Heil, Christopher E.
Gomez-Ruiz, Francisco	Greif, Stanley J.	Hadjidimos, Apostolos	Harrington, Walter J.	*Heine, George W., III
*G'omez Tato, Antonio	*Greig-Smith, N. H.	Hadjisavvas, Nicolas	Harris, Gary A .	Heineken, Hermann
Gomi, Kunio	Greiner, Peter C.	*Haebich, William	Harris, Joe	*Heinicke, Allan G.
Gompf, Robert E.	Greller, Larry David	Haemmerlin, Guenther	Harris, Lawrence	Heinonen, Juha M.
Gonshor, Harry	Greville, Thomas N. E.	Hag, Per	Harris, Marlene G.	Heins, Albert E.
*Gonzalez, Raul Ernesto	Griess, Robert Louis, Jr.	*Hagglund, Lee O.	Harris, Melanie J.	Heins, Maurice H.
Gonzalez-Sprinberg, Gerard	Griffin, E. L., Jr.	Hagis, Peter, Jr.	Harris, Michael H.	*Heintze, Emst
Gonzalo, Jesus	Griffin, Philip Stanley	Hagler, James N.	Harris, Steven Guy	Heinze, Joachim
Goodearl, Kenneth R.	*Griffing, Gary R.	Hahn, Christopher Kenneth	Harrison, Carol Nicoline	Hejna, Matthew J.
*Goodey, Paul R.	Griffiths, H. Brian	Hahn, Gena	Harrop, Fred F.	Hejtmanek, Johann Hans
Goodman, A. W.	Grillakis, Manoussos	Hahn, Kyong T.	Hart, Garry D.	*Helfer, Adam D.
*Goodman, Jacob Eli	Grilliot, Thomas J.	-Hahn, Marjorie G.	Hart, Neal	Hell, Pavol
Goodman, Roe W.	*Grimmett, Geoffrey R.	Hahn, Susan G.	Harte, Rebecca E.	Hellberg, H. Stefan
Goodman, Sue E.	*Gritzmann, Peter	Hahne, Gerhard E.	Hartig, Donald	Heller, Alex
*Goolsby, Ronnie C.	Grivel, Pierre P.	Haight, John A.	Hartl, Johann	Heller, Dorothy M.
Gopal, Mangalam R.	*Grochenig, Karlheinz U.	*Hailat, Mohammad Q.	*Hartmann, Frederick W.	Heller, Steven
Gordon, B. Brent	Groenenboom, Albert	Hain, Richard Martin	Hartmann, Mark E.	Hellerman, Leo
Gordon, C. M.	Gromoll, Detlef	Hakim, Jeffrey L.	Hartshorne, Robin	Hellerstein, Simon
Gordon, Carolyn S.	Gromov, Mikhael	Halberstam, Heini	Hartzler, H. Harold	Helson, Heary
*Gordon, Daniel M.	Gross, Daniel Joseph	Halcomb, Jay R.	Haruki, Hiroshi	*Helton, J. William
Gordon, Robert	*Gross, Kenneth I.	Hales, Alfred W.	Haruki, Shigeru	Hemasinha, Rohan
Gordon, Robert W.	Gross, Leonard	-Hales, R. Stanton, Jr.	Harvey, William J.	Hempel, J. A.
*Gorelishvili, Albert	Gross, Louis J.	Hall, Brian C.	Haschke, Rebecca A.	Hempel, John P.
Gorenflo, Rudolf	Gross, Robert Howard	Hall, Mark Edwin	Haskell, Peter E.	Hemstead, Robert J.
Gorenstein, Daniel	*Grosshans, Frank D.	*Hall, Randy M.	Haslach, Henry W., Jr.	Henderson, David W.
Gorkin, Pamela B.	Grossman, Edward H.	Haller, Thomas	*Haslinger, Friedrich	Henderson, Francis McVey
Goss, Robert N .	-Grossman, Marvin W.	Halpern, Herbest	Hasselblatt, Boris	Henderson, James P.
Goth, John A.	Grove, Larry C.	Halsey, Mark D.	*Hastad, Johan	*Henderson, Robert B.
Goto, Hideo	Grubb, Daniel J.	Halvorsen, S. G.	Hastings, Harold M.	Hennequin, Paul-Louis
Goto, Midori S.	-Grubb, Gerd	Hamalainen, Timo T.	Hastings, Stuart P.	Henniger, J. P.
Gottlieb, Daniel H.	Grudin, Arnold	Hamana, Masamichi	Hasumi, Morisuke	Henriques, Anna S.
Gouvea, Fernando Quadros	*Gruenberg, Karl W.	Hamilton, David O.	Hatcher, Theodore R.	Henstock, Ralph
*Gow, Roderick I.	Gruenhage, Gary F.	*Hamilton, Wallace L.	Hatton, James R.	Hepp, Klaus
*Goyo, J. O.	*Grundhöfer, Theo	Hammack, William D.	Hattori, Akio	Herbst, B. M.
Goze, Michel	*Gruter, Michael	Hammel, Stephen Mark	*Haughton, Dominique M. A.	*Herbst, Ira W.
*Grabiel, Federico	Gualtieroti, A. F.	Hammer, Frederick David	Hausknecht, Adam O'Neill	Herfort, Wolfgang Norbert
-Grabiner, Sandy	Guenard, Francois	Hammer, Peter L.	Hausmann, Jean-Claude	*Herforth, Boyd
Graffigne, Christine	Guerin, Esther E.	Hammes, Steven M.	*Hawkes, Trevor O.	Hering, Roger H.
*Gragert, Peter K. H.	Guerrieri, Bruno	Hammond, William F.	*Hawkins, William Grant	Hermann, Robert
Graham, C. Robin	*Guest, Martin A.	Hamstrom, Mary-Elizabeth	Hayashi, Elmer K.	Hernandez, Diego B.
Graham, Sidney W.	*Guetti, Joan F.	Han, Chong-Kyu	Hayashi, Eric	Hernandez, Eugenio
Grainger, Arthur D.	Guglielmi, Josephine P.	Han, Jongsook	Hayashi, Kazumichi	Hernandez, Rafael
*Grainger, Gary R.	Guilbault, Craig R.	*Han, Zheng-Chao	Hayashi, Mikihiro	*Hernandez, Rene A.
Grams, Carol Sachiko	Guillen, Michael A.	*Hanau, Michael	Hayashi, Takao	Hernandez Ruiperez, Daniel
Gramsch, Bernhard	Guillot, J. C.	Handel, David	Hayashida, Tsuyoshi	Herod, James V.
Grannell, Michael John	Gulick, Denny	Handel, Michael	Hayden, Bobette L.	Herod, Scott A.
Grantham, Stephen B.	-Gulliver, Robert D., II	Hanes, Kit	Hayden, John L.	- Herrera, Ismael
Granville, Andrew J.	Gundersen, Gary G.	Hanisch, Herman	Haydn, Nicolai T. A.	Herrmana, Joseph M.
Grasse, Kevin A.	Gundy, Richard F.	Hank, John L.	Haydon, Richard G.	*Herron, David A.
Gravel, Pierre	Guner, Necdet	Hannan, Edward J.	Hayek, Nacere	*Herz, Carl S.
Graves, Alan S.	Gunnarsson, Thomas E. W.	Hansen, Idar	*Hayes-Widmann, Sandra A.	*Herzberger, Juergen P.
Graves, Larry K.	Gunter, Elsa L.	*Hansen, Susan L.	-Haynes, Nola A.	*Hess, Peter
Graves, Robert L.	Gunther, Bernd	Hansen, Vagn Lundsgaard	Hays, M. M. R.	Hestenes, Magnus R.
Gravesen, Jens	Gurney, David Robert	Hansen, Verner T.	*Hazewinkel, Michiel	Hestenes, Marshall D.
Gray, Alfred	Guseman, Lawrence F., Jr.	Hanson, Stanley C.	*Hazlewood, Carol	*Hesterberg, Timothy C.
*Gray, Jack D.	Gustafson, Robert A.	Hansson, Kurt A.	*Hazlewood, Donald G.	Hettling, Karl F.
Gray, James M.	*Gutek, Andrzej S.	*Hara, Takashi	*He, Zheng-Xu	Hetzer, Georg
Gray, Robert E.	Guterman, Martin M.	Haralampidou, M. Marina	Headley, Velmer B.	Heuer, Gerald A.
Greaves, G.	*Gutierrez, Cristian E.	Harary, Frank	-Heard, Elizabeth A.	Heumos, Michael J.
*Grebogi, Celso	*Gutknecht, Martin H.	Harbater, David	Heard, Melvin L.	Heuver, John G.
*Grecos, Alkis	Guy, Wynne Alexander	Harborth, Heiko	*Heath, David C.	Heyer, Herbert K.
*Green, Gary Brian	*Guzman, Miguel de	Hardarson, Askell	* Heath, Jo W.	Heyman, Robert E.
Green, James A.	*Gyllenberg, Mats	Hardy, Darel W.	-Heath, Larry F.	Hiai, Fumio
Green, Ronald P.	Ha, Ki Sik	Hargraves, Beverly Bailey	*Hebert, Michel	Hickemell, Fred J.
Green, William L.	Ha, Young-Hwa	*Harinath, K. S.	Hechler, Stephen H.	Hickling, Fred
Greenberg, Ralph	Haag, Vincent H.	*Harine, Katherine Jane	Hecht, Henryk	Hicks, Robert L.
Greene, Curtis	Haas, Andrew H.	Haring-Smith, Robert H.	Hecker, David A.	Hida, Haruzo
Greene, John Robert	Haas, Robert	Harmand, Peter	*Hedayat, GholamAli	Hida, Takeyuki
-Greenfield, Gary R.	Haber, Seymour	Harmelin, Reuven	*Hedberg, Lars I.	Higgins, John C.
Greenleaf, Frederick P.	Habetha, Klaus	Harms, Eerik Thomas	*Hefez, Abramo	Higgins, John R.

Higgins, Stanley B.
Higman, Donald G.
Hijab, Omar
*Hijazi, Oussama
Hilbert, Stephen R.
Hildebrandt, Theodore W.
*Hill, David E.
Hill, David G. B.
Hill, E. Stamford, II
Hill, James
Hill, Jeffrey A.
Hill, Ralph Norman
Hill, Shirley A.
Hillman, Abraham P.
Hillman, Jonathan Arthur
Hilt, Sandra N.
Himonas, Alexandrou A.
Hind, Hugh Robert
Hinder, Rainer
Hindley, James Roger
Hindman, Neil B.

- Hinestroza, Doris

Hingston, Nancy
Hinman, Peter G.
*Hinson, Edward K.
Hintzman, William R.
Hirano, Tetsutaro
Hironaka, Heisuke
Hirsch, Michael D.
Hirschfelder, Elizabeth S.
Hirschfelder, Rosemary
Hirshfeld, Joram
Hirzebruch, F. E. P.
Hirzebruch, Ulrich
Hislop, Peter David
Hitotsuyanagi, Nobuo
Ho, Minh Van
Hoag, Charles C., Jr.
*Hoare, A. Howard M.
Hobbs, Ann Kahlow
Hobbs, Arthur M.
Hochschild, Gerhard P.

- Hochstadt, Harry

Hochster, Melvin
Hochwald, Scott H.
Hodges, Wilfrid A.
*Hodgkin, Luke H.
Hodgson, Jonathan P. E.
*Hoefer, Edwin T.
Hofer, Helmut H. W.
Hofer, Robert D.
Hoffman, Jerome William
Hoffman, Kenneth R.
Hoffman, Michael E.
Hoffman, Michael J.
Hoffman, William C.
Hoffmann, Detlev W.
Hoffmann-Jorgensen, Jorgen

- Hofmann, Karl H.

Hoft, Hartmut
Hoft, Margret H .
Hogan, Daniel A.
*Hogbe-Nlend, Henri
*Hognas, Goran
Hohs, Stephen M.
*Hoke, Harry F., III
*Holbrook, John A.
Holder, L. I.
Holland, Finbarr
Holland, James C.
Holland, W. Charles
*Holman, Craig S.
Holman, Wayne James, III
\bullet Holmann, Harald R. A.

Holmes, Charles S.
-Holmes, Philip John
Holmes, Randall Reed
Holmes, Richard B.
Holton, Derek A.
Holvoet, Roger
Holzman, Robert E.
Holzsager, Richard
Homer, Roger H.
Honda, Kin-Ya
*Hong, Sungpyo
Honold, Thomas
Hoobler, Raymond T.
Hooper, Jennifer Jean
Hoover, D. N.
Hoover, Thomas B.
Hopkins, Neil E.
Horgan, Comelius O .
*Hormander, Lars V.
Horn, Jean MacGregor
Home, J. G., Jr.
Horner, Mary Lynn
*Homer, T. S.
*Hornung, Ulich
Horsfield, Christopher H.
Horsley, Anthony
*Horst, Emst S.
Hosack, John M.
Hosoi, Tsutomu
Hosouchi, Isamu
-Hoste, Jim E.
Hotta, Ryoshi
Hotzel, Eckehart
*Houh, Chorng-Shi
Householder, James E.
*Hovis, Robert A.
Howard, Edgar J.
Howard, Paul E.
Howard, William A.
Howes, Frederick A.
*Howie, John M.
Hoye, Laurence G.
Hoyt, W. L.
Hratz, Joseph A.
Hsieh, Wan-Chen
Hsiung, Chuan C.
Hsu, Daniel
*Hsu, Guan-Hsong
Hu, K. Y.
Hu, S. T.
Hua, Yang
Huber-Dyson, Verena
*Hudson, Robin L.
Huebschmann, Johannes
Huerta, Carlos Cuevas
Huet, Denise
Hufford, George A.
Hughart, Stanley P.
Hughes, Anne
Hughes, C. Bruce
Hughes, Cephas D.
Hughes, Joseph A.
Hughes, Richard P., Jr.
Hughes, Ruth L.
Huh, Won
Hui, Tai-Hing Dennis
Huibregtse, Mark E.
Huige, Gustavus E.
*Huilgol, Raja R.
*Huisken, Gerhard
Hulkower, Neal D.
Hulsbergen, Wilfred W. J.
Hume, Leigh R.
Humke, Paul D.

Hummel, Kenneth E.
Humphrey, Thomas
*Humphreys, John F.
Huneke, Craig L.
Hung, Henry Hin-Lai
Hunt, Bruce
*Hunt, David Christopher
Hunt, Richard A.
Hunt, Walker E.
Hunter, Maxwell Norman
Hurd, Spencer Peyton
*Hurder, Steven E.
Hurley, Donal J.
Hurley, James F.
Hurley, Michael G.
*Hurrelbrink, Jurgen
Hurtubise, Jacques C.
Husain, Taqdir
Hustin, Deborah L.
Hutchinson, George A.
*Hvidsten, Michael David
Hwang, Jang C.
Hwang, John Jew-Chen
Hyvonen, Jaakko P.
Iannelli, Mimmo
Iarrobino, Anthony A., Jr.
Ibrahim, A. Shawky
Ibrahim, Fayza Abdel-Halim
Igarashi, Akira
Igarashi, Masao
Igodt, Paul G.
Igusa, K .
Iha, Franklin T.
Ihara, Yasutaka
Iino, Riichi
Iio, Tutomu
Ikebe, Teruo
Illman, Soren A.
Illner, Reinhard
*Im, Bokhee P.
Imai, Hideo
Imayoshi, Yoichi
Im Hof, Hans Christoph
Inaba, Hiroshi
-Indlekofer, K. H.
Ingram, Nancy Jane
Innami, Nobuhiro
Inoue, Hiroshi
Insall, Eugene M., Jr.
Insel, Arnold J.
Ioakimidis, N. I.
Ioffe, Alexander
-lorio, Rafael J., Jr.
Ipsen, Ilse
Irving, Ronald S.
Isaac, Richard E.
*Isaacson, Eli
Isaak, Garth T.
*Isbell, John R.
Iseki, Kiyoshi
*Isenberg, J.
Ishihara, Hajime
Ishihara, Toru
Ishii, Hitoshi
Ishikawa, Hirofumi
Ishimoto, Hiroyasu
Ismail, Mourad E. H.
Itai, Masanori
Ito, Noboru
*Itoh, Mitsuhiro
Ives, Robert T.
Iwamiya, Toshiyuki
Iwaniec, Henryk
Iwasaki, F. Shigeo

Iwashita, Hirokazu
Ize, Jorge A.
Izuchi, Keiji
Izumino, Saichi
*Izzo, Alexander J.
Jackson, D. C.
Jackson, Raymond W.
*Jackson, Thomas D.
Jaco, William H.
Jacob, Henry G.
Jacob, Niels
-Jacob, William Burkley
Jacobs, Felix J.
Jacobs, Harold
Jacobs, Jonathan M.
Jacobsen, Martin
Jacquet, Herve M.
Jafari, Farhad
Jaffa, Robert E.
Jaffe, David B.
Jaffe, Martha A.
*Jahren, Bjorn
Jain, Naresh C.
*James, David M.

- James, Donald G.

James, Gordon D.
Jameyson, Stephen
Janicki, Ryszard
*Jannsen, U.
Janowsky, Steven A.
*Janson, Svante

- Jantosciak, James S.

Jantzen, Jens Carsten
Janusz, Gerald J.
Janwa, Heeralal
Jara Martinez, Pascual
*Jarchow, Hans
Jareb, Anthony
Jarosz, Krzysztof
Jarvi, Pentti K.
*Jarvis, Trevor M.
Jawerth, Bjom

- Jaworowski, Jan W.
*Jayne, John W.
Jea, Hae-Pyng
$*$ Jefferies, Nigel
Jeffrey, Alan
Jekel, Solomon M.
Jelen, Jaroslaw
Jenck, Mike P.
Jennings, George A.
Jennings, Leslie Stephen
Jennings, Mary \mathbf{H}.
Jensen, Robert R.
Jerome, Carlos
Jerome, Joseph W.
Jerrard, Richard P.
*Jessup, B. J.
Jha, V.
Ji, Chuanshu
Jian, Alan S.
*Jimenez, Javier
Johannson, Klaus
*Johansson, Bo Ingvar
John, David J.
Johnsen, Eugene C.
Johnsen, Ronald L.
Johnson, Barry E.
Johnson, Ben
Johnson, Bradford W.
Johnson, Charles N.
*Johnson, Colonel, Jr.
Johnson, D. Randolph, Jr.
Johnson, David Copeland

Johnson, Donald G.
Johnson, Gene Douglas
*Johnson, Gerald W.
Johnson, James E.
Johnson, Jennifer M.
Johnson, Jon L.
Johnson, Joseph L., Jr.
Johnson, Kenneth Walter
*Johnson, Raymond L.
Johnson, Robert A.
Johnson, Robert L.
Johnson, Rodney W.
Johnson, Roy A.
Johnson, Theodore D.
Johnson, William B.
Johnston, Bernard L.
Johnston, Emest R.
Johnstone, P. T.
*Joichi, James T.
Jolly, Michael S.
*Jones, Charles H.
Jones, Christopher K. R. T.
Jones, Earl P.
Jones, F. Burton
Jones, Gordon C.
Jones, Harold T.
Jones, James P.
Jones, Vaughan F. R.
Jongen, Hubertus Th
*Jonker, Leo B.
Jonsdottir, Kristin Halla
Jonsson, Bjarni
Jordan, G. Samuel
Jordan, Kirk E.
José Manuel, González Rodriguez
Josephson, William Allen
*Josephy, R. Michael
*Joyner, W. David
Juberg, Richard K.
Jubran, Isa S.
Jun, Kil Woung
del Junco, Andres
Jung, II Bong
Jungck, Gerald F.
*Jungman, Gerard J.
*Jur, Barbara A.
Jurca, Dan
Justice, James H.
Jyoo, Yeong-Heum
Kaashoek, Marinus A.
Kadlecek, David
Kageorgis, Irena H.
Kagstrom, Bo T.
Kahn, Daniel S.
*Kahn, Donald W.
Kaijser, Thomas Olof
Kajiwara, Joji
*Kakas, Andonakis Constantinos
Kakihara, Yûichirô
Kakiichi, Yoshiaki
*Kalhoff, Franz B.
Kalish, Diana
Kallstrom, Anders
Kalmbach, Gudrun
Kalton, N. J.
*Kambayashi, T.
Kameda, Masumi
Kamin, Shoshana
Kaminker, Jerry
Kammler, David W.
Kamposek, Edward A.
Kanai, Masahiko
Kaneko, Tetsuo

Kanenobu, Taizo
Kangas, George W.
*Kani, Emst J.
Kaniuth, Eberhard
Kanjin, Yuichi
Kanner, Richard A.
Kanold, Hans-Joachim
Kanta, Matthias
Kaplan, Stanley
Kaplan, Wilfred
Karel, Martin Lewis
*Karlsson, Per W.
Karp, Richard M.
Karpishpan, Yakov
Karrass, Abraham
Karreman, Herman F.
Karrenberg, Frederick G.
Karrer, Guido
Kaschube, Paul August
Kasper, Brian J.
Kast, David H.
*Katavolos, Aristides
*Kato, Takao
Kato, Tosio
Katok, Svetlana R.
Katsura, Toshiyuki
Katz, Talbot Michael
Katz, Victor J.
Katzen, Dahn
Katznelson, Y.
Kauffman, Louis H.
Kauffman, Robert M
Kaufman, William E.
Kaup, Burchard
Kaup, David J.
Kaushanski, Anatole
*Kauthen, Jean-Paui
Kautzmann, Frank N., III
Kavanagh, John P.
Kawasaki, Tetsuro
Kay, David C.
Kay, Irvin W.
*Kay, Joseph A.
*Kay, Leslie D.
*Kazdan, Jerry L.
*Kearns, Jennifer Lee
Keeler, Stephen P.
Keenan, Daniel Macrae
Keeping, Anthony J.
Keet, Arnold Peter
$*$ Kegel, Otto H.
Kehowski, Walter A.
Keiding, Hans
Keinert, Fritz
Keisler, Michael
*Kelemen, James Allison Kelingos, John A.
Keller, Clayton W Keller, Michael J. Keller, Wilfrid

- Keliner, Wayne G. Keily, David Kelly, G. Maxwell Kelly, Jerry Stewart Kelly, John B. Kelly, John F. Kelly, Michael R. Kemp, Daniel Campbell Kempachiro, Ohashi Kemperman, J. H. B. Kenig, Carlos E. Kenison, Jeanne H . *Kenku, Monsur Akangbe Kennedy, Charles L.

Kennedy, Edward S.
Kennedy, Gary P.
Kennedy, Judy Anita
Kennedy, Stephen F.
Kenner, Paul M.
Kennison, John F.
Kenschaft, Patricia Clark
Kent, George A.
Kent, Steven L.
Kerckhoff, Steven P.
Kersting, Gary Steven
Kerzman, Norberto L.
*Keselman, Dmitry
Keshishyan, Joseph
Kesten, Harry
Kevorkian, Aram K.
Key, Eric Stephen
Khajah, H. G.
Khalifah, M. F.
Khalimsky, Efim Davidovich
Khuri, Soumaya Makdissi
Kido, Kazuo
Kiefer, James E
Kiel, J. Randall
Kierlanczyk, Marek
Kiessling, Michael K. H.
*Kilpeläinen, Tero
*Kim, Ann Chi
Kim, Byung Chun
Kim, Hong Jong
Kim, Ihn Sue
Kim , In Su
Kim, Moon W.

- Kim, Seyong

Kim, Soon-Kyu
Kim, Wan Se
Kim, Won Kyu
Kim, Woo Jong
Kim, Young-Kook
*Kime, Katherine A.
Kimmerle, Wolfgang Otto
Kimura, Tatsuo
Kindler, Philippe
King, Brian S.
King, James A.
King, L. Richardson
King, Larry
Kinkel, John F.
Kinukawa, Masakiti
Kirby, Robion C.
Kirch, Allan M.
Kirchbraber, Urs
Kirchherr, Walter W
Kirk, Joe E., Jr.
Kirkman. Ellen E
Kirley, Paul O.
Kirmser, P. G.
*Kirsch, Werner
Kirwan, William E., II
Kishi, Masanori
Kister, Jane
*Kitazaki, Kuniaki
Kiyek, K.
Kiyohara, Mineo
*Klainerman, Sergiu
Klassen, Eric P.
Klassen, John E.
Klatman, David S.
Kleiner, Alexander F., Jr.
Kleiner, Bruce A
Kleiner, Mark
Kleisli, H.
Kleitman, Daniel J.
Klingsberg, Paul R.
*Knapp, Anthony W
*Knapp, Wolfgang D.
*Knieper, Gerhard
Knight, Julia
Knight, Ronald A.
Knill, Ronald J.
Knoerr, Alan P
Knopfmacher, Arnold
Knopfmacher, John
Knopp, Marvin I.
Knorr, K. R. K.
Knowles, J. David
Knutson, Donald I
Ko, Ki Hyoung
Kobayashi, Shoshich
Kober, Wolfgang
*Kocatepe, Mefharet N .
Koch, Charles F.
Koch, Jeffrey W.
Kochman, Fred
Koditschek. Daniel Eliezar
Koditz, Helmut
Koehler, Anne B
Koh, Kwangil
Kohler, Peter
Kohn, Joseph J.
*Koivisto, Perti T.
Kojima, Sadayoshi
Kolaitis, Phokion G.
Kolasa, Lawrence A.
Kolchin, E. R.
Kolesar, R. J.
Kolibal, Joseph G.

- Kolitsch, Louis Worthy

Kolmus, Peter A.
*Kolsrud. Torbjorn Sigurd
Komatsu, Hikosaburo
Komatu, Yusaku
-Komjath, Peter
Komm, Horace
Komornicki, Wojciech
Komura, Takako
Kon, Mark Andrew
Kónig, Heinz J.
Konno, Yasuko
Konvisser, Marc W.
Koo, Ja-Kyung
Koo, Reginald
*Koornwinder, Tom H.
Koranyi, Adam
Koriyama, Akira

- Korman, Philip L.

Koschorke, Ulrich
Kosinski, Antoni A.
Koss, Walter E.

- Kostal, Joseph J.

Kostlan. Eric James
Kotani, Shinichi
Kotter, Manfred
Kotzen, Marshall J.
*Kourouniotis, Christos
Kovačević, Nataša
Kovarik, Zdislav V.
Kra, Irwin
Kraines, David P.
Krakowski, Fred
Kramer, Earl S.
Kramer, Linus K. H.
Kramer, Raymond F., Jr.
Kramer, Thomas R.
Kranzer, Herbert C.
Kraut, Gertrud L.
Kravitsky, Naftali
*Kreith, Kurt

Krener, Arthur J.
*Kreuzer, Edwin J.
*Kreuzman, Mary Joan
Krieg, Aloysius August
-Kristensen, Soren
Kristiansen, Gundorph K.
Krompart, Lucia Beth
Kronheimer, P. B.
Kronstein, Karl M.
Krophoiler, Peter Hendrikus
Krueger, Charles G.
Krumpholz, Gary R.
Kruskal, Joseph B.
Krystock, Robert L.
Ku , Hsu-Tung
*Kubacki, Krzysztof S.
Kubert, Daniel S.
Kucera, Thomas Glen
Kudla, Stephen S.
Kudo, Tatsuji
Kuenzi, Norbert J.
Kugler, Lawrence D.
Kuhlmann, Norbert
Kuhn, Stephen Walter
Kuhnel, Wolfgang
Kuiken, Kathryn
Kuku, A. O.
*Kulp, Daniel Teibi
Kumagai, Donna J.
Kumahara, Keisaku
Kumar, A. Anil
Kumasawa, Nin
Kumazawa, Toshihisa
Kumjian, Alexander
Kunimura, Dennis E.
*Kunisch, Karl K.
Kunle, Heinz
Kunze, Ray A.
*Kunzle, Hans Peter
Kuo, Hung-Ju
Kupferwasser, Marcelo
Kupka, Ivan
Kuranishi, Masatake
Kuroda, S. T.
Kurpita, Bohdan Ihor
Kurshan, Robert P.

- Kurtz, David C.
*Kurtz, Douglas S.
Kurtz, Stuart A.
*Kurtz, Thomas G.
Kurtzke, John F., Jr.
- Kusuda, Masaharu

Kusumah, Yaya Sukjaya
Kutzko, Philip C.
*Kuusalo, Tapani J.
Kuwabara, Ruishi
Kwak, Do Y.
Kwak, Nosup
Kwembe, Tor A.
*Kwok, Yu-Chun
Kwon, Kil H.
Kwong, Yui-Hoi Harris
*Kye, Scung-Hyeok Kymala, Earl E.
Kyner, Walter T.
Kyrouz, Thomas J.
Kyuno, Shoji
Labahn, George
*Labbe, Marcel Adrien Labelle, Jacques
Labouriau, Isabel Salgado
*Labrousse. Jean-Philippe
Labute, John P.
*Laca, Marcelo E.

Lacampagne, Carole B.
Lachance, Michael Anthony
Lachaud, Gilles
Lachlan, Alistair H.
Lachtman, Mark E.
Lackey, Thomas A.
Lada, Thomas J.
Ladas, Gerasimos
Laderman, Julian David
Laduke, Jeanne
Ladwig, John A.
*Lafferriere, Gerardo A.
Lafferty, John D.
-Laffey, Thomas J.
Lafontane, Jacques
Lagnese, John E.
*Lahr, Charles Dwight
Laidacker, Michael A.
Laine, Ilpo
Laird, Cameron B.
Laksov, Dan
Lam, Tsit-Yuen
Lamb, Colby A.
Lambert, Howard W.
Lambert, John Patrick

- Lambert, Robert J.
*Lami Dozo, Enrique José
*Lamoureux, Michael P.
Lampe, William A.
Lampert, David S.
Lampone, Leo W.
Lance, Timothy L
Lander, Felix I.
Landin. Joseph
*Landraitis, Charles K.
Landrock, Peter
*Landstad, Magnus B.
Landweber, Peter S.
Lanford, Oscar E., III
Lang, Serge
-Lang, William E.
Lange, Charles G.
*Lange, Ridgley
Langebartel, Ray G.
Langsam, Joseph A.
*Lansdon, Robert Steven
Lansing, Laura L.
Lanteri, Antonio
Lanza de Cristoforis, M.
Lapeyre, Bernard
*Lapic, Stephan K.
Lapidus, Arnold
Lapidus, Michel L.
Lappan, Peter A., Jr..
Lardy, Lawrence J.
*Laroco, Leonardo A., Jr.
Larrazabal, J. M.
Larson, David R.
Larson, Loren C.
Larson, Richard G.
Larson, Suzanne Lynne
LaSalle, Margaret M.
Lasater, Garland M., Jr.
Laska, Michael
Lassettre, Edwin R.
Lassey, Karen C.
Latch, Dana May
Lau, William G.
*Laubenbacher, Reinhard
Lauer, Mark D.
Laufer, Henry B.
Laumon, Gerard
Laurence, Peter Michael
Laurie, Cecelia

*Lauritzen, Steffen L.	Leon, Jeffrey S.	Lindström, Ingrid	Lueneburg, E.	Makepeace, Coline M.
*Lausch, Hans	*Leon, Steven J.	Lindstrom, Mikael	Luethy, Adrian	Makkai, Michael
Lavalle, Irving H.	Leonard, Henry S., Jr.	Ling, William Halstead	Luh, Jiang	Makovoz, Yuly
Law, Peter R.	Leonard, Philip A.	Lions, J. L.	Luk, Hing-Sun	Makowsky, Johann Andreas
*Lawlor, Gary R.	Leong, Yu Kiang	Lipkin, Leonard J.	Luke, Jonathan H. C.	Malafronte, Thomas A.
Lawniczak, Anna T.	Lepisto, Timo Valter	Lipshutz, Robert J.	Lum, Kai-Hing	Malcolm, Wilfred Gordon
Lawrence, John W.	Lepowsky, James I.	*Lisi, Micheile J.	*Lumpkin, Dennis L.	- Mallayya, Madhukar V.
Laws, Zane John	-Lerche, Kenneth D.	List, Stephen E.	Luna, Eduardo A.	Malliavin, Marie-Paule
Lawson, David F.	*Lerner, David E.	Litchfield, Kay P.	*Lundberg, Bruce N .	Malm, Dennis R.
Lawson, H. Blaine, Jr.	Lerner, Nicolas	Little, John B.	Lundell, Albert T.	Malon, David M.
Lax, Peter D.	Leschen, John G.	Little, Robert D.	Lundgren, J. R.	Maloof, Giles W.
Lax, Robert F .	Leslie, Joshua A.	*Litiler, Ron	Lustig, Martin	Maltese, George J.
Lay, Terry L.	Lesmes, Jaime	Littman, Walter	Luther, C. F.	Mamelak, Joseph S.
Layzer, Arthur	Letzer, Edward S.	Liu, Jin-Yuan	Luther, Norman Y.	-Mamourian, Ahmad
Lazarov, Connor	Letzer, Gail R.	Liu, Tsai-Sheng	Lutterodt, Clement Henry	Manca, Vincenzo
Lazarsfeld, Robert K .	Leung, Tat-Wing	*Liu, Wei-Nung	Lutzer, David J.	Mandell, Amold J.
Lazzari, Claudio	Levaro, Richard A.	Liu, Yung-Way	Luviseto, Maria Luisa	*Manders, Kenneth L.
Le, Dung Trang	Levatin, JoAnne Lee	Liulevicius, Arunas L.	Luxemburg, Wilhelmus A. J.	Manderscheid, David C.
-Lea, James D.	*Levie, Charles H.	Livingston, Albert E.	Lyberopoulos, Athanasios N.	*Mandhyan, Indur
Leach, Ernest B.	Levin, Gerson L.	Llave, Rafael de la	Lynch, Robert E.	Manfredi, Juan J.
*Leader, Solomon	Levin, Jacob J.	Llerena, Irene	Lynch, William C.	Maniatopoulou, Angeliki
Lebel, Jean E.	Levin, Richard G.	*Lloyd, Noel G.	Lyon, Herbert C.	Manitius, Andre Z.
Lebow, Arnold	Levine, Daniel S .	Lo, Tzee-Nan Kuo	Lyons, Carter G.	Manjarrez, Victor M.
*LeBrun, Claude R.	Levine, Harold I.	Lo, William	Lyons, Russell D.	Mann, Benjamin M.
Lee, Carl W.	Levine, Howard A.	Lobo-Pereira, Fernando M. F.	Lysko, Janusz M.	Mann-Nachbar, Pauline
Lee, Chung N .	Levine, Jack	*Lock, Patti Frazer	*Ma, Wenxin	*Manogue, Joseph F.
Lee, Chun-Nip	Levitt, Norman J.	Lockhart, Deborah Frank	Ma, Xiaoyun	Mantel, Jeffrey Hunt
*Lee, Dong Hoon	*Levitt, Tod S.	Lockhart, Jody Meyer	Macbeath, A. M.	*Mantell, Abraham S.
Lee, Do-Won	Levy, Azriel	Lockhart, Robert B.	MacCamy, Richard C.	Manzor, Nathalie C.
Lee, Felix	Levy, Gene	Loday, Jean-Louis	MacCluer, Barbara D.	Marathe, Kishore B.
Lee, In-Ja B.	*Levy, Joel	Loeb, Peter A.	Macdonald, I. G.	Marcantonio, Nicholas Anthony
Lee, Jeh Gwon	Levy, Lawtence S.	Loeser, Francois	MacDonnell, John J.	Marchand, Margaret O.
Lee, John M.	Levy, Paul	Loewner, Paul G.	Macgibbon, Brenda	Marchi, Ezio
Lee, Jong-Hyeon	Lewan, Douglas	*Lohe, Max A.	MacGregor, Thomas H.	Marchiafava, Stefano
Lee, Jyh-Hao	Lewin, Jacques	Lok, Walter L.	Machedon, Matei	Marcus, Brian Harry
Lee, Ke-Seung	Lewis, Adrian S.	Lolli, Gabriele	*Maciocia, Antony	Marcus, Leo G.
Lee, Kyung Bai	Lewis, Charles J.	Loncaric, Josip	Mack, John E.	Marcus, Morel Moshe
Lee, Myrna Pike	Lewis, Daniel Ralph	*Londen, Stig Olof	Mack, John Michael	Marcus, Steven I.
Lee, Peng-Yee	Lewis, David W.	London, David	*Mackey, D. Steven	Mardesic, Sibe
Lee, Richard T.	Lewis, L. Gaunce, Jr.	Long, David Darren	*Maclachlan, Colin	Margolis, Stuart W.
Lee, Ronnie	Lewis, R. P.	Long, John M.	*Mac Lane, Saunders	Margulies, William
Lee, Sang Bum	Lewis, Roger T.	Longbotham, Harold G.	MacNaughton, John S.	Marion, Jean Albert
Lee, Shiu Ing	Li, Bingxi	Longley, James Wildon	Macphail, Moray S.	$*$ Maritz, P.
Lee, Tack-Wang	Li, Chi-Kwong	*Longo, Roberto	Madan, Manohar L.	*Markatou, Penelope
*Lee, Tzong-Yow	*Li, Kin Y.	Longobardi, Patrizia	Madden, James Joseph	Markel, Scott A.
Lee, Wei	\bullet Li, Lige	-Loo, Joseph C.	Maddux, Roger D.	Markin, Jack T.
Lee, Will Y.	Li, Luen-Chau	Lopez, Amparo	Madison, Bernard L.	Markot, Robert P.
Lee, Young Whan	Li, Xin	López-Carmona, Antonio	Madsen, Ib	Markvorsen, Steen
Lefton, Lew E.	Liang, Joseph J.	Lopez-Escobar, Edgar G. K.	*Maeda, Fumi-Yuki	*Marley, Thomas J.
Leger, George F.	Liang, Zhongchao * dup zhlnxf	Lord, James M.	Maeda, Hironobu	Marlin, Joe A.
Leggett, Robert N., Jr.	Liardet, Pierre	Lord, Nicholas J.	Maeda, Michie	*Maroscia, Paolo
Lehman, R. Sherman	Libby, Richard Allan	-Lorentz, George G.	Maeder, Roman E.	Maroto, Frederick R.
Lehner, Joseph	Liberman, Zvie	*Lorentzen, Lisa	Magdal, Samuel	Marques, Carlos A.
Lehrer, Gustav I.	Lichnerowicz, Andre	Lorenz, Dan H.	Magenes, Enrico	Marques, Francisco
Lehrer-Ilamed, Y.	Lichtenbaum, Stephen	Lorenz, Martin	Magill, Kenneth D., Jr.	*M'arquez-Perez, Alberto
Lehtonen, Ari Taavi Einari	Lichtin, Benjamin L.	Loring, Terry A.	*Magill, Michael J. P.	Marr, Robert B.
*Leibowitz, Gerald M.	Liddell, Gerrard F.	*Loss, Michael P.	Magill, Saras S.	Marsden, Edwin L., Jr.
Leibowitz, Rochelle	Lieb, Elliott H.	Lotán, Moshé	Magliveras, Spyros S.	Marsh, Marcus M.
Leichtweiss, Kurt	Lieberman, Gary M.	Lou, You-Shi	Magmus, Ame	Marshall, David Imler
*Leighly, Joseph	*Liebers, Annegret C.	Loud, Warren S.	Magnuson, Alan William	Marsiliano, Judy
Leighton, Frank Thomson	*Lifschitz, Vladimir	Louhivaara, Ilppo Simo	Magruder, Richard B.	Martelli, Mario Umberto
Leinbach, L. Carl	Liggett, Thomas M.	Louton, Tom	*Magurn, Bruce A.	Martens, Henrik H.
Leipnik, Roy B.	Ligouras, Panagiotis K.	Lovell, John R.	- Maher, Mary Anne	Marti, Jurg T.
Leites, Dimitry A.	Ligozat, Gerard Yvon	Lowe, Peter G.	Mahoney, Anne	Martin, Corindo I.
Leith, Cecil E., Jr.	*Lim, Chjan	*Lubiw, Anna	Mahrous, Mohamed-Amin A.	Martin, Donald A.
Lelek, Andrzej	Lima, Asvald	\bullet Lucas, Thomas G.	Maier, Franz W.	Martin, E. Dale
Lemaire, Jean-Michel	Lin, Jindro	*Lucas, William F.	Maier, Mary A.	Martin, Gary A.
Lemei, Han	*Lin, Zongzhu	Luce, R. Duncan	*Maier, Robert S.	Martin, Geoffrey K.
*LeMesurier, Brenton John	*Linamegi, Edmonts G.	Luchins, Edith H.	*Mair, Bernard A.	Martin, George E.
Lenard, Andrew	Lindberg, John A., Jr.	Lucier, Bradiey J.	Mairhuber, John C.	Martin, George W.
*Lenard, Christopher T.	Lindemann, Willi	Ludden, Gerald D.	Maj, Mercede	Martin, James E.
-Lenhart, Suzanne Marie	Lindenstrauss, Joram	Lue, Huei-Shyong	- Majcher, Genowefa	Martin, John R.
Lennard, Christopher John	Linder, David W.	Luecking, Daniel H.	Makar-Limanov, L. G.	Martin, Nathaniel F. G.
Lenstra, H. W., Jt.	Lindsay, J. Martin	*Luehr, Charles P.	Makelainen, Tuulikki	*Martin, Nigel

Martindale, Wallace S., III
Martino, James R.
*Martinon, Antonio
Martin-Reyes, Francisco Javier
Martins, Joyce A.
*Martsinkovsky, Alex
Marumoto, Yoshihiko
Masani, Pesi R.
Maskit, Bernard
*Maslowski, Henryka
Massoni, Daniel
Masters, Harold U.
Masters, Thomas G.
Masuda, Kyuya

- Masunaga, David K.
*Matala-aho, Tapani
*Mata-Lorenzo, Luis E.
Matchett, Andrew J.
Mather, John Norman
Mathews, John H.
Mathis, Darrell L.
Mathis, Frank H.
Mathsen, Ronald M.
Matos, Joao P.
- Matsuda, Shigeo

Matsumoto, Yukio
Matsuoka, Yasushi
Matsushita, Yasuo
Matsuzawa, Jun-ichi
Matti, Joseph T.
Mattila, Perti
Mattson, Leroy T.
Mattuck, Arthur P.
Maugin, Gerard A.
Maule, Robert G.

- Maumary, Serge

Maurer, Donald E.
Mawata, Christopher P.
*Mawhin, Jean L.
Mawyer, Farley
Maxson, Carlton J.
Maxwell, James W.
May, J. Peter
May, Michael K., SJ
May, Warren L.
May, William
*Mayberry, John P.
Mayer, John Clyde
Mayer, Laura Louise
Mayer, Raymond A., Jr.
*Mayer-Wolf, Eddy
Mayfield, J. D.
Mayor, John R.
*Mayorga, Jose B.
Mayost, Daniel
Mazzeo, Rafe R.
McArthur, C. W.
McAsey, Michael J.
*McCabe, John H.
*McCabe, Terence W.
McCall, James D., Jr.
McCarthy, Charles A.
McCarthy, Donald J.
McCarthy, John
McCarthy, John David
*McCarty, George S.
McCarty, Kevin P.
McClanahan, Ray A.
McCleary, John H.
*McCleary, Stephen H. McClenahan, Maurice D.
McClure, James E.
McColm , Gregory Loren
McConnell, John C.

McConnell, Robert K.	Mercer, Richard
McCormick, Ferris E.	*Meredith, David B.
McCoy, Robert A.	Meril, Alex S.
*McCoy, Thomas L.	Merrien, Jean
McCray, Patrick D.	Merrit, John E.
McCrea, Michael M.	Merzbach, Uta C.
McCroan, Keith D.	Mess, Geoffrey
McCulloh, Leon R.	Metas, Nick
McCullough, Darryl	- Metzen, Gerhard
McCurdy, Sandra Catherine	Meuser, Diane Mae
McDaniel, Andrew	Meush, Anatol A.
*McDermott, Roland T.	*Mewing, Robert
McDonald, James Wade	- Meyer, Burnett C.
*McDonald, John N.	Meyer, Helmut
McDoniel, Douglas	Meyer, Herman
McDonough, Joseph Michael	Meyer, Kenneth R.
McDuff, Dusa	Meyer, Michael J.
McEachin, Raymond Vincent	Meyer, W. Weston
*McGarry, Dorothy	Meyerhoff, Robert
McGavran, Dennis R.	Meyerowitz, Aaron D.
- McGee, Boyd Jay	Meyers, Philip R.
McGehee, O. Carruth	*Mez, Hans-Christian
McGibbon, Charles A.	Miao, Lung-Chi
McGill, Paul	*Miatello, Roberto J.
McGill, Richard E.	Michael, Ernest A.
*McGovern, Richard J.	*Michael, Mark
McGrath, Gary L.	Michael, T. S.
McGraw, Michael J.	Michaelis, Walter J.
*McGuinness, Francis Oisín	Michaux, Christian
*McIntosh, Alan G. R.	de-Michele, Leonede
McKay, James H.	Michiaki, Watanabe
McKay, Thomas G.	- Michler, G.
*McKee, Thomas Glenn, Jr.	Michon, Gerard Ph
McKenzie, Ralph N.	*Michor, Peter
McKibben, William P.	Mickens, Ronald E.
McKinney, Richard L.	Mielke, Marvin V.
*McKinney, Richard L.	Migliore, Juan C.
McLaman, Timothy J.	Migliorini, Luca
McLaughlin, Jack E.	*Mihalik, Michael L.
McLaughlin, Joyce R.	Mihnea, Tatiana
McLeod, Edward B., Jr.	Mikami, Kentaro
McMillan, Daniel R., Jr.	Mikami, Toshio
McMillan, Evelyn R.	Mikolic-Torreira, Igor
McMillin, Ronald A.	Miles, Thomas J.
McMinn, Trevor J.	Milic, Natasa
McMullen, John R.	Milicic, Dragan
*McMullen, Peter	*Miller, Charles F., III
McMurtrie, Kenneth A.	Miller, Clark C.
McNeill, Robert B.	Miller, D. D.
McNerney, Gerald M.	Miller, Donald S.
*McNulty, George F.	Miller, Donald W.
*McNulty, Nieves Austria	Miller, Douglas E.
McPhail, Joseph G.	Miller, Edward
McShane, Janet M.	*Miller, Ellen Rammelkamp
Meacham, Robert C.	Miller, Haynes R.
Meakin, John C.	Miller, Hugh D. B.
*Meaney, Christopher	Miller, James S.
*Meek, David W.	Miller, John Boris
Meeker, Loren David	Miller, John G.
*Meier, David	- Miller, Kenneth S.
Meilan, Gerard	*Miller, Matthew
*Meister, Erhard V.	Miller, Michael J.
Meixner, Th	Miller, Nicholas S.
Mejlbo, Lars C.	*Miller, Richard Alan
- Mejza, S.	Miller, Victor S.
*Mekler, Alan H.	Miller, Willard, Jr.
Melendez, Enrique Asensio	Miller, William V.
Melin, Anders E.	Mills, Janet E.
Mellender, James W.	Mills, Stuart E.
Melrose, Richard B.	Millspaugh, Richard P.
Menconi, Mario	Milner, Eric C.
Mendoza, Gerardo A.	*Milner, Fabio A.
Menezes, Lucia S.	*Milutinovic, Uros
*Menninga, Nadine L.	Minac, Jan

McConnell, Robert K.
Col
Mchy, Robt A.
McCoy, Thomas L.

McCrea, Michael M
McCroan, Keith D.
McCulloh, Leon R .
McCullough, Darryl

McDaniel, Andrew
*McDermott, Roland T
McDonald, James Wade
McDonald, John N.
McDonough, Joseph Michael
McDuff, Dusa
McEachin, Raymond Vincent
Gary, Doromy
cGavran, Dennis R.
Boyd Jay
M,Gee, O. Carran
on, Charles A

信
, Richard E.
McGovern, Richard J.
Gram, Gary 1
*McGuinness, Francis Oisín
tosh, Alan G. R.
McKay, James H
McKay, Thomas G.
enn, Jr
McKenzie, Ralph N.
McKinney, Pichard L
Mokinar Ric
McLaman, Timothy J.
McLaughlin, Jack E.
McLaughlin, Joyce R.
cLeod, Edward B., Jr.
McMillan, Daniel R., Jr.
McMila, Evelyn R.
McMin, Ronald
McMullen, John R.
McMullen, Peter

McNeill, Robert B.
McNemey, Gerald M.
*McNulty, George F.
McNulty, Nieves Austria

Mc:

Meacham, Robert C.
Meakin, John C.
ney, Chistoph
Meek, David W.
Mear Lavid
Mila, David
Meilan, Gerard
.
Meixner, Th

- Mejza, S.
*Mekler, Alan H.

Melin, Anders E.
Mellender, James W.
Melrose, Richard B.
Mendoza, Gerardo A.
Menezes, Lucia S.
*Menninga, Nadine L.

Minc, Piotr
*Minemura, Katsuhiro
Mines, Ray
Ming, Ronald W.
*Mingarelli, Angelo B.
Min-oo, Maung
Mintel, Ernest J
Miraglio, Anthony C.
Mirchandaney, Arjan Sobhraj
Mirkovic, Ivan
Mirsky, Norman D.
Mishra, Sudhakara
Mislin, Guido
*Misra, A. K.
Mitchell, A. Richard
Mitchell, Alan R.
Mitchell, James C.
Mitchell, Josephine M.
Mitchell, Stephen Ames
Mitchell, William J.
Mitsuyuki, Ochiai
Mittenthal, Lothrop
Miura, Robert M.
Miyadera, İsao
Miyazaki, Ken-Ichi
Mizumoto, Hisao
Mizuno, Hirobumi
Mizutani, Tadayoshi
Mlitz, Rainer
*Modisett, Matthew C.
Modugno, Marco
Moen, Courtney H.
Moerdyk, Ieke
Moghaddam, Mohammad Reza

R.

Mohamed, I. J.
Mohapeloa, Khomo T. S.
Moite, Sally M.
Molino, Pierre
*Moller, Jesper M.
*Moller, Manfred H .
Moller, Raymond W.
*Monheit, Lilly A.
*Monk, J. Donald
Monks, Kenneth G.
Monna, Antonie F.
*Monro, Gordon P.
*Monteiro, Ray A.
*Montenegro Escovar, Carlos H .
Montgomery, Hugh L.

- Montgomery, M. Susan
*Montgomery, Philip R.
Montgomery, Richard W.
Montgomery, W. Duane
Montgomery-Smith, Stephen Jobn
Monticone, Leone C.
Montopoli, George J.
*Moody, Robert V.
Mooney, John J.
Mooningham, John W.
Moore, G. William
Moore, Hal G.
Moore, James Andrew
Moore, John C.
Moore, Lawrence C., Jr.
Moore, Robert Laurens

Moore, Robent T.
Moore, William E.
*Moose, Allan E.
Moran, William
*Morandi, Patrick J
Morelli, Robert M.
Moreman, Douglas
Moretz, Marjorie A.
Morey, Philip S., Jr.
Morgan, Christopher L
Morgan, Frank
Morgan, Jacqueline
Morgan, John W.
Moriah, Yoav
Morimoto, Akihiko
*Moriyon, Roberto
Moriey, Larry J.

- Mormul, Piotr
*Morrill, John E.
Morris, Alun O.
Morris, L. E.
Morris, Robert A.
Morrison, David R.
Morrison, lan L.
Morrison, John A.
*Morrison, Kent E.
Morrison, Sally D.
*Morrow, James R.
Morse, Burt J.
Morton, Keith W.
Morton, Margaret J.
Moschovakis, Joan Rand
Moschovakis. Yiannis N.
Moscovici, Henri
Moser, Jurgen K.
Moser, Lucy I.
Moser, William O. J.
Mosier, Ronald G.
Moskowitz, Bradley
Moss, Kenneth N.
Moss, Lawrence Stuart
Moss, William F., III
Mostow, George Daniel
*Motto, Michael H.
de Mottoni, Piero L.
Moy, Allen
Mozes, Shabar
*Muder, Douglas J.
Mueller, Bruno J. W.
Mueller, James R.
*Mulay, Shashikant B.
*Muldowney, James S.
*Müller, Andreas
Muller, George M.
Muller, Gert H.
Mullin, Albert A.
Mullins, Bemadette
Mullis, Robert Harvey, Jr.
Mumbr'u Rodriguez, Pere
Munemasa, Akihiro
Munkholm, Hans J.
Munkres, James R.
Muñoz, Miguel-C
Munoz-Porras, Jose M.
Murakami, Shingo
Murase, Nobuyuki
Murayama, John T.

KARL MENGER FUND CONTRIBUTION
Philip Marcos

*Murdoch, Brian H.	Neumann, Bernhard H.	Nyman, Philip D.	*Orponen, Pekka	Park, Sung Ho
Murphy, Donald P.	Neumann, Peter M.	*Nymann, James E.	*Orr, John L.	Park, Young Soo
Murphy, Grattan P.	Nevai, Paul	Oates-Williams, Sheila	Orr, Kent Edward	*Parker, Ellen Maycock
Murphy, Paul F.	*Nevanlinna, Olavi	Obaid, Samih A.	Orr, Richard J.	Parker, Elwood G.
Murphy, R. B.	Neveu, Jacques	Oberguggenberger, Michael B.	*Orr, Robert P.	Parker, Francis D.
Murphy, Thomas N.	Neville, Charles W.	O'Cairbre, Fiacre Ailbhe	Orsted, Bent	Parker, Thomas H.
Murphy, Timothy Sean	Newberger, Stuart M.	Ochanine, Serge	Ortiz-Quiñones, Carmen A.	Parks, Harold R.
Murray, G. Graham	Newlander, August, Jr.	Ocone, Daniel L.	Osbom, J. Marshall	Parks, Jean M.
Murre, Jacob P.	*Newman, Charles M.	O'Connell, James R., Jr.	Osborn, T. A.	Parrish, Daniel M.
Murty Ram M.	*Newstead, Peter E.	O'Connor, M. Lesley	Osborne, Mason S.	Parrott, David
*Musson, Ian M.	Newton, Paul K.	Odenthal, Charles J.	*Osborne, Michael Robert	Parry, William
Muto, Hideo	Ney, Peter E.	Odlyzko, Andrew M.	*Osborne, Richard P.	*Parshall, Brian J.
- Myers, Dale W.	Ng, Ho Kuen	*Odom, Linda C.	Osborne, William John D.	Parsons, Charles D.
Myerson, Gerald	*Ng, Kam-Chuen	Odoni, R. W. K.	Osgood, Charles F.	Parsons, John D.
*Mylvaganam, Kanaga Sabapathy	Ng , Tsz Yin Neville	Oehmke, Robert H.	Osofsky, Barbara L.	Partidge, Eric Dorsey
Nachman, Louis J.	Nguyen, Dung X.	*Oehmke, Theresa M.	Osondu, Kevin E.	Pascali, Dan D.
Nadel, Mark E.	*Nguyen, Hung Thac	Oeljeklaus, E.	Osserman, Robert	*Paschke, William L.
Nadell, Paul T.	*Nguyen-Huu-Bong	*Oertel, Ulrich	Ostedt, Gary W.	Pascual, Griselda
Nagai, Osamu	Ng Wong Hing, John Dilwyn	Ogawa, Hajimu	Ostermeyer, Georg Peter	Pascual-Gainza, Pere
Nagano, Tadashi	Nichols, Edward	Oguchi. Kunio	Osterwalder, Konrad	Pascuas, Daniel
Nagasaka, Kenji	Nichols, Eugene D.	Oh, Hi-Jun	Oswald, Urs	Pasini, Antonio
Nagase, Michihiro	Nichols, Janet Ellen Greenhouse	*O'Halloran, Joyce	Otal, Javier	Passman, Donald S.
Nagel, Bengt C. H.	Nichols, John W.	Ohta, Hanuto	Otermat, Scott C.	Passty, Gregory B.
Naiman, Daniel Q.	Nichols, Preston	Oikawa, Kotaro	Otero, Maria Carmen	*Patil, Dattatraya J.
Nakagawa, Kiyokazu	Nichols, Scott Mitchell	Okada, Ikutaro	Otsuki, Nobukazu	Patterson, David B.
Nakajima, Shoichi	*Nicholson, W. Keith	- Okamoto, Kiyosato	Otway, Thomas H.	Patterson, Nick J.
Nakamura, Masahiro	*NiChuív, Nóra	Okayasu, Takateru	*Oversteegen, Lex G.	Patterson, Reba
Nakamura, Yoshio	Nicol, Charles A.	Okoh, Frank	Overton, Steve Randall	*Patterson, Samuel E.
Nakanishi, Yasutaka	*Nicolas, Jean-Louis	*Oksendal, Bernt K.	*Ow, Wellington H .	Patton, Charles M.
Nakano, Kazumi	Nicolau, Monica	Okumura. Haruhiko	Owa, Shigeyoshi	*Paul, Jerome L.
Nakata, Masaomi	Niederhausen, Heinrich	Okuyama. Akihiro	Oxtoby, John C.	*Paulik, George F.
Nakata, Mie	Niedzwecki, G. P.	Olafsson, Gestur	Ozaki, Isao	Paulson, Clifford R.
Naldi, Giovanni	Niefield, Susan B.	Oldham, Frank Ernest	-Ozimkoski, Raymond E.	*Pavlicek, Glenn H.
Nam, Jung Wan	Nielsen, Lance	O'Leary, Robbin Lerch	Ozsvath, Istvan	Pawelke, Siegfried H. R.
Namba, Kanji	Niessner, Herbert	Olech, Czeslaw	Pacelli, Patricia Lynne	Payne, Lawrence E.
Namioka, Isaac	Nievergelt, Yves	Olesen, Dorte Marianne	Pacheco-Castelao, Jose M.	Payne, Stanley E.
- Nance, Anthony C.	Niino, Kiyoshi	Olesen, Mogens Norgaard	Packer, Judith A.	Pazy, Amnon J.
*Nandakumar, N. R.	Nijenhuis, Albert	Olin, Robert F.	- Pade, Offer	Peabody, Mary K.
Napier, Terrence J.	*Nillsen, Rodney V.	Olinick, Michael	Padma, Narasimhachari	*Pearce, Charles Edward Miller
*Narang, Kamal	Nirenberg, Louis	Olivares, Rene	- Page. Stanley S.	*Pearce, Kent
Narasimhan, Carolyn C.	Nishida, Takaaki	*Oliver, Robert A.	Pahuja, Sangeeta	Pearson, Ronald K.
Narayan, Sivaram K.	Nishimura, Yasuichiro	*Olivier, Reinhard M.	Pak, Jingyal	Pearson, Stephen C.
Narushima, Hiroshi	Nishiura, Togo	*Olsen, Martin	*Pakes, Anthony G.	*Peart, Paul B.
Nashed, M. Zuhair	Nisnevich, Yevsey A.	*OIson, Dwight M.	Palais, Robert A.	-Peck, Emily Mann
Nash-Williams, Crispin St J. A.	Nitecki, Zbigniew H.	Olson, Loren D.	Palanques-Mestre, August	Peck, Paul S.
Natalini, Roberto	Nitsche, Johannes C. C.	Olson, Mark N .	Pallara, Diego Massimo	Peck, Vincent Christopher
Nath, Radha G.	*Nixon, John Harold	Olson, Paul D.	Pallarés, Antonio Jose	Pedersen, Edward A.
Nathanson, Melvyn B.	Nkashama, Mubenga Ngandu	Olum, Paul	Pallaschke, Diethard	Pedersen, Franklin D.
Nation, James B.	*Noble, Christopher	Olver, Peter J.	Palled, Shivappa V.	Pedersen, Hemrik
Natsume, Toshikazu	Nobusawa, Nobuo	Olwell, David H.	*Pallottino, Stefano	Pedersen, Katherine L.
Navarro, Francisco J.	Noguchi, Hiroshi	O'Meara, Kevin C.	Palmer, Edgar M.	Peglar, George W.
Naveira, Antonio Martinez	Noguchì, Junjiro	Omori, Hideki	Palmer, John N.	- Peiffer, Barry L.
Nayar, Bhamini M.	Noh, Sunsook	*'Onder, Turgut M.	Palmer, Theodore W.	Peixoto, Mauricio M.
Ndakbo, Victor	Nold, Annett	O'Neil, Kevin A.	Pan, Ting K.	Peleg, Bezalel
Nduka, A.	Noll, Landon Curt	O'Neill, Anne F.	*Panchal, Champak D.	Peletier, Lambertus A.
Neggers, Joseph	Noonburg, Virginia A.	O'Neill, Barrett	Panchapagesan, T. V.	*Pelletier, Donald H.
*Neher, Erhard	Noor, Khalida Inayat	Ong, Boon-Hua	*Pankin, Mark D.	*Pemantle, Robin A.
Nehs, Robert M.	Norden, Jeffrey S.	Onishi, Hironori	Paoletti, Roberio	Pence, Dennis D.
*Nel, Louis D.	Nordgren, Eric A.	Ono, Takashi	*Paolucci, Michael J.	*Pengelley, David John
Nelligan, John D.	Norman, Peter	Ono, Yoshie	Papageorgiou, Nikolaos S.	Penico, Anthony J.
Nelson, Edward	Norris, Nancy Ellen	Onstott, Edward D.	Papangelou, Fredos	Penney, Carol W.
Nelson, Edward O.	Norton, Alec	Oodaira, Hiroshi	Papantonopoulou, Aigli Helen	Penney, David E.
Nelson, Larry D.	\bullet Norton-Odenthal, Brigitte E.	Oohashi, Tsunemichi	Pappas, Peter C.	Pennisten, John W.
- Nelson, Paul	Notarnicola, Filippo	*Ooms, Alfons I.	Pardee, Otway O'M	Pereira-Leite, Margarida M. A.
Nelson, Robert R.	*Novella, Joseph D.	Oono, Yoshitsugu	Pareja-Heredia, Diego	Perelli, Alberto
- Nelson, Roger B.	*Novikoff, Albert B.	*Opfer, Gerhard H.	Parish, James L.	Perez-Munuzuri, V.
Nelson, William	Novinger, William P.	*Oppelt, John A.	Parish, John Tilla, III	Pericás, Jordi
- Nemethi, Csaba	*Nowak, Werner Georg	Oppenheim, Joseph H.	Park, Chull	Perkel, Manley
Nesbitt, Cecil J.	Nowosad, Pedro	Oppenheimer, Seth F.	Park, Jae Keol	Perko, Lawrence M.
Nesin, Ali H.	Nucci, Maria-Clara	- Oprea, John F.	Park, Jong Geun	Perlis, Robert V.
Neubauer, Gerhard J.	*Nulton, James D.	Ordman, Edward T.	Park, Kwang S.	Perlman, Sanford
*Neuberger, John W.	Nussbaum, Roger D.	Orellana. Chacin Mauricio	*Park, Kyewon	Pernice, Michael
*Neubrander, Frank	Nusse, Helena E.	Orlik, Peter P.	Park, Kyoo-Hong	Perry, Peter Anton
Neugebauer, Christoph J.	$$ Nyikos, Peter J.	Omstein, Avraham J.	Park, Sehie	Perry, William L.

Persek, Stephen C.
*Persens, Jan
Pertica, Horacio N.
Peskin, Barbara R.
Peskin, Charles Samuel
Pesotan, Hoshang
Pestana, Dinis Duarte
Peters, James Vincent
Peters, John E.
Petersen, Bent E.
*Petersen, Carsten Lunde

- Petersen, Johannes A.

Petersen, Peter
Petersen, Troels
Peterson, Annalisa Marie
Peterson, Chariya P.
Peterson, Gary L.
Peterson, Peter Robert
Peterson, Wayne K.
Peterson, William C.
Petro, John W.
*Petryshyn, W. V.
*Pettet, Martin R.

- Petticrew, James W.

Petty, Clinton M.

- Petulante, Nelson R.

Peyerimhoff, Alexander
$*$ Pfiefer, Richard E.
Pflug, Peter
Phadke, Bhalchandra Balvant
Phanord, Dieudonne D.
Phelps, Robert R.
Phili, Christine Melle
*Phillips, G. Edric
Phillips, Ralph S.
Phillips, Richard E.
Philos, Christos G.
Piacentini, Giulia Maria
Piatetski-Shapiro, I.
Piazza, Barry L.
Picard, Rainer H.
Picavet, Gabriel
Piccinini, Renzo A.
Piccinni, Paolo
Pichaud, Joelle
Pichet, Claude
Pickel, Paul Frederick
Pickering, Douglas Arthur
*Piene, Ragni
Pierce, John Festus
Pierce, Richard S .
Pierluissi, Henry
Pietenpol, Jerry L.
Pietrowski, Alfred
Pigeon, Joseph G.
Pigozzi, Don L.
Pila, Jonathan S.
Pillay, Anand
Pimbley, George H., Jr.
Pinch, Richard Gilmour Eric
*Pinchover, Yehuda
Pinero, Alfredo
*Pinkham, Roger S. Pinkus, Allan M. Pinney, Karen R. Pinsky, Ross George Pipher, Jill C. Pippert, Raymond E. Pistone, Giovanni Pittie, Harsh V. Pitnauer, Franz Pitts, Andrew M. Pitts, David R. Plank, Donald L.

Plesken, Wilhelm
Pless, Vera S.
*Plotnick, Steven P.
*Plummer, Michael D.
Pohjanpelto, Petri Juha
Pohst, Michael E.
Pokorny, Martin Peter
-Polimeni, Albert D.
*Poliquin, René A.
Polking, John C.
Pollingher, Adolf
Pomeranz, Shirley B.
Pommerening, Klaus
Pons, Montserrat
Pool, James C. T.
*Poon, Yat Sun
Poorman, Alan G.
Popovich, Judith A.
Pop-Stojanovic, Zoran R.
Poris, Michael J.
*Poritz, Alan B.
*Porst, Hans E.
Port, Sidney C.
Porte, Jean
Porter, Richard D.
Porter, Willis B.
*Pöschel, Jürgen
Post, Karel A.
Poston, Tim
Potter, Walter M.
Potthoff, Jurgen K.
Potts, Donald H.
Pouzet, Maurice
Powell, Charles H.
*Power, Stephen Charles
Powers, Morris Walton
*Powers, Victoria Ann
Powls, Keith W.
*Praeger, Cheryl E.
Prakash, Deepak
Prakash, Nirmala
Pratt, Vaughan R.
*Preissendorfer, Manfred W.
*Pressley, A. N.
*Prest, Michael Y.
*Prestel, Alexander
Pribitkin, Wladimir de Azevedo
Price, Jack
Price, Roderick A.
Priddy, Stewart B.
Prieto, Carlos

- Prince, Deborah E.

Prince, Geoffrey Eamonn
Protas, David S.
Protopopescu, V.
Protter, Philip E.
Pruitt, William E.
Pruss, Jan
Prussner, Laird Drew
Pszczel, Mark B.
Pucci, Patrizia
Puerta, Fernando
Pukanszky, Lajos
Purnaras, Ioannis C.
Pursell, Lyle E.
Putnam, Alfred L.

- Putt, Harold L.
*Pym, John S.
Quarles, D. A., Jr.
Queen, Clifford S.
Quigley, Frank D.
Quillen, Charles C.
Quinn, John M.
Quint, Richard A.
*Qunibi, Iman Zakariya
Rabinovitch, Peter
Rabinowitz, Paul H.
*Rademacher, Hans-Bert
Radford, David E.
Radjabalipour, Mehdi
*Radjavi, Heydar
Radkowski, Alfred F.
Radzikowski, Pawel
Rahman, Mizanur
*Raisbeck, James G.
Rall, Louis B.
Ralph, Daniel
Ralph, William J.
Ralston, James V.
*Ramachandran, Doraiswamy
Ramakrishnan, Dinakar
Ramanujan, Melapalayam S.
Ramsay, Arlan B.
Ramsay, Bruce E.
Ranck, James B.
Range, R. Michael
*Rankin, R. A.
Rankin, Samuel Murray, III
Rankin, Stuart A.
Ransom, Adelbert W.
Rantapaa, Erik E.
*Rao, Vidhyanath Kajana
Ras, Antoni
Raskind, Wayne Mark
Rassias, Themistocles Michael
Ratcliff, Gail D. L.
Ratiu, Tudor Stefan
Ratliff, Louis J., Jr.
Ratz, Jurg J.
Rauch, Lawrence L.
Rauhauser, Ronald J.
Rauschenberg, David E.
Raussen, Martin
Rave, Wemer J.
Ravenel, Douglas C.
Rawlings, Don Paul
Rawsthome, Daniel A.
Rayko, John C.
*Read, Dwight
Reardon, Philip C.
*Rebarber, Richard L.
Recamán, Bemardo
*Rector, David L.
*Redfield, Robert H.
Redheffer, Raymond M.
Redmond, Don
*Redner, Richard A.
Reed, Coke Stevenson
*Reed, Ellen E.
Reed, Michael C.
Reed, Robert E.
Reedy, Christopher L.
Reese, Matthias F., III
Reese, Sylvester
Rehmann, Ulf
Reichaw, Meir
*Reichel, Lothar
Reid, Alan W.
Reid, James D.
*Reid, K. Brooks
Reilly, Norman Raymond
Reineck, James F.
Reinhardt, William N.
Reitberger, Heinrich
Reitwiesner, George W.
Rejto, Peter A.
Rembis, Frederick C.
Rempel, Richard S.

Remseth, Biorn
*Renault, Jean N.
Renegar, James M.
Renshaw, James H.
Resch, Richard I.
Restrepo, Guillermo
Retnam, P. Xavier Raja
Reyes, Francisco G.
Reyes, Miguel
Reynolds, Robert J.

- Rhee, Choon Jai

Rhodes, Frank
Riaza, Roman
Ribes, Luis
*Ricci, Fulvio
Ricci, Stephen J.
Rice, Henry G.
*Rich, Andrew
Richards, Franklin B.
Richards, Pamela C.
Richardson, Roger W., Jr.
Richert, Hans-Egon
Richert, Norman J.
Richman, Fred
Richmond, Lawrence B.
Richter, Guenther E.
*Richter, Marcel K.
Richter, Michael M.
Richter, Stefan
Richtmyer, Robert D.
Rickart, Charles E.
Rickey, V. Frederick
Rickman, B.
Riddle, Malcolm Lee
*Riedtmann, Christine
Rieffel, Marc A.
Rieger, Georg J.
\bullet Riemenschneider, Oswald
Rigdon, Robert D.
Riihentaus, Juhani
*Rijnks, H.
Rike, Thomas A.
Riley, Geoffrey William
Riney, John S.
Rinne, Dan C.
Rio, Jose
Rishel, Thomas W.
*Rising, William R.
Rivet, Roger
Rizvi, Jawaid H.
*Rizvi, Syed Mohammad Tariq
Rno, Jung-Sik
Roach, Michael D.
Robbin, Joel W.
Robbins, David A.
Robbins, David P.
Robbins, Leon C., Jr.
*Robbins, Neville
Roberts, Anne Drinkwater
Roberts, David Peter
Roberts, Howard M.
Roberts, Joel L.
Roberts, Joseph B.
Roberts, Lawrence Gordon
*Roberts, Leslie G.
Roberts, Mark
Roberts, Paul C.
Roberts, Richard C.
Robertson, Neil
Robertson, Neill
Robinson, Daniel A.
Robinson, Derek J. S.
Robinson, E. Arthur, Jr.
*Robinson, Eric E.
*Robinson, Helen Drummond
*Robinson, Karl H.
Robinson, Raphael M.
Robinson, Stanley A.
Robinson, Susan D.
-Robinson, Thomas J.
Robkin, Eugene E.
Rocha, Luiz F.
\bullet Rochon, Donna F.
Rockett, Andrew M.
Rod, David L.
*Roddy, Michael S.
Rodin, Yury L.
\bullet Rodino, Luigi
Rodriguez, Gerardo
Rodriguez, Gilbert L.
Rodriguez, Josephine Sears
Rodriguez, Mauro Efrain C.
Rodriguez, Sanjurjo Jose
Rodriguez-Anger, Rita V.
Rodriguez-Exposito, Jose
Roe, Robert P.
Roeder, David W.
*Roelants, Herman
Roels, Jacques Albert
Roezin, Sofyadi
*Rofman, Edmundo
Rogawski, Jonathan David
Rogers, Jack W., Jr.
*Roggenkamp, Klaus W.
Rohl, Frank D.
Rohrlich, David E.
Roitman, Judith
*Romanelli, S.
Romero Chesa, Carles
Romero-Fuster, Maria Carmen
Ronga, Felice L. L.
*Ronsse, Gregory S .
Ronveaux, Andre
*Rooney, Gerald E., Jr.
Rooney, Paul G.
Roos, Bernard W.
Roos, Guy
Roozemond, Leen
Rosales, Rodolfo
Rosati, Mario
Rosay, Jean-Pierre
Rose, David A.
Rose, N. J.
*Rosebrugh, Robert D.
Roseman, Joseph J.
Rosen, Kenneth H.
*Rosen, Lon M.
Rosen, Michael I.
Rosen, Ned Ira
Rosenberg, Burton J.
Rosenberg, Steven
Rosencrans, Steven I.
Rosenfeld, Gerald
Rosenfeld, Norman S
Rosenfeld, Ronald L.
Rosenstein, George M., Jr.
Rosenthal, Eric S.
Rosenthal, Erik J.
Rosenthal, Haskell P.
*Rosenthal, Kimmo I.
Rosenthal, Steven M.
Rosier, Ronald C.

- Ross, J. Andrew
*Ross, Martin
Ross, Robert G.
*Ross, Shepley L., II
Rossi, Guido A.
*Rossler, Otto E.

Rota, Gian-Carlo	Saitoh, Saburou	Scheinerman, Edward R.	Scott, Alwyn	Sharma, Ambikeshwar
Roth, James W.	*Sakai, Katsuro	*Schellhom, Jean-Pierre	*Scott, David R.	Sharma, P. L.
Roth, Richard L.	Sakai, Ryozi	Schempp, Walter	Scott, Peter	Sharp, Henry, Jr.
Roth, Rodney J.	Sakmann, Pascal	Scherkoske, Kenneth D.	Scott, Ridgway	Sharp, Jack Carroll, Jr.
Rothberger, Fritz	Sakuma, Motoyoshi	*Scheurle, Jurgen K.	Scott-Thomas, John F.	Sharp, James Dimitri
Rothenberg, Melvin G.	*Salamanca-Riba, Susana Alicia	Schibell, Stephen T.	Scourfield, Eira J.	Shatz, Stephen S.
Rothman, Neal J.	Salas, Hector N .	Schiller, John J.	*Scriba, Christoph J.	Shaw, Guy B.
Rothschild, Linda Preiss	Saldanha, Nicolau C.	Schindler, Christian	Scull, Sidney C.	Shaw, Howard Charles
*Rothstein, Mitchell J.	*Salehi, Habib	Schlesinger, Ernest C.	Seal, Charles Edwin	*Shaw, Kari E.
Rottenberg, Reuven R.	Salinas, Luis C.	Schlessinger, Michael	Sears, Michael	*Shaw, Sen-Yen
Rothaus, Christel	Sallee, G. Thomas	*Schlick, Tamar	Sedory, Stephen A.	Shawcroft, Paul H.
Rousseau, Cecil C.	Salles, Maurice	- Schlipf, John S.	Sedwick, Jackson L.	*Shearer, James W.
*Rouviére, Francois	*Sal Moslehian, Mohammad	Schmeelk, John F.	Seebach, J. Arthur	Shearer, Michael
Rouys, Robert L.	Saltiel, Leon	Schmetterer, Leopold K.	*Seeger, Andreas	Sheffer, Isador M.
Rowe, Niles W.	*Salvadori, Anna	Schmickler-Hirzebruch, Ulrike	*Segal, Sanford L.	Shell, Niel
*Rowen, Louis Halle	Samelson, Christopher L.	Schmid, Jurg	Segert, Jan	Shelly, Eugene P.
Royden, Halsey L.	Samelson, Hans	Schmidt, Harvey J., Jr.	- Sehgal, Virindra M.	Shemanske, Thomas R.
Royer, James Samuel	Sampson, Gary	Schmidt, Henry J., Jr.	Seid, Howard A.	Shen, Yuan-Yuan
Royster, Wimberly C.	Sanchez, David A.	*Schmidt, Klaus D.	*Seidel, Ernst	Shen, Zhong-Wei
*Rozovskï̈, Boris L.	*Sanchez, Juan Miguel	-Schmidt, Robert C.	Seidel, J. J.	*Shepard, Allen D.
Rub/'en, Flores Espinoza	Sanchez-Pedreno, Salvador	*Schmidt, Roland	Seiden, Esther	Shepherd, J. C.
Ruberman, Daniel	Sanders, B. L.	*Schmidt, Thomas A.	Seidman, Thomas I.	Shepherd-Barron, Nicholas I.
Rubin, Herman	Sanders, Robert W.	Schmidt, Wolfgang M.	Seifert, Benedict	Shepherdson, John C.
Rubin, Jean E.	*Sanderson, Brian J.	*Schmitt, Peter	Seifert, George	Sherburne, Frank C., Jr.
Rubin, Robert J.	Sanderson, Donald E.	Schneebeli, H. R.	- Seifter, Norbert	*Sheridan, Ian M.
Rubinstein, Joachim H.	Sandler, Hanna M.	Schnitzer, Franz J.	Seikkala, Seppo A.	Sherk, F. A.
*Ruby, Russel!	Sandomierski, Frank L.	Schnyder, Walter A.	*Seiler, Wolfgang K.	Sherlock, Philip Thomas
Rudin, Bernard D.	Sands, Bill	*Schochet, Steven H.	Sein, Hla Hla	Sherman, Bernard
Rudolph, Daniel Jay	Sands, Jonathan Winslow	Schoenfeld, Lowell	Seitz, Gary M.	Sherman, Gary J.
*Rudolph, Lee N.	Sangren, Ward C.	Schoenwaelder, Ulrich F.	Sekino, Kaoru	Sherr, Joseph S.
Ruelle, David P.	Sangwine-Yager, Jane Rosamund	Scholl, Anthony J.	Selby, Alan M.	*Sheu, Albert Jeu-Liang
Ruess, W.	Sant, Lino	*Scholz, E.	*Selby, Michael J. P.	*Sheu, Shey-Shiung
Ruh, Emst A.	Santalo, L. A.	Schommer, John I., Jr.	Seligman, George B.	Shibata, Masanori K.
Ruijsenaars, Simon Norbert	Santangelo, Anthony	Schon, Roif	Seligman, Mark L.	Shibuya, Yuji
*Ruiz, Alberto	Saper, Leslie David	Schonbek, Maria Elena	Seligson, Stuart A.	Shick, Paul L.
Ruiz, Ceferino	Saphar, Pierre David	Schoneborn, Heinz	Selmer, Ernst S.	- Shidfar, Abdullah
Rumbos, Adolfo J.	Sarafyan, Diran	*Schoof, Rene	Semmes, Stephen William	Shiffman, Bernard
*Rumbos, Beatriz Irma	Sarason, Donald E.	*Schottenloher, R. Martin	Semper, William J.	Shiflett, Ray C.
Rumely, Robert S.	*Samak, Peter Clive	Schraegle, Horst	Sempi, Carlo E.	Shifrin, Theodore
*Runckel, Hans-Joachim	*Sarraga, Ramon F.	Schram, Erin J.	Senechal, Lester J.	Shiga, Hiroshige
Rupert, Carl P.	Sarrat, Charles F.	Schrauf, Géza H.	Senechal, Marjorie	Shiga, Koji
*Ruscheweyh, Stephan	Satake, Ichiro	Schraut, K. C.	Senge, George	Shih, Kuang-Yen
Rush, David Eugene	Sato, Hiroki	Schreiber, Bert M.	Sengupta, Dipendra C.	Shih, Weishu
*Ruskai, M. Beth	Sato, Hiroshi	Schreiner, Erik A.	Seppala, Mika Kristian	Shillor, Meir
Russell, David Martin	Sato, Masako	Schreiner, Walter J.	Seppala-Holtzman, David	Shimamoto, Don H.
Russo, Bernard	Sattinger, David H.	Schroder, M.	*Sepulveda, Eric	Shimizuike, Yuzi
Russo, Paula A.	Saul, Kathryn B.	*Schroeck, Franklin E., Jr.	Serbyn, William D.	Shimura, Goro
*Rusu, Petre	Saut, Jean Claude	Schroeder, Annette M.	*Serfling, Robert J.	Shin, Dong Sun
Ruttimann, Gottfried T.	Savage, Carla D.	Schroeder, Carolyn L.	- Serrell, Robent	Shin, Jun Yong
Ruutelmann, Lembit Paul	Sawyer, Eric T.	Schroeder, Johann	*Sertoz, A. Sinan	Shin, Yong-Tae
Ruymgaart, Peter A.	Sawyer, Patrice	Schubert, David C., Jr.	Servatius, Brigitt	Shinohara, Yaichi
Ruzicka, John F.	Scalzo, Richard C.	Schuett, Wemer	Sesay, Mohamed W. I.	Shiohara, Hiroshi
Ryan, Michael D.	*Scanlon, Jane Cronin	*Schulte, Thomas R.	Sethuraman, J.	Shipp, R. Dale
Ryan, Peter M.	Scaramuzzi, Roberto	*Schultz, Phillip	Sevenster, Arjen	Shiratani, Katsumi
Ryan, Robert D.	Scarpi, Giambattista	*Schuize-Pillot, R.	Sever, Michael	*Shirley, Kevin L.
Ryan, Robert M.	Scarsini, Marco	*Schumacher, Georg B.	Sexauer, Norman E.	Sholander, Marlow C.
Rydeen, Clarence F.	Scedrov, Andre	Schumacher, Scott	Sgro, Joseph A.	Shorter, William Ivan
Ryeburn, David	Schaal, Wemer G. H.	Schumaker, John A.	Shabazz, Abdulalim A.	Shreve, David C.
Rykken, Charles John	*Schachermayer, W.	Schumitzky, Alan	Shafer, John	Shrikhande, Mohan Sharad
*Sabbagh, Gabriel	Schaefer, Paul T.	Schuster, Seymour	*Shaffer, Dorothy B.	Shub, Michael
Saccoman, John J.	Schaettler, Heinz M.	Schutt, Ingo	Shah, Kishor M.	Shubin, Tatiana
Sachs, Jeffrey R.	Schafer, Alice T.	Schwalbe, Daniel A.	Shahidi, Freydoon	Shubsda, Stanley R., Jr.
Sacks, Paul E.	Schafer, Richard D.	*Schwaller, Thomas Emmanuel	Shahin, Mazen Mohammed	Shuchat, Alan H.
*Sadofsky, Hal	Schäfke, R.	*Schwartz, Alan L.	*Shahriari, Shahriar	Shult, Emest E.
Sadosky, Cora S.	Schaper, James C.	Schwartz, Charies Freund	*Shahshahani, Mehrdad M.	Shutt, Elisie G.
*Sadun, Lorenzo A.	Schapiro, Philip J.	Schwartz, Karen L.	- Shaio, Jack	*Shwartz, Adam
Saeki, Sadahiro	Schaps, Malka Elisheva	Schwarz, Binyamin	Shannon, Gary P.	Sibner, Lesley M.
Saff, Edward B.	*Scharlau, Rudolf M. E.	*Schwarz, Friedhelm	Shao, David	Sibner, Robert J.
Sagan, Bruce E.	*Schattschneider, Doris W.	*Schweinsberg, Allen R.	Shapiro, Dawn M.	Sibony, Nessim
*Sagong, Seok	Schatzman, James Carl	*Schweitzer, Paul A.	Shapiro, George S.	Sichler, J.
*Sahab, Salem M.	Schauer, Richard L.	Schwietzer, Michael J.	*Shapiro, Jay A.	Sidney, Stuart J.
Saigo, Megumi	Schaumberger, Norman	Sclove, Stanley L.	Shapiro, Joel H.	Siebeneicher, Christian
Saito, Kichi-Suke	Scheffer, Vladimir	Scollo, Giuseppe	*Shapiro, Louis W.	*Siegel, David
-Saito, Shiroshi	*Scheim, David E.	Scoppola, Carlo M.	Shapiro, Victor L.	Siegel, Martha J.

Siemon, Helmut
Siemons, Johannes
Sigman, Karl
*Sigrist, Francois
Sigurdsson, Ragnar
Sikorav, Jean-Claude
Silberger, Allan J.
*Silvennoinen, Risto Pekka
Silver, Daniel S.
Silverman, Herb
Silverman, Joseph H.
Silverstein, Martin L.
Silvia, Evelyn Marie
*Simanca, Santiago R.
Sime, Patrick J.
*Simion, Rodica E.
Simo, Carles
Simon, Imre
*Simonis, Juriaan
*Simons, Gordon Edward
Simons, Lloyd D.
Simoson, Andrew James
*Sinclair, Allan M.
Sinclair, Annette
Sinclair, George Edward
Singer, William M.
Singerman, David
Singh, Harpreet
Singmaster, David B.
Sinkala, Zachariah
Sitaraman, Yegnaseshan
Sitia, Candido
Sivera, Rafael
Sizer, Walter S.
*Sjamaar, Reyer
*Sjolin, Per
*Skidmore, Alexandra S.
Skiffington, John Joseph, III
Skillings, John H.
Sklar, David
Skof, Fulvia
Skoug, David L.
Slack, Michael D.
Slack, Stephen
*Slade, Gordon D.
Slater, John B.
*Slattery, Michael
Sleeman, Brian D.
Sloane, Neil J. A.
Slook, Thomas H.
Sloss, James M.
*Slowikowski, Wojciech
Sluchin, Benny
Slusher, Tom J.
*Slye, John M.
Smale, Nat
Small, Lance W.
Small, Lynne Barnes
Smart, John R.
Smiley, Leonard
Smillie, John
Smith, David A.
*Smith, Dean E.
Smith, Dennis E.
Smith, F. R.
Smith, Frank D., Jr.
Smith, Fredrick L.
Smith, George Rowan
Smith, Gregory Holloway
Smith, James L.
*Smith, John Howard
Smith, John M.
*Smith, Kay E.
*Smith, Kennan T.

Smith, Penny D.
Smith, Richard Allan
Smith, Roger R.
Smith, Roy C. T.
Smith, S. Paul
-Smith, Spurgeon E.

- Smith, Stephen B.

Smith, Stephen B.
Smith, Trudy A.
Smith, Wayne Stewart
Smith, William K.
Smithies, Frank
Smolarski, Dennis C.
Smolinsky, Lawrence J.
Smoller, Joel A.
Smyth, William F.
Smythe, Neville F.
Snaith, Victor P.
Sneddon, Ian N.
Snover, James E.
Snyder, Richard D.
Snyder, William Merritt, Jr.
Soare, Robert I.
Sochacki, James S.
Soedirman, Massy
*Solakiewicz, Richard J.
*Soldate, Albert M., Jr.
*Solian, Alexandru
Solomon, Bruce
Solomon, Daniel L.
Solomon, David R.
Solomon, Jimmy \mathbf{L}.
Solomon, Louis
*Somer, Lawrence E.
*Soni, Kusum K.
Sonneborn, Lee M.
Sonner, Johann
Sontag, Alexia Henderson
*Sontz, Stephen Bruce

- Sopka, John J.

Sorbi, Andrea
Sorenson, John R.
Sormani, Michael J.
*Soto-Andrade, Jorge
Souganidis, Panagiotis E.
*Sourour, Ahmed Ramzi
Sousa Ramos, Jose
Southgate, Theodore J.
*Sowul, Jerome G.
Spaltenstein, Nicolas
Spanier, Jerome
Spatz, Ian N.
Spatzier, Ralf J.
Specht, Edward J.
Spector, Rene
Speh, Birgit
*Speiser, Robert
Spencer, Guilford L., II
Spencer, Philip H.
*Spingam, Jonathan
Spolter, Pari D.
Sprague, Alan P.

- Sprague, Thomas B.

Sprecher, David A.
Springer, Tonny A.
Spruck, Joel
Spurr, Michael J.
*Srinivasan, T. P.
Sritharan, Sivaguru
Srivastav, Ram P.
Stachniak, Zbigniew
Stackelberg, Olaf P.
Stafford, J. T.
-Stafford, Jonathan
*Stahel, Andreas
Stahl, Saul
Staicu, Vasile
Stakgold, Ivar
Stallmann, Friedemann W.
Stammbach, Urs
Stanford, William G.
Stanley, Lee James
Stanley, Richard P.
Stanley, Walter C.
Stanton, Charles S.
Stanton, Dennis W.
*Stanton, Nancy K.
Stanton, Robert J.

- Stark, Harold M.

Stark, Richard K.
Stark, Sheldon H., Jr.
*Starr, Edith N.
Staton, William A., III
Stearns, Joseph E., Jr.
Steele, Alfred T.
Steele, William F.
Steenbrink, J.
Stefani, Stefano T.
Stegenga, David A.
Steger, Arthur
Stegun, Irene A.
Stehle, S. P.
Steif, Jeffrey Edward
Stein, Michael C.
Stein, Sherman K.
Steinbart, Enid M.
Steinberg, Robert
*Steinberg, Stanly Lee
Steiner, Ray Phillip
Steinert, Leon A.
Steinhardt, Fritz
Steinhom, Charles I.
Steketee, Jakob A.
Stella, Sergio
Stengle, Gilbert A.
*Stenson, David L.
Stenson, Ellen M.
*Stenstrom, Bo
Stenzel, Matthew B.
Stephens, Staniey L.
Stepp, James Wilson
Sterba-Boatwright, Blair D.
Sterk, Henri J.
Sterm, Mark A.
Stern, Ronald J.
Sternberg, David
Stemfeld, Robert W.
Sterrett, Andrew, Jr.
Stevens, Glenn H.
Stevens, Jeffrey D.
Stevens, Randy S.
Stevens, T. Christine
Stewart, Ian
$*$ Stewart, James D.
*St George, Greg
Stiadle, Thomas A., Jr.
Stich, Wemer J. A.
Stiles, Joseph L.
Still, Charles Herbert
-Stob, Michael
Stock, John R.
Stocker, Harold Edward
Stockmeyer, Paul K.
Stoddard, James H.
Stokes, H. Christine B.
Stokes, Russell A.
Stokes, William G.
*Stolberg, Harold J.

Stoltenberg-Hansen, Viggo
Stoltzfus, Neal W.
Stolz, Stephan A.
*Stone, Charles J.
Stone, David A.
Stone, David R.
Stone, Lawrence D.
Storey, Albert J.
Stortz, Clarence B.
Stout, Edgar Lee
-Straley, Tina H.
Stralka, Albert R.
Strang, Gilbert
Strassen, Volker
Strate, Gordon J.
Straube, Emil J.
Straubing, Howard
*Straume, Eldar J.
*Strauss, Hubertus M. H.
*Stray, Ame
*Street, Ross H.
Strehl, Volker
Stretch, Christopher T.
Strikwerda, John C.
Stroeker, R. J.
Strogatz, Steven H.
Strohl, G. Ralph, Jr.
Strohmer, Gerhard O.
Strom, Arne
Stromberg, Marc R.
Stromquist, Walter R.
Stroth, Gernot H. W.
*Strouse, Elizabeth J.
*Strowe, Andrew

- Stroyan, K. D.
*Struppa, Daniele C.
Stuckwisch, Stephen E.
Stueckle, Samuel K.
*Stufken, John
Stuhler, Ulrich
Sturm, Teo
Sturnfield, James F.
*Styer, Robert A.
*Su, Francis Edward
*Su, Yuh-Ling
Sucheston, Louis
*Sudderth, William D.
*Sueiro-Bal, Juan
Sugawara, Masahiro
Sugiura, Mitsuo
*Sugiyama, Linda E.
Sugrue, Kevin P.
Sulanke, Robert A.
Sulis, William H.
Sullivan, Francis J.
Summers, John W.
*Sun, Hugo Sui-Hwan
Sun, Tao
Sun, Tien-Yu
Sundararaman, D.
Sundaresan, Kondagunta
Sunderland, Benjamin B., Jr.
Sung, Li-yeng
Sunley, Judith S.
Sunouchi, Haruo
Susskind, Perry D.
Sussmann, Hector J.
Sutherland, Scott
Sutner, Klaus
*Sutton, Michael D.
Sutton, Ronald F.
Suzuki, Haruo
Suzuki, Michio
*Suzuki, Naoyoshi
*Svensson, Erik J.
Sverdiove, Ronald
Swan, Richard G.
Swanberg, Katherine
Swanek, James J.
Swann, Howard S. G.
*Swanson, Richard C.
Swart, Pieter J.
Sweeney, Edward T.
Sweeney, Orval L.
Sweeney, William J.
*Sweet, W. Jay, Jr.
Swick, Kenneth E.
Swokowski, Earl W.
Sydora, Richard Dwayne
Sylvester, Donna L. G.
Symes, William W.
*Synowiec, John A.
Syrotiuk, Violet R.
Szabaga, Peter P.
Szabo, Manfred Egon
Szabo, Zoltan I.
Szczarba, Robert H.
Szczechla, Witold W.
Sze, Alexander
Szeto, Mabel
Sznitman, Alain-Sol
Szucs, Joseph M.
*Szulkin, Andrzej
*Szymanski, Andrzej
Tabak, Barbara L.
Taft, Earl J.
Taft, Margaret W.
Taiani, Geraldine
Taibleson, Mitchell H.
Taira, Kazuaki
Takahashi, Joji
Takahashi, Reiji
Takahasbi, Shuichi
Takeda, Ziro
Takenaka, Shigeo
Takesaki, Masamichi
Takeuchi, Kisao
Talmadge, Andrew V.
Tam, Bit-Shun
Tamura, Takayuki
Tan, Henry K.
*Tan, Soo Tang
Tanabe, Hiroki
Tanaka, Hisao
Tanaka, Katsumi
Tanaka, Minoru
Tanasi, Corrado
Tancreto, Daniel Louis
Tang, Alfred S.
Tang, Hwa Tsang
Tang, Tong Gao
*Tang, Wai-Shing
Tanimoto, Taffee T.
Tao, Yoko
Tapia, Joseph A.
*Tapia, Richard A.
Tardivel, Valerie
Tarres, Joan
Tartakoff, David S.
Tatevossian, Leon H.
*Tatsuo, Fuji'T'E
Tavantzis, John
Tavernini, Lucio
Taylor, Angus E.
Taylor, B. A.
*Taylor, Donald E.
Taylor, Lee A.
Taylor, Maria C.

Taylor, Michael E.
Taylor, S. James
Taylor, Thomas J. S.
Tee, Garry J.
Teirlinck, Luc M.
Teissier, Bemard
Teitelbaum, Jeremy T.
*Teixidor i Bigas, Montserrat
Teleman, Silviu
Temam, Roger
Temple, John Blake
Tenenbaum, Gerald
*Tenenblat, Keti
Tengstrand, Sven Anders
Tennant, Raymond Frederick
Tepedino A., Gaetano
Terng, Chuu-Lian
Terrier, Jean Marc
Terrin, Norma C.
Terwilliger, Joseph D.
Terzakis, Dimitris
*Testerman, Donna M.
Textorius, Bjom O. B.
Theodorescu, Radu
Theohari-Apostolidi, Theodora
Thibon, Jean-Yves
Thiele, Ernst-Jochen
*Thieme, Horst R.
*Tholen, Walter P.
Thoma, Elmar H.
Thomas, Clayton J.
Thomas, Janet D.
Thomas, Jean-Claude
Thomas, Lawrence E.
Thomas, Marc Phillip
Thomas, P. Emery
*Thomas, Robert S. D.
Thomason, Steven K.
Thomee, Vidar
*Thompson, Christopher L.
Thompson, David E.
*Thompson, Harold B.
Thompson, Jon H.
Thompson, Lee D.
Thompson, Mary E.
Thompson, Robert C.
*Thompson, Thomas M.
Thomson, Brian S.
*Thorpe, John A.
Thrash, Joe B.
Thron, Wolfgang J.
Throop, T .

- Thunder, Jeffrey L.

Thybo, Christian
Tiahrt, Chris A.
Tice, Allen P .
Tickamyer, Cecil H., II
Tierney, John A.
Tignol, Jean-Pierre
*Tijdeman, Robert
*Tilidetzke, Robert James
Tillmann, Heinz G.
Timm, Mathew T.
Tin, Saw
Tinsley, Frederick C.
Tintera, George D.
*Tischendorf, Michael
Tischler, David C.
Titi, Edriss Saleh
Tits, Jacques L.
Tjiok, Mouw-Ching
*Toby, Ellen H.
Todor, Fabian
Todorov, Todor D.

Tokoly, Loretta F.
Toll, Kathryn B.
Tolosa, Juan
Tolsted, Elmer
Tomari, Masataka
Tomczak-Jaegermann, N.
Tomer, Eugene R.
Tominaga, Hisao
Tomita, Yoshihito
Tomiyama, Jun
Tompson, R. N.
Tonne, Philip C.
*Top, Jaap
*Topsoe, Flemming
Torre, Nicolo Goodrich
Torrecillas, Blas
*Torres, Euclides
Torres, M.
*Torres de Squire, Maria L.
*Toth, Gabor
Tousley, Horace W.
Trace, Bruce S.
Tran, Hung Viet
*Trautman, David A.
*Travilian, Stevyn M.
Tremain, Janet C.
Tremmel, John J.
Trench, William F.
Tresser, Charles
Tretter, Marietta J.
Treuden, Michael L.
Treves, Francois
Treybig. L. Bruce
Trias Capella, Rosa M.
Trias Pairo, Joan
Tricerri, Franco
Trimble, Cynthia E.
Trimble, Selden Y.
Tripp, John C.
Trivieri, Lawrence A.
Tronel, Gerard
*Tronzo, Mark D.
Trotman, David J. A.
Trotter, Hale F.
*Trotter, P. G.
Troubetzkoy, Serge
Troyanov, Marc
*Trubek, Jeanne
-Trucano, Timothy Guy
Trudinger, Neil S.
Tsai, Tian-Yue
Tsai, Yen-Shung
Tsang, Man-Wah Philip
Tsao, Liang-Chi
Tsao, S. Lee
Tsimis, Emmanuel M.
*Tsinakis, Constantine
Tsuchikura, Tamotsu
*Tsui, Sze-Kai Jack
Tsujishita, Toru
Tsukada, Makoto
Tsukui, Yasuyuki
Tubbs, Robert Earl
Tucci, Ralph P.
*Tucker, Thomas W.
Tuckerman, Bryant
*Tudor, David W.
Tugue, Tosiyuki
Tuler, Randy
Tulipani, Sauro
Tull, Jack P.
*Tuncali, H. Murat
Tung, On-Ki A.
Tung, Shih-Hsiung
*Turett, J. Barry
Turgeon, Jean M.
Turiel, F. J.
Turisco, Joann Stephanie
Turquette, Atwell R.
Tutte, W. T.
Tuvell, Walter E.
Tymchatyn, Edward D.
Tysk, Johan
*Tzavaras, Athanassios E.

- Üehara, Hiroshi

Ueno, Kazushige
Ueno, Kenji
Ueno, Yoshiaki
Uhl, J. Jerry, Jr.
Uhlenbeck, Karen
Ukegawa, Takasaburo
Ullery, William D.

- Ullman, Daniel
*Ulmer, Douglas L.
Ulrich, Bernd
Umeda, Takato
Umeda, Tomio
Umegaki, Hisaharu
Unai, Yasushi Unai
Unal, Aynur
*Unal, Aysenur
Underwood, Douglas H.
*Underwood, Judith L.
Ungar, Abraham
Uno, Katsuhiro
Upatisringa, Visutdhi
Upmeier, Harald
Upton, John A. W.
Urbas, John
Urenko, John B.
Usmani, Riaz A.
-Uvah, Josaphat A.
Vagi, Stephen
Vaillancourt, Pierre
Vainio, Reino Johan
Valdivia-Gutierrez, Oscar
Valencia, Marta
*Valeriote, Matthew
Valle, Antonio
Vallée, Brigitte
Vallejo, Ernesto
Vamanamurthy, Mavina K.
*Vamos, Peter
Van Bendegem, Jean Paul
Van Casteren, Johannes A.
Van Den Ban, Erik P.
Van der Geer, Gerard
Van Der Kallen, Wilberd
van der Vaart, H. Robert
Van de Wetering, R. Lee
Van Dulst, Dick
*Van Emde Boas, Peter
Van Geemen, Bert
*Van Hemmen, J. Leo
Van Keppel, Marilyn J.
Van Rossum, Herman
van Rossum-Wijsmuller, Marijke
Van Stone, Kathryn L.
Van Strien, Sebastian J.
Van Veldhuizen, M.
Van Vleck, Fred S.
Van Vliet, Edward T.
Vanderbauwhede, A. L.
Vandervelde, Richard A.
Vandevelde, J. Richard
Vanniasegaram, Gnanalakshmi
Vaquie, Michel
Varadarajan, Kalathoor

Varadi, Ferenc
Varea, Vicente R.
Varela, Januario
Varon, David L.
Varouchas, Jean
Vasak, Janet Trzcinski
Vasconcelos, Wolmer V.

* Vaughn, James M., Jr.
*Vazquez, Juan L.
Vazquez-Abad, Felisa J.
Vega, Jose Manuel
Vega, Luis
*Vegas, Jose M.
Velasco-Hernandez, Jorge X.
Vella, David C.
Velleman, Daniel
Veloso, Eduardo M. S. S.
Venkataraman, Rangachari
Ventoso, Ramon
*Ventura, Belisario Augusto
Verde Star, Luis
Verma, Ghasi R.
Vermeer, Johannes
Vermes, Robert
Veron, Laurent
Verona, Andrei
Verona, Maria Elena
Vervaat, Wim
Vesentini, Edoardo
Vetter, Udo
*Vila-Freyer, Ricardo Francisco
Vilcius, Al R.
*Villamor, Enrique
*Vinacua, Alvaro
*Vincenzi, Antonio
Viola, Carlo
Vitale, Joseph N.
Vitale, Richard A.
Vitter, Albert L., III
*Vitulli, Marie A.
Viviente, Jose L.
Vodola, Paul A.
Vogan, David A., Jr.
Vogel, Thomas I.
Vogt, Dietmar
Vogtmann, Karen
Voiculescu, Dan
Volkmann, Bodo
Volkmer, Hans W.
Voreadous, Rodiani
Vukomanović, Djordje V.
Wada, Hidekazu
Wada, Junzo
Wada, Masaaki
Wada, Toshimasa
Wadhwa, Bhushan Lal
Wage, Michael L.
Wagener, Raymond
Wagner, Bruce Alan
Wagner, David H.
Wagner, Diane M.
Wagner, Gretchen B.
Wagoner, John B.
Wagreich, Philip D.
Wagstaff, Samuel S., Jr.
Wahl, Barbara J.
Wahlbin, Lars B.
Wainger, Stephen
- Waiveris, Charles F.

Wajda, Louis W.
Wajnryb, Bronislaw
Wakana, Kaoru
Wake, Robert Alan
*Wakimoto, Minoru

Walcher, Sebastian
Waldinger, Hermann V.
Wales, David B.
Walker, Homer F.
Walker, James D.
Walker, James S.
*Walker, James W.
*Walker, LeRoy H.
*Walker, Michael F.
Walker, Robert J.
Walker, Russell B.
Walkington, Noel J.
*Wall, Charles T. C.
Wall, G. E.
*Wallace, David A. R.
Wallace, William
Wallen, C. J.
Wallen, Lawrence J.
Walls, Gary L.
Walnut, David F.

- Walsh, John J.

Walsh, John Thomas
*Walster, G. William
Walter, Charles H.
Walter, Gilbert G.
Walter, John H.
*Walter, Martin E.
*Walter, Wolfgang L.
Walters, Peter
Walther, Bjom G.
Walther, Hans-Otto
*Waltien, Lys A.
*Waltmann, William L.
Walton, Jay R.
Waluś, Herwig
Wang, Cecilia Y.
Wang, Chunming
Wang, Hsiao-Lan
Wang, Hwai-Chiuan
Wang, Kunchuan
Wang, Stuart Sui-Sheng
Ward, Harold N.
Ward, John T.
*Ward, Josephine A.
*Ward, Lesley A.
Ware, Roger P .
Wareham, Mary Lynn E.
*Warhola, Gregory T.
Warne, Ronson J.
*Warner, C. Robert
Warner, Frank W., III
Warren, William E.
Warrinnier, Alfred E.
Washburn, Robert B., Jr.
Washington, Lawrence C.

- Wasserman, Arthur G.

Watanabe, Nobuya
Watanabe, Shoji
Watanabe, Tadashi
Watatani, Yasuo
-Waterhouse, William C.
Waterman, Daniel
Watkins, David S.
Watkins, Joseph C.
Watkins, Mark E.
Watnick, Richard M.
Watson, David K.
Watson, Martha F.
Watson, Rodwell B.
Watson, Stephen
Wayman, Arthur K.
Waymire, Edward C.
Weaver, Jeffrey Thomas
Weaver, John C.

Webb, David L.
Webb, Glenn F.
Wechsler, Martin T.
Wefelmeyer, Wolfgang
Wehausen, John V.
*Wehlau, David L.
Weibel, John L.
Weidmann, Joachim
Weidner, Jens
$*$ Weil, Clifford E.
Weiner, Joel L.
Weinitschke, Hubertus J.
Weinkam, James J.
Weinstein, Alan D.
Weinstein, Stephen T.
Weinzweig, Avrum I.
Weisgram, Thomas P.

- Weiss, David M.

Weiss, Guido L.
Weiss, Norman J.
Weiss, Randall H
Welch, Lloyd R.

- Wellinger, David

Wells, David M.
Wells, Raymond O., Jr.
Wells, Thomas L.
Welters, G. E.
Wend, Christopher Francis
Wendland, Wolfgang L.
Weng, Shu-Chin W.
Wenger, Ronald H.
Wente, Henry C.
Wermer, John
Werner, Dirk
Werner, Elisabeth
Werner, Peter
Werschulz, Arthur G.
Wessel, W. Roy
West, Dennis E.
West, James E.
Westbrook, Edwin P.
Western, D. W.
Westmacott, Ian C.
Westphal-Schmidt, U.
Westwood, Derek J.
*Wette, E. W.
Wetzel, Marion D.
Wheeler, John A.
Wheeler, Robert F.
*Whelan, E. A.
White, Arthur T. White, Brian Cabell White, Denis A. White, Neil L. White, Stevan Russell Whitehead, George W. Whitehead, Kathleen B. Whitman, Andrew P. Whitt, Lee B.

Whittall, Gerald B.
Whyburn, Kenneth G.
Whyburn, Lucille E.
Wicke, Howard H.
Wickerhauser, Mladen Victor
*Widlund, Olof B.
Widman, Kjell-Ove H.
Wiedemann, Douglas H.
Wiederhoid, Alan D.
Wiegand, Roger A.
Wiegand, Sylvia Margaret
Wiegmann, Klaus Werner
Wightman, Arthur S.
Wihstutz, Volker
Wiid, Frans G.
Wik, Anders
Wik, Ingemar L.
Wilce, Alexander Griffin
Wilcox, Calvin H.
*Wilcox, Theodore W.
Wildberger, Norman J.
Wilf, Herbert S.
-Williams, Charles W.
Williams, David E.
*Williams, Floyd L.
Williams, Francis D.
*Williams, Gareth
Williams, George K.
Williams, Gerald W., Jr.
Williams, Hugh M.
Williams, Joyce W.
Williams, Lawrence R.
-Williams, Mark
*Williams, Neil H.
*Williams, Peter David
Williams, Roselyn E.
Williams, Ruth J.
Williams, Susan Gayle
Williams, William O.
Williams, Wm A.
Williamson, Charles K.
Williamson, Susan
Willis, Linden G.
Wilson, Andrew Thomas
Wilson, Brad Lee
Wilson, David L.
*Wilson, James A.
Wilson, Leslie Charles
Wilson, Raj
Wilson, Raymond B.
Wilson, Richard
Wilson, Robert L.
Wilson, Robert Lee
Wingate, John W.
Winker, Steven K.
*Winkler, Jorg H.
Winslow, Dennis N.
Winston, Kenneth
Winter, Eva P.

Wirszup, Izaak
Wiskott, Bettina
Wismath, Shelly
Wissner, Heinz-Wolfgang
Withalm, Claudio
Witsch, K. J.
Witsenhausen, Hans S.
Witte, David Riley
Witten, Louis
Wittner, Ben Scott
Woerdeman, Hugo J.
Woess, Wolfgang
Woldar, Andrew J.
*Wolf, Michael
Wolff, Thomas H
Wolfram, Stephen
Wolfskill, John
Wolfson, Kenneth G.
*Wolfson, Paul R.
Wolk, Elliot S.
Wolkowicz, Gail S. K.
Wolpert, Scott A.
*Wolter, Franz-Erich
Womble, David E.
-Wong, Chock-You
Wong, Edward T.
Wong, Henri S. F.
Wong, James S. W.
Wong, Raymond Y.
Wong, Roman Wuon-Ching
Wong, Sherman K.
Wong, Shiu-Chun
Wong, Yim-Ming
Wong, Yung-Chow
Woo, Sung-Sik
Wood, Geoffrey V.
Wood, Jay A.
*Wood, John C.
Wood, John W.
Woodland, Janet C.
Woodrow, Robert Edward
*Woods, Alan R.
Woods, Jerry D.
Woods, Jimmie D.
Woods, R. Grant
Woyczynski, Wojbor A.
Wright, Charles R. B.
Wright, David G.
Wright, David J.
Wright, Jeffrey Allen
Wright, Jill D.
Wright, Marcus W.
Wright, Mary H.
*Wright, Otis C.
Wright, Steve J.
Wright, Thomas Perrin, Jr.
Wrobleski, William J.
Wschebor, Mario
$* W u$, Binghui

Wu, Ching-mu
Wu, Jiang-Ming
Wu, Lang-Fang
Wu, Qian
Wyman, Bostwick F.
Xavier, Frederico
Xenos, Philippos John
$\mathrm{Xu}, \mathrm{Jia} \mathrm{Gu}$
*Xue, Weimin
Yadin, Micha
*Yakowitz, Diana S.
*Yale, I. Keith
Yale, Paul B.
Yamada, Hirofumi
Yamada, Hiromichi
Yamada, Miyuki
Yamada, Toshihiko
Yamaguchi, Itaru
Yamaguchi, Ryuji
Yamaguchi, Seiichi
Yamaguti, Kiyosi
Yamakawa, Mineo
Yamaki, Hiroyoshi
Yamasaki, Masayuki
Yamawaki, Noriaki
Yanagawa, Minoru
Yang, Chung.Tao
Yang, Deane
*Yang, Jae-Hyun
Yang, Jeong Sheng
Yang, Kung-Wei
Yang, Nanping
Yang, Paul C.

* Yanik, Elizabeth G.
*Yanik, Joe
Yano, Kentaro
Yanowitch, Michael
Yaqub, Fawzi M.
Yaqub, Jill S.
Yasuda, Yutaka
Yasuhara, Ann
Yasuhara, Mitsuru
Yates, George R., Jr.
Yates, William L.
*Yau, Horug-Tzer
*Yau, Stephen S-T
* Yebra, Jose Luis Andres

Yeh, Rui Zong
Yen, David H. Y.
Yen, Shwu-Huey
*Yeyios, A. K.
Yhap, Ernesto Franklin
*Yinnone, Hananya
Yiu, Paul Y. H.
Yntema, Mary K.
Yocom, Kenneth L.
Yohe, J. Michael
Yokoi, Hideo
Yood, Bertram

Yoshida, Zensho
*Yoshino, Ken-ichi
Yoshino, Takashi
Yoshizawa, Taro
Young, Donald F.
Young, Sam Wayne
Young, YeeTing
Yu, Lucille Chieh
Yu, Xiaokang
Yuen, David S.
Yung, Tin-Gun
Yushkevich, A. A.
Zaballa, Ion
Zacharia, Dan
Zahreddine, Ziad
Zalcman, Lawrence A.
Zalik, R. A.
Zambrini, Jean-Claude
Zame, Alan
*Zame, William R.
Zamfirescu, Christina M.
Zangari, Gisele
Zanolin, Fabio
Zara, Francois
Zarantonello, Eduardo H.
*Zaremba, Leszek S.
Zaslavsky, Thomas
*Zeeman, Mary Lou
Zehnder, Eduard J.
Zerzan, John M.
Zezza, Pierluigi
Zhang, Jian
*Zhang, Jiaxiang John
Zhou, Yishao
Zia, Lee L.
*Ziegler, Guenter M.
Zierau, Roger Craig
Zierler, Neal

- Zilmer, Delbert E.
- Zimering, Shimshon

Zimmerman, Donald W.
Zimmermann, Benno
Zimmermann-Huisgen, Birge K.
Zink, Thomas F.
Zipse, Philip W.
Zitzler, Siham Braidi
Zivkovic, Dragan S.
Zizler, Vaclav
Zlatev, Zahari
Zo, Felipe J.
Zoch, Richmond T.
*Zoreda-Lozano, Juan J.
*Zotov, Natalia V.
Zsido, Laszlo
Zucker, Steven M.
Zuckerman, Paul R.
Zweibel, John A.
Zweifel, Paul F.
Anonymous (83)

Philadelphia, Pennsylvania Temple University, Philadelphia October 12-13

Second Announcement

The eight-hundred-and-sixty-eighth meeting of the American Mathematical Society will be held at Temple University, Philadelphia, Pennsylvania on Saturday and Sunday, October 12 and 13, 1991. All special sessions will held in the Temple University Center City Campus (TUCC) building located at 1616 Walnut Street in downtown Philadelphia. The invited addresses will be in room 501 of the TUCC building located at 1619 Walnut Street.

Invited Addresses

By invitation of the Eastern Section Program Committee, there will be four invited one-hour addresses. The speakers, their affiliations, and the titles of their talks where available are:

Abbas Bahri, Rutgers University, New Brunswick, Critical points at infinity in some variational problems.

Michael T. Anderson, SUNY at Stony Brook, Hyperbolization and metrics of least curvature on 3-manifolds.

Marjorie Senechal, Smith College, Tilings, quasicrystals, and Hilbert's 18th problem.

Panagiotis E. Souganidis, Brown University, Phase transitions and front propagation.

Special Sessions

By invitation of the same committee, there will be twelve special sessions of selected twenty-minute papers. The topics of these sessions, and the names and affiliations of the organizers, are as follows:

Recent progress in Ricci curvature and related topics, Michael T. Anderson, and Jeff Cheeger, NYU-Courant Institute.

Nonlinear partial differential equations, Abbas Bahri.
Modular forms, arithmetic algebraic geometry, Boris A. Datskovsky and Marvin I. Knopp, Temple University.

Surgery theory and singular spaces, James F. Davis, Indiana University at Bloomington, Ronnic Lee, Yale University, and Julius L. Shaneson, University of Pennsylvania.

Geometric analysis, Leon Ehrenpreis and Eric L. Grinberg, Temple University.

Extreme value theory, Janos Galambos, Temple University.

Applications of microlocal analysis to partial differential equations, Nicholas Hanges, CUNY, Herbert H. Lehman College, and A. Alexandrou Himonas, University of Notre Dame.

Variational problems in low dimensional geometry, Bruce A. Kleiner, University of Pennsylvania, and Robert B. Kusner, University of Massachusetts, Amherst.

Rings and representations, Martin Lorenz and Shari A. Prevost, Temple University.

Tilings, Doris Schattschneider, Moravian College, and Marjorie Senechal.

Phase transitions and/or front propagation, Halil Mete Soner, Carnegie Mellon University, and Panagiotis E. Souganidis.

Numerical linear algebra, Daniel B. Szyld, Temple University.

Abstracts for consideration for these sessions should have been submitted by the July 11, 1991 deadline. This deadline was previously published in the Calendar of AMS Meetings and Conferences and in the Invited Speakers and Special Sessions section of Notices.

Contributed Papers

There will also be sessions for contributed ten-minute papers. Abstracts for consideration of these sessions should have been submitted by the August 1, 1991 deadline previously published in the Calendar of AMS Meetings and Conferences. Late papers will not be accommodated.

Registration

The meeting registration desk will be located in room 5B of the TUCC building located at 1616 Walnut Street and will be open from 8:30 a.m. to $4: 30$ p.m. on Saturday, October 12, and from 8:00 a.m. to noon on Sunday, October 13. The registration fees are $\$ 30$ for members of the AMS, $\$ 45$ for nonmembers, and $\$ 10$ for students or unemployed mathematicians.

Petition Table

A petition table will be set up in the registration area. Additional information about petition tables can be found in a box in the Orono Mathfest meeting announcement in the April 1991 issue of Notices.

Accommodations

Rooms have been blocked for participants at the Holiday Inn - Center City and the Radisson Suite Hotel. Participants should make their own reservations and directly mention the AMS meeting to obtain the rates listed below. All rates are subject to a room tax. The AMS is not responsible for rate changes or the quality of the accommodations offered by these hotels/motels.

Holiday Inn - Center City (A five-minute walk from the TUCC)

1800 Market Street, Philadelphia, PA
Telephone: 215-561-7500
Deadline for reservations is September 11, 1991.

Flat rate $\$ 75 \quad$ Single or Double
Radisson Suite Hotel (approximately a 15 -minute walk frm TUCC)
18th Street and Benjamin Franklin Parkway, Philadelphia, PA

Telephone: 215-963-2222 (Participants should ask for Keith Rist)
Deadine for reservations is September 28, 1991.
Flat rate $\$ 80 \quad$ Single or Double

Food Service

A complete listing of local restaurants will be available at the meeting registration desk.

Travel and Local Information

Philadelphia International Airport is served by most major airlines. Taxi and limousine service can be arranged from the airport to the downtown area. A more detailed listing of available transportation and driving instructions will appear in the October issue of Notices.

Weather

Philadelphia tends to be rather dry in October. The average minimum temperature is $49^{\circ} \mathrm{F}$ and the average maximum temperature is $66^{\circ} \mathrm{F}$. Average total precipitation is 2.82 inches. Up to the minute weather information can be obtained by calling 215-627-5575.

W. Wistar Comfort

Associate Secretary
Middletown, Connecticut

e-MATH

e-MATH is a node on the INTERNET providing mathematicians with the ability to electronically communicate with a central information source. e-MATH offers a searchable, on-line Combined Membership List; a professional register for employment and postdoctoral opportunities; a repository of AMS-supported $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ software; the new Mathematical Reviews classification scheme and more.

To successfully connect to e-MATH, you need:

- A connection to an INTERNET host;
- VT100 connectivity in communications software and host operating system;
- Terminal tabs set at every eight columns.

To access e-MATH:
telnet e-math.ams.com
(or telnet 130.44.1.100). Login and password are e-math.

Fargo, North Dakota

North Dakota State University

October 25-26

Second Announcement

The eight-hundred-and-sixty-ninth meeting of the American Mathematical Society will be held at North Dakota State University, Fargo, North Dakota on Friday, October 25, and Saturday, October 26, 1991. All sessions will be held in the Memorial Union, the Family Life Center, and South Engineering buildings.

Invited Addresses

By invitation of the Central Section Program Committee, there will be four invited one-hour addresses. The speakers, their affiliations, and the titles of their talks where available are:

Ian D. Macdonald, Queen Mary College, title to be announced.

Harald Upmeier, University of Kansas, Operator theory and quantization in several complex variables.

Henry C. Wente, University of Toledo, Constant mean curvature immersions: A geometrical approach.

Sylvia M. Wiegand, University of Nebraska, Lincoln, Prime ideals and decompositions of modules.

Special Sessions

By invitation of the same committee, there will be twelve special sessions of selected twenty-minute papers. The topics of these sessions, and the names and affiliations of the organizers, are as follows:

Commutative algebra, Joseph P. Brennan, North Dakota State University, Fargo, and Sylvia M. Weigand.

Ergodic theory, Dogan Comez, North Dakota State University, Fargo.

The geometry of equilibrium configurations, Robert D. Gulliver, University of Minnesota, Minneapolis, and Henry C. Wente.

Algebraic geometry, David B. Jaffe, University of Nebraska, Lincoln.

Nonlinear wave equations, Satyanad Kichenassamy, University of Minnesota, Minneapolis.

Operations research, Kendall Nygard, North Dakota State University, Fargo. This special session has been cancelled.

Mathematical foundations of computer graphics, James H. Olsen, and Mark Pavicic, North Dakota State University, Fargo.

Nonselfadjoint operator algebras, Justin R. Peters III, and Warren R. Wogen, University of North Carolina, Chapel Hill.

Multidimensional complex analysis and operator theory, Norberto Salinas, University of Kansas, and Harald Upmeier.

Graph theory, Warren E. Shreve, North Dakota State University, Fargo.

Constrained approximation, theory and algorithms, Vasant A. Ubhaya, North Dakota State University, Fargo.

Lorentz transformations and spacetime geometry, Abraham Ungar, North Dakota State University, Fargo.

Abstracts for consideration for these sessions should have been submitted by the July 11, 1991 deadline. This deadline was previously published in the Calendar of AMS Meetings and Conferences and in the Invited Speakers and Special Sessions section of Notices.

Contributed Papers

There will also be sessions for contributed ten-minute papers. Abstracts for consideration of these sessions should have been submitted by the August 1, 1991 deadline previously published in the Calendar of AMS Late papers will not be accommodated.

Registration

The meeting registration desk will be located on the third floor of the Memorial Union building and will be open from 8:00 a.m. to 5:00 p.m. on Friday, October 25, and from 8:00 a.m. to noon on Saturday, October 26. The registration fees are $\$ 30$ for members of the AMS, $\$ 45$ for nonmembers, and $\$ 10$ for students or unemployed mathematicians.

Petition Table

A petition table will be set up in the registration area. Additional information about petition tables can be found in a box in the Orono Mathfest announcement in the April 1991 issue of Notices.

Accommodations

Rooms have been blocked for participants at the following hotels or motels in Fargo. Participants should make their own arrangements directly with the hotel of their choice and ask for the special AMS meeting rate. The Best WesternDoublewood Inn, Holiday Inn, and the Kelly Inn are located along I-29. The Radisson Inn and the Townhouse Inn are located in downtown Fargo. The AMS is not responsible for rate changes or the quality of the accommodations offered by these hotels/motels.

Radisson Inn ($\mathbf{1 . 5}$ miles from campus)

201 5th Street North, Fargo, ND 58102
Telephone: 219-232-3941 or Toll-free: 800-333-3333
Deadline for reservations is September 24, 1991.
Flat rate $\$ 54 \quad$ Single, Double, Triple
Restaurant, lounge/casino, weight room, and free van transportation from airport.

The Townhouse Inn (1.5 miles from campus)
 301 3rd Avenue North, Fargo, ND 58102
 Telephone: 701-232-8851 or Toll-free: 800-437-4682
 Deadline for reservations is September 25, 1991.

Flat rate $\$ 48 \quad$ Single, Double, Triple
Restaurant/lounge, indoor pool, sauna, and casino. Free airport transportation.

The Kelly Inn ($\mathbf{3}$ miles from campus)

3800 Main Avenue, Fargo, ND 58103
Telephone: 701-282-2143 or Toll-free: 800-635-3559
Deadline for reservations is October 3, 1991.
Single $\$ 35 \quad$ Double $\$ 40$
The Holiday Inn (4 miles from campus)
3803 13th Avenue South, Fargo, ND 58103
Telephone: 701-282-2700 or Toll-free: 800-465-4329
Deadline for reservations is October 3, 1991.
Flat rate $\$ 58 \quad$ One to four people Casino, indoor pool, and free airport transportation.
Best Western-Doublewood Inn (4 miles from campus) 3333 13th Avenue South, Fargo, ND 58103
Telephone: 701-235-3333 or Toll-free: 800-528-1234
Deadline for reservations is October 10, 1991.
Flat rate $\$ 59 \quad$ One to four people
Casino, indoor pool, and free airport transportation.

Food Service

The Atrium Dining Center, located in the basement of the NDSU Memorial Union, will be open for lunch on Friday and closed on Saturday. This facility receives very heavy
use and it is highly recommended that participants look to off-campus facilities for the noon meal on Friday and Saturday. An extensive list of restaurants will be available at the meeting registration desk.

Parking

Free parking will be available to participants in the Visitors Parking Lot and its overflow lots in the NDSU campus. These lots are located within close proximity to the Memorial Union. Permits will be available at the registration desk.

Travel and Local Information

Hector International Airport is served by Northwest (via Minneapolis) and United (via Denver/Sioux Falls) Airlines. The airport is immediately adjacent to the NDSU campus. The airport is served by Hertz, Avis, and National car rental agencies. Transportation from the airport to area hotels is best accomplished by hotel courtesy van. Participants should make inquiries of the hotel when making reservations. Taxi service is available from Doyle's Yellow Checker Cab (telephone 701-235-5535). A courtesy phone is available in the vestibule of the airport. The taxis will pick up passengers only if a reservation is made with the dispatcher.

DRIVING INSTRUCTIONS: Fargo is located at the intersection of I-29 and I-94 on the border of North Dakota and Minnesota. The university is located approximately two miles east of I-29 at the 12th Avenue North exit (Exit 66).

BY TRAIN: Daily train service to Fargo from Minneapolis/Chicago and Seattle/Portland is provided by Amtrak's Empire Builder.

Local transportation is provided by Doyle's Yellow Checker Cab and the Metropolitan Area Transit Bus Service. Bus schedules will be available at the registration desk.

Weather and Local Attractions

October weather in Fargo is extremely variable. The mean maximum temperature for October 25 th is $51^{\circ} \mathrm{F}$ with a standard deviation of 12 degrees while the mean minimum temperature is $31^{\circ} \mathrm{F}$ with a standard deviation of nine degrees. The mean precipitation for the month of October is 1.53 inches with a standard deviation of 1.18 inches. There is an average of one inch of snow. The wind for October averages thirteen miles per hour. Thanks are due to John Wheeler for providing this information.

Andy R. Magid
Associate Secretary
Norman, Oklahoma

Santa Barbara, California University of California at Santa Barbara November 9-10

Second Announcement

The eight-hundred-and-seventieth meeting of the American Mathematical Society (AMS) will be held at the University of California at Santa Barbara (UCSB) on Saturday, November 9, and Sunday, November 10, 1991. All special sessions will be held in Girvetz Hall and all invited addresses will be in the auditoriums of Girvetz and North Halls. This meeting will be held in conjunction with a meeting of the Southern California section of the Mathematical Association of America (MAA).

Invited Addresses

By invitation of the Western Section Program Committee, there will be three invited one-hour addresses. The speakers, their affiliations, and the titles of their talks where available are:

Daryl Cooper, University of California at Santa Barbara, title to be announced.

Richard S. Elam, University of California, Los Angeles, Invariants and the algebraic theory of quadratic forms.

Stanley J. Osher, University of California, Los Angeles, Numerically capturing shocks and fronts with applications to physics, engineering, geometry and image processing.

Special Sessions

By invitation of the same committee, there will be five special sessions of selected twenty-minute papers. The topics of these sessions, and the names and affiliations of the organizers, are as follows:

Low dimensional topology and negatively curved groups, Daryl Cooper and Darren Long, University of California at Santa Barbara.

Applied probability, Anant P. Godbole, Michigan Technological University, and Svetlozar T. Rachev, University of California at Santa Barbara.

Noncommutative homological algebra, Kenneth Goodearl, Birge Zimmermann Huisgen, and Julius M. Zelmanowitz, University of California at Santa Barbara.

Quadratic forms, William B. Jacob, University of California at Santa Barbara.

Knotting phenomena in the natural sciences, Kenneth C. Millett, University of California at Santa Barbara, and Louis Kauffman, University of Illinois at Chicago.

Abstracts for consideration for these sessions should have been submitted by the July 11, 1991 deadline. This
deadline was previously published in the Calendar of AMS Meetings and Conferences and in the Invited Speakers and Special Sessions section of Notices.

Contributed Papers

There will also be sessions for contributed ten-minute papers. Abstracts for consideration of these sessions should have been submitted by the August 1, 1991 deadline previously published in the Calendar of AMS Meetings and Conferences. Late papers will not be accommodated.

Activities of Other Organizations

The Southern California Section of the MAA will meet on Saturday, November 9. An invited address will be presented by Michael Freedman, University of California, San Diego. An MAA invited address will be presented by Paul Halmos, Santa Clara University, and a luncheon address will be presentd by Michael Townsend, Harvey Mudd College. In addition, there will be a panel discussion on issues related to the mathematical preparation of school teachers and a contrubuted paper session on Mathematical gems. A workshop, titled Computer technology in the classroom: College algebra to linear algebra, will be presented by David Lovelock, University of Arizona. There is a $\$ 10$ registration fee for this seminar. Registration is limited so reservations are encouraged and may be purchased in advance from Barbara Beechler, Department of Mathematics, Pitzer College, Claremont, CA 91711.

Of special interest to students, there will also be a panel discussion of recent graduates titled Is there life after the Bachelor's Degree? and a demonstration of the feats and techniques of mental mathematics by Arthur Benjamin, Harvey Mudd College.

Registration

The meeting registration desk will be located in room 1106 of Girvetz Hall The registration desk will be open from 8:30 a.m. to 2:00 p.m. on both Saturday and Sunday, November 9 and 10 . The registration fees are $\$ 30$ for both days for members of the AMS, $\$ 45$ for nonmembers, and $\$ 10$ for students or unemployed mathematicians. There is a special one-day fee of $\$ 15$ for MAA members for Saturday only.

Social Event

On Saturday, November 9, a noontime luncheon will be held for MAA and AMS participants at the University Center adjacent to the meeting site. The luncheon program will include a talk by Michael Townsend, Harvey Mudd College, entitled Look what they've done to my song, Ma!: The use of computers in mathematical proofs. Seating will be limited and participants are stongly urged to purchase tickets in advance from Barbara Beechler, Department of Mathematics, Pitzer College, Claremont, CA 91711. The cost of the luncheon is $\$ 8.00$ per person.

On Saturday evening, November 9, the Department of Mathematics (UCSB) will host a reception for all participants.

Petition Table

A petition table will be set up in the registration area. Additional information about petition tables can be found in a box in the Orono Mathfest meeting announcement in the April 1991 issue of Notices.

Accommodations

There are many motels in the Santa Barbara area, and those nearest UCSB are in Goleta on Calle Real. Calle Real is immediately adjacent (parallel) to Freeway 101. The room tax is included in all prices below. The AMS is not responsible for rate changes or the quality of the accommodations offered by these hotels/motels.

The following motels are located on State Street in Santa Barbara and are further from UCSB and the airport than those hotels located in the town of Goleta: Pepper Tree (805-687-5511); Sandman (805-687-2468); Sandpiper (805-687-5326); and El Prado Motor Inn located in downtwon Santa Barbara (805-966-0807).
Goleta Valley Inn
Fairview Avenue at Hollister, Goleta, CA
Telephone: 805-967-5591
Single $\$ 45 \quad$ Double $\$ 55$

Hampton Inn

5620 Calle Real, Goleta, CA
Telephone: 805-967-3200
Single $\$ 80 \quad$ Double $\$ 86$
The Airbus (surface transportation) to and from Los Angeles Airport (LAX) makes a stop at this hotel.

Holiday Inn

5650 Calle Real, Goleta, CA
Telephone: 805-964-6241
Single \$102 Double \$112
Motel 6
5897 Calle Real, Goleta, CA
Telephone: 805-964-3596
Single $\$ 40 \quad$ Double $\$ 45$

Pilot House Motel

Fairway Avenue, Goleta, CA
Telephone: 805-967-2336
Single $\$ 32 \quad$ Double $\$ 36$

Cathedral Oaks Lodge

4770 Calle Real, Goleta, CA
Telephone: 805-964-3511
Closest to UCSB (moderately long walking distance to campus).

$$
\text { Single } \$ 78 \quad \text { Double } \$ 88
$$

Food Service

The Deli, located in the University Center, sells freshly made sandwiches and light meal items and is open Saturday from 11:00 a.m. to $4: 00 \mathrm{p} . \mathrm{m}$. (closed on Sundays). The Country Store, also located in University Center, is a mini-market and coffee shop and is open Saturday and Sunday from 7:30 a.m. to $9: 00 \mathrm{p} . \mathrm{m}$. The Arbor, located northwest of the library, serves prepared sandwiches, soup, pizza, and assorted fast food items. The Arbor is open Saturday from 8:30 a.m. to 6:00 p.m. and Sunday from 9:30 a.m. to 11:00 p.m.

Santa Barbara has many excellent restaurants, but most are not within walking distance from the campus. Participants may want to walk to Isla Vista, the student ghetto west of the campus. The food served there is inexpensive and often interesting. It is suggested that participants walk over and see what's cooking.

Parking

The most convenient parking lots are lots 21 and 29, northwest and west respectively, of the Old Gym. In general, there is no charge to park on campus during weekends, but cars left on campus overnight may be towed. Several lots have signs indicating "Enforced 24 hours". These should be avoided unless a UC parking sticker is displayed on the windshield of the vehicle. The meeting dates coincide with Homecoming Weekend which may make on-campus parking more difficult than normal.

Travel and Local Information

The University of California at Santa Barbara is located eight miles northwest of Santa Barbara, near the town of Goleta, adjacent to Isla Vista, and near the Santa Barbara Airport. The airport is served by United, American, and several commuter airlines. The airport terminal is within easy taxi distance of the UCSB campus and the Goleta motels listed previously. Santa Barbara Airbus (805-964-7759) offers transportation between Los Angeles International Airport and Santa Barbara, Goleta, and Isla Vista (closest to campus for $\$ 52$ roundtrip).

When arriving by car from the north on 101, exit at Storke Road and make a right turn off the exit ramp. Follow

Storke Road approximately one mile to the end after a sharp left turn, it becomes El Colegio. Follow El Colegio another one-and-one half miles to the campus. Participants may obtain a campus map from the kiosk at the west entrance and may inquire about parking. When arriving by car from the south on 101, continue past Santa Barbara until the Highway 217 sign to UCSB is reached. The correct exit
from 101 is immediately after the exit for Patterson Avenue. Follow Ward Memorial Boulevard (this is also Highway 217) to the kiosk located at the east entrance to the campus.

Lance W. Small
Associate Secretary
La Jolla, California

MATHEMATICS OF RANDOM MEDIA

Werner E. Kohler - Benjamin S. White, Editors

Lectures in Applied Mathematics - Volume 27 •

In recent years, there has been remarkable growth in the mathematics of random media. The field has deep scientific and technological roots, as well as purely mathematical ones in the theory of stochastic processes. This collection of papers by leading researchers provides an overview of this rapidly developing field.

The papers were presented at the 1989 AMS-SIAM Summer Seminar in Applied Mathematics, held at Virginia Polytechnic Institute and State University in Blacksburg, Virginia. In addition to new results on stochastic differential equations and Markov processes, fields whose elegant mathematical techniques are of continuing value in application areas, the conference was organized around four themes:

Systems of interacting particles are normally viewed in connection with the fundamental problems of statistical mechanics, but have also been used to model diverse phenomena such as computer architectures and the spread of biological populations. Powerful mathematical techniques have been developed for their analysis, and a number of important systems are now well understood.

Random perturbations of dynamical systems have also been used extensively as models in physics, chemistry, biology, and engineering. Among the recent unifying mathematical developments is the theory of large deviations, which enables the accurate calculation of the probabilities of rare events. For these problems, approaches based on effective but formal perturbation techniques parallel rigorous mathematical approaches from probability theory and partial differential equations. The book includes representative papers from forefront research of both types.

Effective medium theory, otherwise known as the mathematical theory of homogenization, consists of techniques for predicting the macroscopic properties of materials from an understanding of their microstructures. For example, this theory is fundamental in the science of composites, where it is used for theoretical determination of electrical and mechanical properties. Furthermore, the inverse problem is potentially of great technological importance in the design of composite materials which have been optimized for some specific use.

Mathematical theories of the propagation of waves in random media have been used to understand phenomena as diverse as the twinkling of stars, the corruption of data in geophysical exploration, and the quantum mechanics of disordered solids. Especially effective methods now exist for waves in randomly stratified, one-dimensional media. A unifying theme is the mathematical phenomenon of localization, which occurs when a wave propagating into a random medium is attenuated exponentially with propagation distance, with the attenuation caused soley by the mechanism of random multiple scattering.

Because of the wide applicability of this field of research, this book would appeal to mathematicians, scientists, and engineers in a wide variety of areas, including probabilistic methods, the theory of disordered materials, systems of interacting particles, the design of materials, and dynamical systems driven by noise. In addition, graduate students and others will find this book useful as an overview of current research in random media.

1991 Mathematics Subject Classifications: 60, 82; 35 ISBN 0-8218-1133-9, LC 90-27442,
ISSN 0075-8485
499 pages (softcover), May 1991
Individual member \$110, List price \$184
Institutional member \$147,
To order please specify LAM/27NA

All prices subject to change. Free shipment by surface for air delivery, please add $\$ 6.50$ per title. Prepayment required. Order from American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI $02901-1571$, or call toll free $800-321-4 \mathrm{AMS}$ (3214267) in the continental U.S. and Canada to charge with Visa or MasterCard.

Invited Addresses and Special Sessions

Invited Addresses
 at AMS Meetings

The individuals listed below have accepted invitations to address the Society at the times and places indicated. For some meetings, the list of speakers is incomplete.

Philadelphia, PA, October 1991
Please refer to the second announcement elsewhere in this issue.

Fargo, ND, October 1991
Please refer to the second announcement elsewhere in this issue.

Santa Barbara, CA, November 1991
Please refer to the second announcement elsewhere in this issue.

Baltimore, MD, January 1992
Joan S. Birman (AMS-MAA) Simon A. Levin
William Browder
(Retiring Presidential Address)
Yakov Eliashberg
Michael E. Fisher
(Gibbs Lecture)
Robert P. Langlands
(Colloquium Lectures)

Springfield, MO, March 1992
Alexander Eremenko Peter J. Olver

Tuscaloosa, AL, March 1992
Jane M. Hawkins Serge Ochanine
Charles A. Micchelli Peter M. Winkler
Bethlehem, PA, April 1992
Jean-Luc Brylinski
Ingrid Daubechies
(AMS-MAA)
Marina Ratner
Walter Rudin
Michael Shearer
I. M. Singer (AMS-MAA)
J. Ernest Wilkins, Jr.
(AMS-MAA)

Cambridge, England, June 1992
(Joint meeting with the London Mathematical Society)
John M. Ball
Nigel J. Hitchin
Lawrence Craig Evans
Benedict H. Gross
Edward Witten

Dayton, OH, October 1992
Martin Golubitsky
Jonathan I. Hall
Louis H. Kauffman
J. T. Stafford

Invited addresses at Sectional Meetings are selected by the Section Program Committee, usually twelve to eighteen months in advance of a meeting. Members wishing to nominate candidates for invited addresses should send the relevant information to the Associate Secretary for the Section who will forward it to the Section Program Committee.

Organizers and Topics of Special Sessions

The list below contains all the information about Special Sessions at meetings of the Society available at the time this issue of Notices went to the printer. The section below entitled Information for Organizers describes the timetable for announcing the existence of Special Sessions.

October 1991 Meeting in Philadelphia, Pennsylvania Eastern Section
Associate Secretary: W. Wistar Comfort
Deadline for organizers: Expired
Deadline for consideration: Expired
Please refer to the second announcement elsewhere in this issue.

October 1991 Meeting in Fargo, North Dakota
 Central Section

Associate Secretary: Andy R. Magid
Deadline for organizers: Expired
Deadine for consideration: Expired
Please refer to the second announcement elsewhere in this issue.

November 1991 Meeting in Santa Barbara, California Western Section
 Associate Secretary: Lance W. Small
 Deadline for organizers: Expired
 Deadline for consideration: Expired

Please refer to the second announcement elsewhere in this issue.

January 1992 Meeting in Baltimore, Maryland
Associate Secretary: Lance W. Small
Deadine for organizers: Expired
Deadline for consideration: September 11, 1991

Bettye Anne Case, Preparing the college mathematics teachers of the future
John Dillon, Design and codes
Peter L. Duren and Boris Korenblum, Bergman spaces
Yakov Eliashberg, Symplectic topology
Florence D. Fasanelli, Victor J. Katz and David E. Rowe, History of mathematics
Naomi Fisher, Harvey B. Keynes and Philip D. Wagreich, Mathematics and education reform
B. A. Fusaro, Environmental mathematics

Frank Grosshans, Invariant theory
Paul D. Humke and Brian S. Thomson, Classical real analysis
Zhong Li and C.-C. Yang, Iteration and factorization of entire and meromorphic functions
Peter A. McCoy, Function theoretic methods in partial differential equations
M. Zuhair Nashed, Interaction of harmonic analysis, signal processing and computational mathematics
Jonathan M. Rosenberg, Index theory
Seenith Sivasundaram, Stability and control
W. Stephen Wilson, Algebraic topology

March 1992 Meeting in Tuscaloosa, Alabama

Southeastern Section
Associate Secretary: Joseph A. Cima
Deadline for organizers: Expired
Deadline for consideration: December 12, 1991
Richard C. Brown, Spectral theory of ordinary and partial differential operators
Jon M. Corson, Martyn Russell Dixon, Martin J. Evans and Frank Roehl, Infinite groups and group rings
Jane M. Hawkins, Karma Kajani, Karl Petersen and Mate Wierdl, Theory and dynamical systems
Alan Hopenwasser and Cecelia Laurie, Operator algebras
Vo Thanh Liem and Bruce S. Trace, Geometric topology
Kai-Ching Lin, Harmonic analysis and related topics
Charles A. Micchelli and R. A. Zalik, Title approximation theory: modern methods

March 1992 Meeting in Springfield, Missouri

 Central SectionAssociate Secretary: Andy R. Magid
Deadline for organizers: Expired
Deadline for consideration: December 12, 1991
Nakhle Habib Asmar and Stephen John Montgomery-Smith, Harmonic analysis
Margaret M. Bayer, Combinatorics and discrete geometry

Wenxiang Chen and Shou Chuan Hu, Partial differential equations
William J. Heinzer, Craig Hunecke and Kishor M. Shah, Commutative algebra
Luis Hernandez and Ernst A. Ruh, The geometry of connections
Jerry A. Johnson and Benny D. Evans, Microcomputers in the upper division and graduate curriculum
Niky Kamran and Peter J. Olver, Lie algebras, cohomology, and new applications to quantum mechanics
Ellen Maycock Parker, C^{*}-algebras and algebraic topology
Boris M. Schein, Semigroups
Vera B. Stanojevic, Fourier analysis
Xingping Sun and Xiang Min Yu, Approximation theory
David Wright, Automorphisms of affines spaces

April 1992 Meeting in Bethlehem, Pennsylvania

 Eastern SectionAssociate Secretary: W. Wistar Comfort Deadline for organizers: Expired Deadline for consideration: January 2, 1992
Edward F. Assmus, Jr. and Jennifer D. Key, Finite geometry Grahame Bennett, Jeffrey S. Connor and Andrew K. Snyder, Sequence spaces
Jean-Luc Brylinski and Dennis A. McLaughlin, Characteristic classes, algebraic K-theory and field theory
Donald M. Davis and Douglas C. Ravenel, Homotopy theory
David L. Johnson and Penny D. Smith, To be announced
Xiao-Song Lin, New invariants of links and 3-manifolds
Lee J. Stanley, Combinatorial set theory
Joseph E. Yukich, Stochastic processes

June 1992 Meeting in Cambridge, England
(Joint Meeting with the London Mathematical Society)
Associate Secretary: Robert M. Fossum Deadline for organizers: September 28, 1991 Deadline for consideration: February 7, 1992
Béla Bollobás and Ronald L. Graham, Probabilistic combinatorics
John Coates, Number theory
Richard D. James, The microstructure of crystals
W. B. Raymond Lickorish, Geometric topology in low dimensions
Jan Saxl, To be announced

> October 1992 Meeting in Dayton, Ohio Central Section
> Associate Secretary: Andy R. Magid
> Deadline for organizers: January 30, 1992
> Deadline for consideration: July 13, 1992

Joanne M. Dombrowski and Richard Mercer, Operator theory and operator algebras
Anthony B. Evans and Terry A. McKee, Combinatorics and graph theory
Louis H. Kauffman, Knots and topological quantum field theory

January 1993 Meeting in San Antonio, Texas
Associate Secretary: W. Wistar Comfort
Deadline for organizers: April 13, 1992
Deadline for consideration: September 17, 1992
March 1993 Meeting in Knoxville, Tennessee Southeastern Section
Associate Secretary: Joseph A. Cima
Deadline for organizers: June 26, 1992
Deadline for consideration: To be announced
April 1993 Meeting in Salt Lake City, Utah
Western Section
Associate Secretary: Lance W. Small
Deadline for organizers: July 9, 1992
Deadline for consideration: To be announced
May 1993 Meeting in DeKalb, Illinois
Central Section
Associate Secretary: Andy R. Magid
Deadline for organizers: August 21, 1992
Deadline for consideration: To be announced

August 1993 Meeting in Vancouver, British Columbia, Canada Associate Secretary: Lance W. Small
Deadline for organizers: November 11, 1992
Deadline for consideration: To be announced

October 1993 Meeting in College Station, Texas

Central Section
Associate Secretary: Andy R. Magid
Deadline for organizers: January 22, 1993
Deadline for consideration: To be announced
January 1994 Meeting in Cincinnati, Ohio
Associate Secretary: Joseph A. Cima
Deadline for organizers: April 5, 1993
Deadline for consideration: To be announced

March 1994 Meeting in Lexington, Kentucky Southeastern Section
Associate Secretary: Joseph A. Cima
Deadline for organizers: June 18, 1992
Deadline for consideration: To be announced
March 1994 Meeting in Manhattan, Kansas Central Section
Associate Secretary: Andy R. Magid
Deadline for organizers: June 25, 1993
Deadline for consideration: To be announced
January 1995 Meeting in Denver, Colorado
Associate Secretary: Andy R. Magid Deadline for organizers: April 20, 1994
Deadline for consideration: To be announced

March 1995 Meeting in Chicago, Illinoin Central Section
Associate Secretary: Andy R. Magid Deadline for organizers: June 24, 1994
Deadine for consideration: To be announced

January 1996 Meeting in Orlando, Florida
Associate Secretary: Lance W. Small
Deadline for organizers: April 12, 1995
Deadline for consideration: To be announced

Information for Organizers

Special Sessions at Annual and Summer Meetings are held under the supervision of the Program Committee for National Meetings (PCNM). They are administered by the Associate Secretary in charge of that meeting with staff assistance from the Meetings and Editorial Departments in the Society office in Providence.

According to the "Rules for Special Sessions" of the Society, Special Sessions are selected by the PCNM from a list of proposed Special Sessions in essentially the same manner as individuals are selected to give Invited Addresses. The number of Special Sessions at a Summer or Annual Meeting is limited. The algorithm that determines the number of Special Sessions allowed at a given meeting, while simple, is not repeated here, but can be found in "Rules for Special Sessions" on page 614 in the April 1988 issue of Notices.

Each person selected to give an Invited Address is invited to generate a Special Session, either by personally organizing one or by having a Special Session organized by others. Proposals to organize a Special Session are sometimes requested either by the PCNM or by the Associate Secretary. Other proposals to organize a Special Session may be submitted to the Associate Secretary in charge of that meeting (who is an ex-officio member of the committee and whose address may be found below). These proposals must be in the hands of the PCNM at least nine months prior to the meeting at which the Special Session is to be held in order that the committee may consider all the proposals for Special Sessions simultaneously. Proposals that are sent to the Providence office of the Society, to Notices, or directed to anyone other than the Associate Secretary will have to be forwarded and may not be received in time to be considered for acceptance.

It should be noted that Special Sessions must be announced in Notices in such a timely fashion that any member of the Society who so wishes may submit an abstract for consideration for presentation in the Special Session before the deadline for such consideration. This deadline is usually three weeks before the deadline for abstracts for the meeting in question.

Special Sessions are very effective at Sectional Meetings and can usually be accommodated. The processing of proposals for Special Sessions for Sectional Meetings is handled in essentially the same manner as for Annual and Summer Meetings by the Section Program Committee. Again, no Special Session at a Sectional Meeting may be approved so late that its announcement appears past the deadline after which members can no longer send abstracts for consideration for presentation in that Special Session.

The Society reserves the right of first refusal for the publication of proceedings of any Special Session. These proceedings appear in the book series Contemporary Mathematics.

More precise details concerning proposals for and organizing of Special Sessions may be found in the "Rules for Special Sessions" or may be obtained from any Associate Secretary.

Proposals for Special Sessions to the Associate Secretaries

The programs of Sectional Meetings are arranged by the Associate Secretary for the section in question: Western Section

Lance W. Small, Associate Secretary
Department of Mathematics
University of Califormia, San Diego
La Jolla, CA 92093
Electronic mail: g_small@math.ams.com
(Telephone 619-534-3590)
Central Section
Andy R. Magid, Associate Secretary
Department of Mathematics
University of Oklahoma
601 Elm PHSC 423
Norman, OK 73019
Electronic mail: g_magid@math.ams.com
(Telephone 405-325-6711)
Eastern Section
W. Wistar Comfort, Associate Secretary

Department of Mathematics
Wesleyan University
Middletown, CT 06457
Electronic mail: g_comfort@math.ams.com
(Telephone 203-347-9411)
Southeastern Section
Joseph A. Cima, Associate Secretary
Department of Mathematics
University of North Carolina, Chapel Hill
Chapel Hill, NC 27599-3902
Electronic mail: g_cima@math.ams.com
(Telephone 919-962-1050)
As a general rule, members who anticipate organizing Special Sessions at AMS meetings are advised to seek approval at least nine months prior to the scheduled date of the meeting. No Special Sessions can be approved too late to provide adequate advance notice to members who wish to participate.

Proposals for Special Sessions at the June 29-July 1, 1992, meeting in Cambridge, England, only, should be sent to Professor Fossum at the Department of Mathematics, University of Illinois, Urbana, IL 61801, Telephone: 217-2441741, Electronic mail: rmf@math.ams.com

Information for Speakers

A great many of the papers presented in Special Sessions at meetings of the Society are invited papers, but any member of the Society who wishes to do so may submit an abstract for consideration for presentation in a Special Session, provided it is received in Providence prior to the special early deadline announced above and in the announcements of the meeting at which the Special Session has been scheduled. Contributors should know that there is a limitation in size of a single Special Session, so that it is sometimes true that all places are filled by invitation. Papers not accepted for
a Special Session are considered as ten-minute contributed papers.

Abstracts of papers submitted for consideration for presentation at a Special Session must be received by the Providence office (Editorial Department, American Mathematical Society, P. O. Box 6248, Providence, RI 02940) by the special deadline for Special Sessions, which is usually three weeks earlier than the deadline for contributed papers for the same meeting. The Council has decreed that no paper, whether invited or contributed, may be listed in the program of a meeting of the Society unless an abstract of the paper has been received in Providence prior to the deadline.

Electronic submission of abstracts is available to those who use the TEX typesetting system. Requests to obtain the package of files may be sent electronically via the Internet to abs-request@math.ams.com. Requesting the files electronically will likely be the fastest and most convenient way, but users may also obtain the package on IBM or Macintosh diskettes, available free of charge by writing to: Electronic Abstracts, American Mathematical Society, Publications Division, P.O. Box 6248, Providence, RI 02940, USA. When requesting the abstracts package, users should be sure to specify whether they want the plain TEX, $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{TEX}$, or the LETEX package.

Number of Papers Presented Joint Authorship

Although an individual may present only one ten-minute contributed paper at a meeting, any combination of joint authorship may be accepted, provided no individual speaks more than once. An author can speak by invitation in more than one Special Session at the same meeting.

An individual may contribute only one abstract by title in any one issue of Abstracts, but joint authors are treated as a separate category. Thus, in addition to abstracts from two individual authors, one joint abstract by them may also be accepted for an issue.

Site Selection for Sectional Meetings

Sectional Meeting sites are recommended by the Associate Secretary for the Section and approved by the Committee of Associate Secretaries and Secretary. Recommendations are usually made eighteen to twenty-four months in advance. Host departments supply local information, ten to twelve rooms with overhead projectors for contributed paper sessions and Special Sessions, an auditorium with twin overhead projectors for invited addresses, and registration clerks. The Society partially reimburses for the rental of facilities and equipment, and for staffing the registration desk. Most host departments volunteer; to do so, or for more information, contact the Associate Secretary for the Section.

Joint Mathematics Meetings in Baltimore AMS Special Sessions and Contributed Papers MAA Contributed Papers

The Joint Mathematics Meetings in Baltimore, Maryland, will be held January 8-11 (Wednesday-Saturday), 1992. The first full announcement of the meetings will appear in the October 1991 issues of Notices and Focus. This preliminary announcement is made to encourage member participation and to provide lead time for submission of abstracts for consideration for presentation in AMS Special Sessions and for submission of abstracts for AMS and MAA Contributed Paper Sessions.

AMS Special Sessions

A list of Special Sessions for this meeting can be found in the Invited Addresses and Special Sessions section of this issue.

Most of the papers to be presented at these Special Sessions will be by invitation; however, anyone contributing an abstract for the meeting who feels that his or her paper would be particularly appropriate for one of these sessions should indicate this clearly on the abstract, and should submit it by September 11, 1991, three weeks earlier than the normal deadline for contributed papers, in order that it be considered for inclusion.

Abstracts should be prepared on the standard AMS form available from the AMS office in Providence or in departments of mathematics and should be sent to Abstracts, Editorial Department, American Mathematical Society, Post Office Box 6248, Providence, Rhode Island 02940. A charge of $\$ 16$ is imposed for retyping abstracts that are not in camera-ready form.

AMS Contributed Paper Sessions

Abstracts should be prepared on the standard AMS form available from the AMS office in Providence or in departments of mathematics and should be sent to Abstracts, Editorial Department, American Mathematical Society, Post Office Box 6248, Providence, Rhode Island 02940, so as to arrive by the abstract deadine of October 2, 1991. A charge of $\$ 16$ is imposed for retyping abstracts that are not in camera-ready form. Late papers will not be accepted.

MAA Contributed Papers

Contributed papers are being accepted on several topics in collegiate mathematics for presentation in contributed paper sessions at the meeting. A full description of each session appeared in the July/August Notices. The topics, organizers, their affiliations, addresses and proposed day(s) of the sessions are:

- Environmental mathematics, Ben A. Fusaro, Mathematical Sciences Department, Salisbury State University, Salisbury, MD 21801, Thursday morning and Saturday.
- Research in undergraduate education, Ed Dubinsky, Department of Mathematics, Purdue University, West Lafayette, IN 47907, Thursday and Friday morning.
- Mathematics placement testing programs: Their organization, administration and problems, Rose Hamm, Honors Program, College of Charleston, Charleston, SC 29424, and John G. Harvey, Department of Mathematics, University of Wisconsin, Madison, 480 Lincoln Drive, Madison, WI 53706, Wednesday.
- The "seven-into-four" problem, David H. Carlson, Mathematical Sciences Department, San Diego State University, San Diego, CA 92182, and Ann Watkins, California State University, Northridge. Mailing address: 5929 Elba Place, Woodland Hills, CA 91367, Wednesday and Friday afternoon.
- Innovations in mathematics courses for business, Wade Ellis, Jr., West Valley College, 14000 Fruitvale Avenue, Saratoga, CA 95070-5698, and Barbara A. Jur, Macomb Community College. Mailing address: 1450012 Mile Road, Apartment E219, Warren, MI 48093, Wednesday morning and Thursday afternoon.
- Actuarial mathematics education and research, James W. Daniel, University of Texas, Austin, RLM 8-100, Austin, TX 78712, Saturday. Sponsored by the Actuarial Faculty Forum
- A toolbox for liberal arts mathematics courses, John Emert and Kay Meeks, Department of Mathematical Sciences, Ball State University, Muncie, Indiana 473060490, Thursday afternoon and Friday morning.
- Mathematics for the health sciences, Henry C. Foehl, Philadelphia College of Pharmacy and Science, Woodland Avenue at 43rd Street, Philadelphia, PA 19104, Friday.
- Using spreadsheets to teach mathematics, Robert S. Smith, Department of Mathematics \& Statistics, Miami University, Oxford, OH 45056, Wednesday morning and Thursday afternoon.
Presentations are normally limited to ten minutes, although selected contributors may be given up to twenty minutes. Individuals wishing to submit papers for any of
these sessions should note the following NEW PROCEDURES: The name(s) and address(es) of the author(s) and a one-page summary of the paper should be sent directly to the organizer of the session by September 11. Proposals should NOT be sent to the MAA Washington office. The organizer will acknowledge receipt of the proposal; if the proposal is accepted, the organizer will send the contributor an abstract form. The abstract form must be sent to the AMS in Providence prior to October 2. In an effort to save time, if the contributor has access to the new MAA abstract form, the original can be sent to the AMS and a copy of it to the organizer along with the one-page summary. (If the paper is not accepted, the abstract will be omitted from the program.) The abstract will be photographically reproduced from the copy supplied by the author on the MAA abstract form, which is similar to the abstract forms used for contributed papers by the AMS. They will be published in an abstract journal, copies of which are available in the registration area during the meetings. The MAA abstract form may be requested from the AMS or the MAA.

Rooms where sessions of contributed papers will be held are equipped with an overhead projector and screen. Blackboards are not available. Persons having other equipment needs should contact the MAA Associate Secretary (Kenneth A. Ross, Department of Mathematics, University of Oregon, Eugene, OR 97403-1222; electronic mail: ross@math.uoregon.edu) as soon as possible, but in any case prior to November 9. Upon request, the following will be made available: one additional overhead projector/screen, 35 mm carousel slide projector, or $1 / 2^{\prime \prime}$ or $3 / 4^{\prime \prime}$ VHS video
cassette recorder with one color monitor.

Electronic Submission of AMS and MAA Abstracts

This service is available to those who use the TEX typesetting system and can be used for abstracts of papers to be presented at this meeting. Requests to obtain the package of files may be sent by electronic mail on the Internet to abs-request@math.ams.com. Requesting the files electronically will likely be the fastest and most convenient way, but users may also obtain the package on IBM or Macintosh diskettes, available free of charge by writing to: Secretary to Director of Publication, American Mathematical Society, Publications Division, P.O. Box 6248, Providence, RI 02940. When requesting the abstracts package, users should be sure to specify whether they want the plain TEX, $\mathcal{A} \mathcal{M} S$-TEX, or the LATEX package. Only abstracts should be sent to abs-submit@math.ams.com. Questions regarding an abstract should be addressed to absmisc@math.ams.com. Questions regarding meetings should be addressed to meet@math.ams.com.

Call for Papers-Poetry Reading

On Friday evening, January 10, from 7:00 p.m. to 10:00 p.m., the Humanistic Mathematics Network is sponsoring a poetry reading session. This session is being organized by JoAnne S. Growney, Bloomsburg University; Daniel Kalman, Aerospace Corporation; and Elena A. Marchisotto, California State University, Northridge. Please see the July/August Notices for details. The deadline for receipt of poems is October 31.

Summer Meetings in 1992

The year 1992 is a very special one for summer meetings. ICME-7, the International Congress for Mathematics Education, is meeting in Quebec City from August 16-23, 1992, at the Universite Laval. As in 1986, when the joint AMS-MAA summer meeting was canceled in deference to the ICM-86 in Berkeley, there will be no joint AMSMAA summer meeting in 1992. As in 1986, we hope that many mathematicians will attend the international congress instead. An article describing some of the particulars of this congress follows this announcement.

Since many MAA leaders will be attending ICME-7 in Quebec, the MAA Board of Governors will meet just prior to that meeting on Saturday, August 15, at the Hotel des Gouverneurs in Quebec City. In addition, several MAA committees will be meeting there during the period August 13-16. More information about ICME-7 will appear in subsequent issues of FOCUS and NOTICES.

The first joint meeting of the American Mathematical Society and the London Mathematical Society will be held in Cambridge, England, from June 29 to July 1,
1992. This meeting will be similar to usual AMS sectional meetings in that there will be five Invited Addresses and several Special Sessions. Professors John M. Ball, Lawrence Craig Evans, Benedict H. Gross, Nigel J. Hitchin, and Edward Witten have accepted invitations to deliver Invited Addresses. Several interesting Special Sessions are being organized and others are in the planning stage. An additional treat that participants in the meeting will enjoy will be the official opening ceremony of the Isaac Newton Institute for Mathematical Sciences. Further details about this meeting will appear in the NOTICES.

The Council of the AMS usually meets during the joint AMS-MAA summer meeting. A meeting of the Council will probably be necessary, but a time and place have not yet been determined.

Robert M. Fossum,
AMS Secretary Kenneth A. Ross, MAA Associate Secretary

The Seventh International Congress on Mathematical Education

The Canadian National Committee for ICME-7 is pleased to invite members of the American Mathematical Society to attend the Seventh International Congress on Mathematical Education in Québec City, Canada, August 17-23, 1992. ICME-7 will be held under the auspices of the International Mathematical Union, and under the sponsorship of the Canadian Mathematical Society, the Canadian Mathematics Education Study Group, the Council of Ministers of Education of Canada, the National Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, the Royal Society of Canada, the Ministére de l'Education du Québec and Université Laval.

Why should mathematicians attend ICME-7?

In the North American context, particularly the United States, the renewed debate over the state of mathematics education at all levels, from primary school to graduate school, has intensified in recent years. The problems identified and the solutions proposed are of direct concern to all members of the mathematical community, and not just those involved at the school level. The increased interest by university and other mathematicians in educational issues is a positive development, since the process of reform in mathematics education requires the involvement and cooperation of all interested groups. In this context, ICME-7 should be of interest to all constituencies within the mathematical community. Since the Congress is being held in North America for the first time since 1980, there is an added incentive and opportunity for many new delegates to attend from this continent. It should also be noted that previous ICME congresses have been well attended by members of the research mathematical community.

Previous Congresses

ICME-7 will be the seventh in a series of congresses held every four years. Previous congresses were:

```
ICME-1 1969 Lyons (France)
ICME-2 1972 Exeter (UK)
ICME-3 1976 Karlsruhe (Germany)
ICME-4 1980 Berkeley (USA)
ICME-5 1984 Adelaide (Australia)
ICME-6 1988 Budapest (Hungary)
```


The Venue

ICME-7 will be held on the campus of Université Laval in the city of Québec, capital of Québec Province. Founded in

1608, Québec City is one of the oldest cities in Canada and is the cradle of French civilization in North America. Situated on the majestic St. Lawrence River and the only walled city north of Mexico, Québec City has been recognized by UNESCO as a World Heritage site of special historical and cultural significance. Its unique charm and French character have made it one of the world's great tourist destinations.

Université Laval features modern facilities and services with most major buildings air-conditioned and fully accessible to the physically disabled. In addition to student residences, there are cafeterias and other eating facilities, recreational facilities, a convenience store, a bank, a post office, a bookstore, and plenty of parking space which is free for those living in university residences. Daycare will be available for children of Congress participants.

The Scientific Program

A congress such as ICME -7 provides a unique opportunity to learn about recent developments in mathematics education around the world and to be introduced to innovations and recent research on the teaching and learning of mathematics at all levels. The scientific program will be structured to allow plenty of choice while encouraging every participant to spend some time in interactive situations. For those with special interests, rooms will be made available at specified times so that participants can take the initiative in convening informal sessions.

The program will cover all of the major areas of mathematics education at all levels in an effort to meet the diverse needs and interests of the 3,500 expected participants. Activities will include plenary talks, working groups, lectures, topic groups, study groups, workshops, national presentations, short presentations, films, and a Miniconference on calculators and computers. Exhibitions of textbooks, software, and other types of educational materials are also planned. English and French will be the official languages of the Congress. However, it is anticipated that most sessions will be conducted in English.
(a) Plenary Sessions

In addition to the opening and closing ceremonies, plenary addresses will be presented by Benoit Mandelbrot (IBM, USA), Geoffrey Howson (University of Southampton, UK), and Colette Laborde (Université de Grenoble, France).

(b) Working Groups

The central feature of the scientific program is a set of 23 Working Groups each designed to involve participants
in the active study of a selected aspect of mathematics education and to provide an international up-to-date context for study of that aspect. Each Working Group will meet in four 90 -minute sessions. Each participant will be asked to select one group in which to work. Working Groups of interest to mathematicians include:
-Students' difficulties in calculus
-Theories of learning mathematics
-Pre-service and in-service teacher education
-Language and mathematics
-Innovative assessment in mathematics

- The place of algebra in secondary and tertiary education
-Mathematical modeling in the classroom
-Undergraduate mathematics programs for different groups of students
-Technology in the service of the mathematics curriculum
-The public image of mathematics and mathematicians (c) Lectures

Approximately forty lectures will be presented on a variety of mathematical, pedagogical and educational subjects, including:
-Recent Developments in Discrete Mathematics
-Geometry as an Element in General Education
-Diagnostic Teaching
-Professional Development of Teachers
-New Trends in the Philosophy of Mathematics

- 'Mathematics for Some' or 'Mathematics for All'
-Intuition and Logic
-Statistics in the Elementary School
-Reading and Writing in the Mathematics Classroom
Speakers include: A. D. Alexandrov (Moscow), Philip Davis (Providence), Miguel de Guzmán (Madrid), Ronald Graham (Murray Hill), Bernard Hodgson (Québec), Maria Klawe (Vancouver), Uri Treisman (Berkeley), Zalman Usiskin (Chicago) and Jack van Lint (Eindhoven).

(d) Topic Groups

A number of Topic Groups, each meeting for two $90-$ minute sessions, are planned. Each participant may select a Topic Group of interest. Topic Groups that may be of particular interest to AMS members include:
-Mathematics competitions
-The social context of mathematics education
-The theory and practice of mathematical proof

- Mathematical games and puzzles
-Statistics in secondary and tertiary education
(e) Short presentations

Provision has been made for short presentations in the form of posters, or exceptionally, videotapes or computer software. Anyone interested in making a short presentation,
should consult the Congress Second Announcement for relevant information.

(f) Study Groups

ICMI has three official International Study Groups: PME (Psychology of Mathematics Education), HPM (History and Pedagogy of Mathematics) and IOWME (International Organization of Women and Mathematics Education). Each Study Group will organize four 90 -minute sessions.

(g) ICMI Studies

Three of the Studies produced by ICMI will be presented during the Congress. The titles and organizers are as follows: The Influence of Computers and Informatics on Mathematics and its Teaching, New Edition (Bernard Cornu, France), Popularization of Mathematics (Henry Pollak, USA), and Assessment in Mathematics Education and its Effects (Mogens Niss, Denmark).

(h) Miniconference on Calculators and Computers

On the afternoon of Monday, August 17, the first day of the Congress, a Miniconference on Calculators and Computers will be held. This special half-day miniconference is designed to give participants the opportunity to gather information, share experiences and discuss strategies, with the aim of advancing the practical applications of the new technology in the classroom. Participants will be able to select one strand in which to work from the five parallel strands. Each strand will meet initially in a plenary session followed by workshops and presentations of examples of sustained implemenation of technology in the classroom. Strands (with chief organizers) that may be of interest to AMS members include: Undergraduate (Anthony Ralson); Age 15-18 (James Fey); Teacher Education (Connie Widmer).

Social and Cultural Events

A number of social and cultural events are planned, including receptions, happy hours, and a cultural evening. No scientific activities will be scheduled for Thursday, August 20 and participants will be able to select from a variety of tours on this excursion day. In addition, a variety of pre- and post-Congress tours will be available from Québec City and Montréal. Participants will be able to select one-, two- and three-day tours, as well as one-week combined tours, to popular destinations in Québec and Ontario. Details will be provided in the Congress Third Announcement. To obtain advance information, please write to the ICME-7 address given below.

Further Information

The ICME-7 Second Announcement contains more detailed information on all aspects of the Congress. Forms are included for registration, accommodation, and to make a presentation. To receive a copy of this announcement, use the following address:

Congrés ICME - 7 Congress
Université Laval
Québec, QC
Canada
G1K 7P4
Phone: (418) 656-7592
FAX: (418) 656-2000
e-mail: ICME-7@VM1.ULAVAL.CA
Full program details will be listed in the Third Announcement which will be available in April 1992 and will be sent to those whose registration forms and fees are received by June 15, 1992. Those who register after
this date will receive the Congress program during on-site registration.

Early registration is encouraged. The schedule of registration fees provides for significant savings for those who preregister by December 15, 1991. The deadline to make application for a short presentation is January 31, 1992. The absolute deadline for accommodation requests is July 1, 1992. It is advisable that all requests be made as early as possible.

Edgar R. Williams
Memorial University of Newfoundland
Canadian National Committee for ICME-7

Québec City

Mathematical Sciences Meetings and Conferences

Abstract

THIS SECTION contains announcements of meetings and conferences of interest to some segment of the mathematical public, including ad hoc, local, or regional meetings, and meetings or symposia devoted to specialized topics, as well as announcements of regularly scheduled meetings of national or international mathematical organizations. (Information on meetings of the Society, and on meetings sponsored by the Society, will be found inside the front cover.) AN ANNOUNCEMENT will be published in Notices if it contains a call for papers, and specifies the place, date, subject (when applicable), and the speakers; a second full announcement will be published only if there are changes or necessary additional information. Once an announcement has appeared, the event will be briefly noted in each issue until it has been held and a reference will be given in parentheses to the month, year, and page of the issue in which the complete information appeared. Asterisks $\left(^{*}\right)$ mark those announcements containing new or revised information. IN GENERAL, announcements of meetings and conferences held in North America carry only date, title of meeting, place of meeting, names of speakers (or sometimes a general statement on the program), deadlines for abstracts or contributed papers, and source of further information. Meetings held outside the North American area may carry more detailed information. In any case, if there is any application deadline with respect to participation in the meeting, this fact should be noted. All communications on meetings and conferences in the mathematical sciences should be sent to the Editor of Notices, care of the American Mathematical Society in Providence. DEADLINES for entries in this section are listed on the inside front cover of each issue. In order to allow participants to arrange their travel plans, organizers of meetings are urged to submit information for these listings early enough to allow them to appear in more than one issue of Notices prior to the meeting in question. To achieve this, listings should be received in Providence SIX MONTHS prior to the scheduled date of the meeting. EFFECTIVE with the 1990 volume of Notices, the complete list of Mathematical Sciences Meetings and Conferences will be published only in the September issue. In all other issues, only meetings and conferences for the iwelve-month period following the month of that issue will appear. As new information is received for meetings and conferences that will occur later than the twelve-month period, it will be announced at the end of the listing in the next possible issue. That information will not be repeated until the date of the meeting or conference falls within the twelve-month period.

1991-1992. Mittag-Leffler Institute Academic Program for 1991-1992: Combinatorics, Djursholm, Sweden. (Apr. 1991, p. 359)

* 1991-1992. 1991-1992 Special Year on Automorphic Forms in Number Theory, Centre de Recherches Mathématiques, Université de Montréal.

Chairman: J. Arthur (Univ. of Toronto). Invited Speakers: W. Casselman (U. of British Columbia), W. Duke (Rutgers U.), J. Friedlander (U. of Toronto), S. Gelbart (Weizmann Inst. of Sc., Israel), R. Gupta (U. of British Columbia), J. Hoffstein (Brown U.), J. Im (CRM), H. Iwaniec (Rutgers U.), R. Iyer (CRM), L. Mai (CRM), R. Murty (McGill U.), K.

Murty (U. of Toronto), D. Ramakrishnan (Cal. Tech.), D.E. Rohrlich (Rutgers U.), P. Sarnak (Stanford U.), F. Shahidi (Purdue U.).

Information: S. Chenevert, CRM, Univ. de Montréal, C.P. 6128-A, Montréal (Quebec) H3C 3J7, Canada; Tel: 514-3432197; FAX: 514-343-2254; email: sylvie@ cc.umontreal.ca.

August 1991

18-24. The Navier-Stokes Equations: Theory and Numerical Methods, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 745)
18-24. The Third Conference of the Cana-
dian Number Theory Association, Queen's University, Kingston, Ontario. (Mar. 1991, p. 242)

18-24. International Conference on Potential Theory 1991, Conference Center Euroase, Amersfoort, The Netherlands. (Jul./Aug. 1991, p. 639)

18-30. Molecular Evolution, Marine Biological Laboratory, Woods Hole, MA. (May/Jun. 1991, p. 471)
18-September 4. Twenty-first Summer Ecole de Calcul des Probabilités, Saint Flour, France. (Jul./Aug. 1990, p. 745)
19-22. 1991 Joint Statistical Meetings, Atlanta, GA. (Mar. 1988, p. 466)
19-23. NSF-CBMS Regional Research Conferences in the Mathematical Sciences: Qualitative and Structured Matrix Theory, Georgia State University, GA. (Dec. 1990, p. 1456)

19-23. The Seventh Prague Topological Symposium, Prague, Czechoslovakia. (Dec. 1990, p. 1456)
19-23. International Conference on Nonlinear Analysis and Microlocal Analysis, Nankai Institute of Math., Tianjin, China. (Apr. 1991, p. 364)
19-24. NSF/CBMS Regional Conference on Qualitative and Structured Matrix Theory, Georgia State University, Atlanta, GA. (Mar. 1991, p. 242)
19-24. Second Colloquium on Differential Equations, Plovdiv, Bulgaria. (Apr. 1991, p. 364)

19-30. Course in Functional Integration and its Applications, Trieste, Italy. (Jan. 1991, p. 49)
19-September 6. College on Singularity Theory, Trieste, Italy. (Sep. 1990, p. 938)
20-25. The II International Conference on Algebra in Honor of A.I. Shirshov (1921-1981), Altai University, Barnaul, USSR. (May/Jun. 1991, p. 471)
20-27. Sixth Workshop on Hadronic Mechanics, San Marino, Italy. (Mar. 1991, p. 242)

20-30. Third Pan-African Congress of Mathematicians, Nairobi, Kenya. (Mar. 1991, p. 242)

21-23. Thirteenth Boundary Element Method International Conference, Tulsa, OK. (Nov. 1990, p. 1288)
21-24. Colloquium on Differential Equations and Applications, Budapest, Hungary. (Dec. 1990, p. 1457)
24-30. Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91), Sydney, Australia. (Mar. 1991, p .242)
25-31. Klassifikation Komplex-Algebraischer Varietäten, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 745)

25-31. Conference on Classifying Spaces of Compact Lie Groups and Finite Loop Spaces, Göttingen University. (Nov. 1990, p. 1288)

26-29. Second European Conference on Concurrency Theory, Amsterdam, The Netherlands. (Jul./Aug. 1991, p. 639)
26-31. International Conference on Differential Equations: EQUADIFF 91, Barcelona, Spain. (Feb. 1991, p. 144)
27-31. Sixth Annual Conference of the European Consortium for Mathematics in Industry, Limerick, Republic of Ireland. (Jul./Aug. 1991, p. 639)
29-September 7. Sixth Ecole de Didactique des Mathematiques, Plestine les Greves, France. (Jul./Aug. 1991, p. 639)

September 1991

1-5. Colloquium on Intuitive Geometry, Balatonaliga, Hungary. (Mar. 1991, p. 242)
1-7. Topologie, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 745)
2-6. Théorie Additive des Nombres, Centre International de Rencontres Mathématiques. (May/Jun. 1991, p. 472)
2-9. Les Mathematiques et L'Art, Paris, France. (Jul./Aug. 1991, p. 640)
3-6. Seventeenth International Conference on Very Large Data Bases (VLDB '91), Barcelona, Spain. (Jan. 1991, p. 49)
3-6. Functional Integration and its Applications, Trieste, Italy. (Jan. 1991, p. 50)
3-10. Applied Mathematics in the Aerospace Field, Erice (Trapani), Sicily. (Jan. 1991, p. 50)

4-6. Twenty-fifth Annual DOD Cost Analysis Symposium, Xerox International Center for Training and Management Development, Leesburg, VA. (Feb. 1991, p. 144)
4-7. Fourth International Meeting of Statistics in the Basque Country, Bilbao, Spain. (Jul./Aug. 1991, p. 640)
4-10. IMA Tutorial, University of Minnesota, Minneapolis, MN. (Oct. 1990, p. 1139) 7-9. International Workshop on Software for Automatic Control Systems, Irkutsk, USSR. (Oct. 1990, p. 1139)
8-14. Niedrigidimensionale Topologie, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 745)
8-14. Knoten und Verschlingungen, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 745)
9-11. Sixteenth Symposium on Operations Research, Trier, Germany. (Jul./Aug. 1991, p. 640)

9-13. Journées Arithmétiques, Geneva, Switzerland. (Dec. 1990, p. 1457)
9-13. ICMTA 5 Teaching Mathematics by

Applications, Noordwijkerhout, The Netherlands. (Jan. 1991, p. 50)
9-13. Twenty-second Conference on Differential Geometry and Topology, Applications in Physics and Technics, Polytechnic Institute of Bucharest, Romania. (May/Jun. 1991, p. 472)

9-13. Arithmétique et Dynamique Symbolique, Centre International de Rencontres Mathématiques. (May/Jun. 1991, p. 472)
9-13. Fundamentals of Computation Theory (FCT '91), Gosen (near Berlin), Germany. (Jul./Aug. 1991, p. 640)
9-27. School on Dynamical Systems, Trieste, Italy. (Sep. 1990, p. 938)
10-13. IFAC/IMACS Symposium on Fault Detection, Supervision and Safety for Technical Processes-SAFEPROCESS '91, BadenBaden, Federal Republic of Germany. (Apr. 1990, p. 502)
10-13. International Conference on Parallel Methods for Ordinary Differential Equations the State of the Art, Grado, Italy. (May/Jun. 1991, p. 472)
11-14. Fourth SIAM Conference on Applied Linear Algebra, Univ. of Minnesota, Minneapolis, MN. (Nov. 1990, p. 1288)
13-15. Representation Theory Conference, University of Oregon, Eugene, OR. (Nov. 1990, p. 1288)
14-27. An International Conference on Theoretical Aspects of Computer Software, Tohoku University, Sendai, Japan. (Feb. 1991, p. 144)

15-19. Annual Meeting of the German Mathematical Society (DMV), Universität Bielefeld, Jahrestagung, Bielefeld. (Jul./Aug. 1991, p. 640)
15-20. DMV-Jahrestagung 1991, Bielefeld, Federal Republic of Germany. (Jul./Aug. 1990, p. 746)
15-21. Geometrie der Banachräume, Oberwolfachk Federal Republic of Germany. (Jul./Aug. 1990, p. 746)
15-21. Fifth International Conference on Complex Analysis and Applications ' 91 with a Symposium on Generalized Functions, Varna, Bulgaria. (Jul./Aug. 1991, p. 640)
16-18. IFAC/IFIP/IMACS Symposium on Robot Control (SYROCO '91), Vienna, Austria. (May/Jun. 1991, p. 472)

* 16-19. DIMACS Workshop on Random Graphs and Randomized Algorithms, Rutgers University, Piscataway, NJ.

Information: M. Mihail, Bellcore, 201-829-4043; email: mihail@bellcore.com.

16-20. Summer School on Minimal Models, Lie Groups and Differential Geometry, Universidad de Santiago de Compostela, Spain. (Feb. 1991, p. 144)
16-20. Géométrie des Équations Différenti-
elles, Centre International de Rencontres Mathématiques. (May/Jun. 1991, p. 473)
16-21. Minimal Models, Lie Groups, and Differential Geometry, Santiago de Compostela, Spain. (Jul./Aug. 1991, p. 640)
16-27. Seventh International Summer School on Probability Theory and Mathematical Statistics, Varna-Golden Sands, Bulgaria. (Please note date change from Mar. 1991, p. 243)
22-28. Nonlinear and Random Vibrations, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 746)
23. One Day Function Theory Meeting, University of Lancaster, Lancaster, England. (May/Jun. 1991, p. 473)
23-25. International Conference on Mathematical Modelling of Materials Processing, Bristol, United Kingdom. (May/Jun. 1991, p. 473)

23-27. Cryptographie, Centre International de Rencontres Mathématiques. (May/Jun. 1991 p. 473)

23-27. Third Workshop on Data, Expert Knowledge, and Decision, Schloß Reisensburg, Germany. (Jul./Aug. 1991, p. 640)
23-29. Sixth Symposium on Classical Analysis, Kazimierz Dolny, Poland. (Apr. 1990, p. 502)

24-27. International Conference on Theoretical Aspects of Computer Software, Tohoku Univ., Sendai, Japan. (Sep. 1990, p. 938) 24-27. Perspectives in Nonlinear Analysis, Carnegie Mellon University, Pittsburgh, PA. (Jul./Aug. 1991, p. 641)
25-27. Ninth GAMM Conference on Numerical Methods in Fluid Mechanics, Lausanne, Switzerland. (May/Jun. 1990, p. 613) 26-28. Workshop on Stochastic TheoryAdaptive Control, University of Kansas, Lawrence, KS. (Jul./Aug. 1991, p. 641)
27-28. Nineteenth Annual Conference on Statistics and its Applications, Miami University, Oxford, OH. (Apr. 1991, p. 365)
27-29. Mid-Atlantic Algebra Conference: Developments in Algebra Related to Quantum Groups, Wake Forest University, Winston Salem, N.C. (May/Jun. 1991, p. 473)
29-October 5. Kombinatorik Geordneter Mengen, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 746)
30-October 2. First International Conference of the Austrian Center for Parallel Computation (ACPC), Salzburg, Austria. (Feb. 1991, p. 145)
30-October 2. The Fall '91 Meeting of SUP'EUR, Rome, Italy. (Jul./Aug. 1991, p. 641)

30-October 4. Journées de Probabilités, Centre International de Rencontres Mathématiques. (May/Jun. 1991, p. 473)

October 1991

1-4. SCAN-91 IMACS-GAMM International Symposium on Computer Arithmetic and Scientific Computation, Universität Oldenburg, Germany. (Feb. 1991, p. 145)
5. Thirty-Third Algebra Day-Trends in Linear Algebra, Centre for Research in Algebra and Number Theory, Carleton UniversityUniversity of Ottawa, Canada. (Jul./Aug. 1991, p. 641)
6-12. Arbeitsgemeinschaft mit Aktuellem Thema (wird in den Mitteilungen der DMV Heft 3/1991 bekanntgegeben), Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 746)
7-9. Second Symposium on High Performance Computing, Montpellier, France. (Feb. 1991, p. 145)
7-10. The Ninth International Symposium on Applied Algebra, Algebraic Algorithms, and Error Correcting Codes, New Orleans, LA. (Dec. 1990, p. 1458)
*7-10. IMA-INRIA Workshop on Transfer of Mathematics to Industry in the U.S. and France, University of Minnesota, Minneapolis, MN. (Please note date change from Dec. 1990, p. 1458)
*7-10. Workshop on Groups and Computation, Rutgers University, New Brunswick, NJ.

Purpose: The purpose of this workshop is to bring together researchers from the computer science, symbolic algebra, and group theory communities in order to explore the interplay between three primary areas: The complexity of computing with groups, implementation issues for group computations on both sequential and parallel machines, and the application of groups to important problems in computer science.
Organizing Committee: L. Finkelstein, D. Gorenstein, W. Kantor, and C. Sims.
Workshop Themes: Complexity of group computations, sequential implementations, applications, group theory, parallel implementations.
Information: L. Finkelstein, College of Computer Science, Northeastern University, Boston, MA 02115; email: laf@ corwin.ccs.northeastern.edu or W. Kantor, Dept. of Math., University of Oregon, Eugene, OR 97403; email: kantor@ bright.math.uoregon.edu.

7-11. Workshop on Stochastic and Deterministic Models, Trieste, Italy. (Sep. 1990, p. 938)

7-11. Computer Science Logic '91, Berne, Switzerland. (Jul./Aug. 1991, p. 641)

12-13. Eastern Section, Temple University, Philadelphia, PA.

Information: W. Drady, American Mathematical Society, P.O. Box 6887, Providence, RI 02940.

13-19. Geometrie, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 746) 14-16. Mathématique et Informatique, Centre International de Rencontres Mathématiques. (May/Jun. 1991, p. 473)
14-18. IMA Workshop on Sparse Matrix Computations: Graph Theory Issues and Algorithms, University of Minnesota, Minneapolis, MN. (Oct. 1990, p. 1140)

* 14-18. DIMACS Workshop on Experimental Analysis of Network Flows and Matching, Rutgers University, Piscataway, NJ.

Information: C. McGeoch, Amherst College, netflow@DIMACS.rutgers.edu.
16-18. SIAM Workshop on Micromechanics, Leesburg, VA. (Nov. 1990, p. 1288)
16-18. IFAC/IMACS/IFIP Workshop on Cultural Aspects of Automation, Krems, Austria. (May/Jun. 1991, p.473)
18-19. Differential and Delay Equations, Iowa State University, Ames, Iowa. (Jan. 1991, p. 50)
18-19. Thirteenth Midwest Probability Colloquium, Northwestern University, Evanston, IL. (Jul./Aug. 1991, p. 641)
18-19. 1991 Mathematical Sciences Department Chairs Colloquium, Arlington, VA. (Jul./Aug. 1991, p. 641)
20-26. C^{*}-Algebren, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 50)
20-26. Third International WorkshopConference on Evolution Equations, Control Theory, and Biomathematics, Han-surLesse, Belgium. (Jul./Aug. 1991, p. 641)
21-25. Analyse Algébrique des Perturbations Singulières, Centre International de Rencontres Mathématiques. (May/Jun. 1991, p. 473)
*22-25. Visualization '91 - Visual Strategies for Knowledge, San Diego, CA.

Purpose: This conference will explore how visualization is being used to extract knowledge from data. There will be panels, paper sessions, workshops, tutorials, and case studies.
Information: IEEE Computer Society Conference Department, 1730 Massachusetts Ave., N.W., Washington, DC 20036-1903; 202-371-1013; Fax: 202-7280884.

25-26. Central Section, North Dakota State University, Fargo, ND.

Information: W. Drady, American Mathematical Society, P.O. Box 6887, Provi-
dence, RI 02940. Please note corrected date of meeting from previous Notices listings.

25-26. Eleventh Annual SoutheasternAtlantic Regional Conference on Differential Equations, Mississippi State University, Mississippi State, MS. (Apr. 1991, p. 365)
26-27. West Coast Operator Algebra Seminar, University of California, Los Angeles. (Jul./Aug. 1991, p. 642)
27-November 2. Statistische Entscheidungstheorie, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 50)
27-November 2. Convergence Structures in Topology and Analysis, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 50)
29-31. Second Congress of the Italian Association for Artificial Intelligence (AI*IA), Palermo, Italy. (Mar. 1991, p. 243)

November 1991

*1-2. Sixth Annual Pi Mu Epsilon Regional Undergraduate Mathematics Conference, St. Norbert College, DePere, WI.

Invited Speaker: J. Douglas Faires, Youngstown State Univ.
Information: R. Poss, St. Norbert College, DePere, WI 54115; 414-337-3198.
1-3. Partial Differential Equations and Mechanics, Southern Illinois University, Carbondale, IL. (May/Jun. 1991, p. 474)
3-6. ORSA/TIMS Joint National Meeting, Anaheim, CA. (May/Jun. 1991, p. 474)
3-9. Mengenlehre, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 746) 4-8. Second SIAM Conference on Geometric Design, Tempe, AZ. (Nov. 1990, p. 1289) 4-8. Les Processus Stochastiques en Théorie des Épidémies, Centre International de Rencontres Mathématiques. (May/Jun. 1991, p. 474)
9. Differential Geometry Day, Eastern Illinois University, Charleston, IL. (May/Jun. 1991, p. 474)
9-10. Western Section, University of California, Santa Barbara.

Information: W. Drady, American Mathematical Society, P.O. Box 6887, Providence, RI 02940.

11-15. IMA Workshop on Combinatorial and Graph-Theoretic Problems in Linear Algebra, University of Minnesota, Minneapolis, MN. (Oct. 1990, p. 1140)
15-17. Fourth Annual International Conference on Technology in Collegiate Mathematics, Portland, OR. (Jul./Aug. 1991, p. 642) 17-23. Singularitäten der Kontinuumsmechanik: Numerische und Konstruktive

Methoden zu Ihrer Behandlung, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 746)
18-22. Workshop on Discrete Groups, Number Theory and Ergodic Theory, Mathematical Sciences Research Institute (MSRI), Berkeley, CA. (May/Jun. 1991, p. 474)
18-22. Supercomputing '91, Albuquerque, NM. (Mar. 1991, p. 243)
20-26. C^{*}-Algebren, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 746)
*21-22. MSI/Stony Brook Conference on Nonlinear Analysis and Computation, Stony Brook, NY.

Call for Papers: Contributors are requested to submit papers by September 1991.

Information: J.W. Grove, Dept. of Applied Math., SUNY at Stony Brook, Stony Brook, NY 11794-3600; 516-6328375; Fax: 516-632-8490; email: grove@ ams.sunysb.edu.

24-30. Numerische Methoden der Approximationstheorie, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 746) 25-29. Séminaire Sud-rhodanien de Géométrie, Centre International de Rencontres Mathématiques. (May/Jun. 1991, p. 474)
26-29. Conference on Representation Theories of Lie Groups and Lie Algebras, Misasa, Tottori, Japan. (May/Jun. 1991, p. 474)

December 1991

Fourth International Conference on Numerical Combustion, St. Petersburg, FL. (Feb. 1991, p. 146)
1-7. Statistik Stochastischer Prozesse, Oberwolfach, F.R.G. (Jul./Aug. 1990, p. 746)
2-4. Fourth International Conference on Numerical Combustion, St. Petersburg, FL. (May/Jun. 1991, p. 474)
2-4. Titre à Préciser, Centre International de Rencontres Mathématiques. (May/Jun. 1991, p. 474)

2-6. Workshop on Statistical Methods in Imaging, Mathematical Sciences Research Institute, Berkeley, CA. (Oct. 1990, p. 1140)
2-9. SIAM Conference on Combustion, St. Petersburg, FL. (Nov. 1990, p. 1289)
6-7. The Midwest Conference on Differential Equations, University of Iowa, Iowa City, IA. (Jul./Aug. 1991, p. 642)
7-10. Canadian Mathematical Society Winter Meeting, Victoria, B.C., Canada. (Oct. 1990, p. 1141)
8-14. Stochastic Geometry, Geometric Statistics, Stereology, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 746)
9-13. Femmes et Mathématiques-Congrès Européen, Centre International de Rencontres

Mathématiques. (May/Jun. 1991, p. 475)
10-12. Ninth Biennial Conference on Modelling and Simulation, Queensland, Australia. (May/Jun. 1991, p. 475)
12-16. NATO Advanced Research Workshop: Algebraic Topology and Algebraic K-Theory, Lake Louise, Alberta, Canada. (Jul./Aug. 1991, p. 642)
15-21. Quantenstochastik, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1990, p. 746)
23-26. International Conference on Generalized Functions and Their Applications, Banaras Hindu University, Varanasi, India. (Dec. 1990, p. 1458)
27-31. Holiday Symposium on the Impact of Software Systems in Mathematical Research, New Mexico State Univ., Las Cruces, NM. (Jul./Aug. 1990, p. 746)

1992

1992. IMACS Symposium on Symbolic Computation in Engineering Design, IDN, Lille, France. (Jul./Aug. 1990, p. 746)
IMACS International Conference on Computational Physics, University of Colorado, Boulder, CO. (Oct. 1990, p. 1141)
Spring 1992. International Conference on Finite Elements and Boundary Elements in Geophysics, Monteray, CA. (Oct. 1990, p. 1141)

Spring 1992. IMACS Symposium on Mathematical Modelling, Wiener Neustadt, Germany. (May/Jun. 1991, p. 475)
Spring 1992. Third IMACS International Conference on Expert Systems in Numerical Computing, Purdue University, West Lafayette, IN. (May/Jun. 1991, p. 475)

January 1992

1-11. Mathematische Optimierung, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 51)
*3-6. International Conference on Random Mappings, Partitions, and Permutations, University of Southern California, Los Angeles, CA.

Organizing Committee: G.-C. Rota (MIT), B. Harris (Wisconsin), S.W. Golomb, R. Arratia, and S. Tavaré (USC).

Invited Speakers: D. Aldous, A.D. Barbour, B. Bollobás, P. Diaconis, P. Donnelly, A.M. Frieze, S. Janson, V.F. Kolchin, A.M. Odlyzko, J.W. Pitman, B. Pittel, L.A. Shepp, J.H. Spencer, L.F. Takács, A. Vershik, and H.S. Wilf.
Information: S. Tavaré, Dept. of Math., Univ. of Southern California, Los Angeles, CA 90089-1113; simon@msw.usc.edu.
*3-7. Seventh Texas International Symposium on Approximation Theory, Austin, TX.

Invited Speakers: C. de Boor, C. Chui, M. Gutknecht, K. Jetter, W. Light, T. Lyche, Y. Meyer, D.J. Newman, and V. Totik.
Call for Papers: Deadline for abstracts of contributed 20 -minute papers is November 1, 1991.
Information: E.W. Cheney, Dept. of Math., Univ. of Texas, Austin, TX 78712; email: cheney@cs.utexas.edu.

5-8. Second Caribbean Conference on the Fluid Dynamics, University of the West Indies, St. Augustine, Trinidad. (Jan. 1991, p. 51)

6-7. AMS Short Course on "New Scientific Applications of Geometry and Topology", Baltimore, MD. (Jul./Aug. 1991, p. 643)
6-17. Topology Workshop, Pontifical Catholis University, Rio de Janeiro, Brazil. (Apr. 1991, p. 366)

6-17. International Research Workshop on Banach Space Theory, Merida, Venezuela. (Jul./Aug. 1991, p. 643)
8-11. Joint Mathematics Meetings, Baltimore, MD. (including the annual meetings of the AMS, AWM, MAA and NAM)

Information: H. Daly, AMS, P.O. Box 6248, Providence, RI 02940.

12-18. Applied Dynamics and Bifurcation, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 51)
13-17. IMA Workshop on Linear Algebra, Markov Chains, and Queuing Models, University of Minnesota, Minneapolis, MN. (Oct. 1990, p. 1141)
15-17. Workshop on Stochastics and Analysis, Universität Zürich, Zürich, Switzerland. (May/Jun. 1991, p. 475)
19-25. Modelltheorie, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 51)
26-February 1. Applied and Computational Convexity, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 51)
27-29. Third ACM-SIAM Symposium on Discrete Algorithms, Orlando, FL. (Feb. 1991, p. 146)
30-February 1. International Meeting on Nonlinear Boundary Value Problems in Science and Engineering: Analytic Methods, University of Wollongong, New South Wales, Australia. (Jul./Aug. 1991, p. 643)

February 1992

2-8. Thermodynamische Materialtheorien, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 51)
3-7. Eighth International Conference on

Data Engineering, Phoenix, AZ. (Jul./Aug. 1991, p. 643)
9-15. Numerical Methods for Parallel Computing, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 51)
10-11. Workshop on Amenable Ergodic Theory, Mathematical Sciences Research Institute (MSRI), Berkeley, CA. (May/Jun. 1991, p. 475)
16-22. Funktiontheorie, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 51)

* 17-22. Informatics '92, Havana, Cuba.

Program: Informatics '92 is aimed at promoting a scientific exchange of opinions and strengthening cooperation among specialists. The conference will feature international congresses, seminars, and the 3rd International Fair of Informatics, Industrial Automation, and Communications. The program will consist of paper discussions, round tables, panels, tutorial courses and a trade fair.
Call for Papers: Deadline for submission of papers is October 31, 1991. They must be sent in 5.25 or 3.5 inch diskettes, DOS format, in WordPerfect or WordStar. Pages should not exceed 25 lines, double spaced, with 2.5 cm left and upper margins. Papers in English or Spanish should not have more than 20 pages. Also include a 250 -page abstract.
Information: Palacio de las Convenciones, INFORMATICA '92, Apartado 16046, La Habana, Cuba; Tel: 22-6011 through 19; Telex: 511609 palco cu; Fax: 22-8382 and 22-2350.

23-29. p-Adische Analysis und Anwendungen, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 51)
24-28. IEEE Computer Society COMPCON Spring '92, San Francisco, CA. (Jan. 1990, p. 62)
*24-28. Elliptic Curves and Related Topics, Sainte-Adèle, France.

Organizers: R. Murty (McGill U.) and H. Kisilevsky (Concordia U.).

Invited Speakers: (Tentative): A. Brumer (Fordham U.), J. Cremona (U. of Exeter), H. Darmon (Harvard U.), G. Frey (U. GHS Essen), R. Greenberg (Boston U.), J. Im (CRM), R. Iyer (CRM), S. Kamienny (U. of Arizona), L. Mai (CRM), J.-F. Mestre (France), D. Ramakrishnan (Cal. Tech.), K. Ribet (U. of Calif., Berkeley), K. Rubin (Harvard U.), P. Satgé (U. de Caen), A. Wiles (Princeton U.), Y. Zarhin (USSR Acad. of Sci.).
Information: S. Chenevert, CRM, Univ. de Montréal, C.P. 6128-A, Montréal (Quebec) H3C 3J7, Canada; Tel: 514-3432197; FAX: 514-343-2254; email: sylvie@ cc.umontreal.ca.

24-March 1. IMA Workshop on Iterative Methods for Sparse and Structured Problems, University of Minnesota, Minneapolis, MN. (Jul./Aug. 1991, p. 643)

March 1992

March 1992. 1992 ASL Annual Meeting, Duke University, Durham, NC. (Apr. 1991, p. 366)

1-7. Klassifizierende Räume und Anwendungen der Steenrod-Algebra, Oberwolfach, Germany. (Jan. 1991, p. 52)
3-5. ACM 1992 Computer Science Conference, Kansas City, MO. (Jul./Aug. 1991, p. 644)

5-6. Twenty-third SIGCSE ('92) Technical Symposium, Kansas City, MO. (Jul./Aug. 1991, p. 644)
8-14. Mathematische Stochastik, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 52)
13-14. Southeastern Section, University of Alabama, Tuscaloosa, AL.

Information: W. Drady, American Mathematical Society, P.O. Box 6887, Povidence, RI 02940.

15-21. Regelungstheorie, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 52) 20-21. Central Section, Southwest Missouri State University, Springfield, MO.

Information: W. Drady, American Mathematical Society, P.O. Box 6248, Providence, RI 02940.

21-27. Workshop on Fluid Dynamics and Statistical Physics, Institute for Advanced Study, Princeton, NJ. (Jul./Aug. 1991, p. 644) 22-28. Teichmüller-Theorie und Modulraume Riemannscher Flachen, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 52)

22-28. Georgia Tech.-UAB International Conference on Differential Equations and Mathematical Physics, Atlanta, GA. (Jul./Aug. 1991, p. 644)
*24-28. GAMM Annual Meeting, Leipzig, Germany.

Information: R. Klötzler, Univ. Leipzig, Sektion Mathematik, Augustusplatz 10, D-O-7010 Leipzig, Germany; Fax: 37-41209325; Telex: Univ. Leipzig 51350.
*27-28. Eighth South-Eastern Analysis Meeting (SEAM VIII), University of Tennessee, Knoxville, TN.

Sponsors: NSF/Univ. of Tennessee. Information: SEAM VIII, Dept. of Math., Univ. of Tennessee, Knoxville, TN 37996-1300; email: seam@utkvx.utk.edu.

29-April 4. Topologische Methoden in der Gruppentheorie, Oberwolfach, Federal Republic of Germany. (Jan. 1991, p. 52)
29-April 5. Sixth International Conference on Geometry, University of Haifa, Israel (postponed from March 1991 because of the Gulf War). (Jul./Aug. 1991, p. 644)

* 30-April 2. Thirty-fourth British Theoretical Mechanics Colloquium, University of Keele, England.

Information: Conference Secretary, B.T.M.C., Dept. of Math., Univ. of Keele, Keele, Staffordshire ST5 5BG; Tel: 0782 621111 ext. 3792; email: btmc34@ uk.ac.keele.

* 30-April 3. Workshop on Statistical Methods in Molecular Biology, Mathematical Sciences Research Institute, Berkeley, CA. (Please note changes from Oct. 1990, p. 1141)

Conference Topics: DNA and protein sequence data analysis, genetic and physical mapping, evolutionary trees, and molecular evolution.
Invited Speakers: R. Arratia (USC), E. Branscomb (Livermore Nat'l Labs.), H. Chernoff (Harvard), G. Churchill (Cornell), J. Felsenstein (Univ. of Washington), W. Fitch (UC Irvine), R. Hudson (UC Irvine), S. Karlin (Stanford), E. Lander (MIT), M. Nei (Penn State), R. Oishen (Stanford), S. Sawyer (Washington Univ.), T. Smith (Harvard), T. Speed (UC Berkeley), E. Thompson (Univ. of Washington), M. Walker (Stanford), M. Waterman (USC).
Information: Molecular Biology Workshop, Mathematical Sciences Research Institute, 1000 Centennial Dr., Berkeley, CA 94720.

April 1992

April 1992. Eighth International Conference on Mathematical and Computer Modelling, United States. (Sep. 1990, p. 939)
5-11. Algebraische K-Theorie, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 146)
5-11. Informationstheorie, Oberwolfach, Federal Republic of Germany. (Jul./Aug. 1991, p. 644)
6-10. IMA Workshop on Linear Algebra for Signal Processing, University of Minnesota, Minneapolis, MN. (Oct. 1990, p. 1141)

* 7-10. Twenty-third Annual Iranian Mathematics Conference, Razi University, Bakhtaran, Iran.

Information: The Organizing Committee of AIMC-23, Razi Univ., P.O. Box 67145-1567, Bakhtaran, Iran; Telex: 0088432006; Fax: 0431-26183; Tel: 043128050.
*9-11. Symplectic Topology, University of Arkansas, Fayetteville, Arkansas.

Invited Speakers: Y. Eliashberg, Stanford Univ. (Principle Speaker); M. Audin, S. Altshuler, L. Bates, D. Fuchs, V. Ginzburg, A. Givental, F. Lalonde, D. McDuff, Y.-G. Oh, D. Spring, S. Tabachnikov, B. Totaro, J. Wolfson.

Call for Papers: Contributed papers should be submitted before February 15, 1992.

Information: S. Tabachnikov or I. Monroe, Dept. of Math. Sci., SCEN 301, Univ. of Arkansas, Fayetteville, AR 72701.

11-12. Eastern Section, Lehigh University, Bethlehem, PA.

Information: W. Drady, American Mathematical Society, P.O. Box 6887, Povidence, RI 02940.

12-18. Mathematische Logik, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 146)

13-17. Workshop on Lie Groups, Ergodic Theory, and Geometry, Mathematical Sciences Research Institute (MSRI), Berkeley, CA. (May/Jun. 1991, p. 476)
19-25. Arbeitsgemeinschaft mit Aktuellem Thema, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 146)
26-May 2. Gruppentheorie, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 146)

30-May 1. Twenty-third Annual Pittsburgh Conference on Modeling and Simulation, University of Pittsburgh, PA. (Jul./Aug. 1991, p. 644)

May 1992

May 1992. Conference on Classification of Algebraic Varieties, L'Aquila, Italy. (Apr. 1991, p. 366)
3-9. Wavelett (Signalverarbeitung), Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 146)
10-16. Geschichte der Mathematik, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 146)
11-13. Fourth SIAM Conference on Optimization, Chicago, IL. (Feb. 1991, p. 146)

* 11-15. IUTAM Symposium on Inverse Problems in Engineering Mechanics, Tokyo, Japan.

Program: The symposium will provide an opportunity for fruitful discussion on inverse problems in engineering sciences, particularly in material sciences, structural mechanics, and all other fields relating to applied mechanics, to make a break-
through of computational and experimental approaches to inverse problems.
Chairman: M. Tanaka, Shinshu University.
Conference Topics: Computational and experimental aspects of inverse problems, non-destructive inspection or evaluation, identification of contact stresses, identification of initial or residual strresses, identification of material properties and constructive laws, shape optimization and sensitivity analysis, inverse problems in process engineering, inverse problems in metal forming, inverse problems in dynamics, active or semi-active control of noise and vibration, inverse problems in bioengineering, image and data processing.
Call for Papers: Submit an extended abstract of three pages by November 11, 1991 and a final manuscript by May 15, 1992.

Information: K. Sato, JASCOME Office, c/o Kozo Keikaku Engineering Inc., Dai-ichi Seimei Building 24F, 2-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 163, Japan; Tel: +81-3-3348-0644; Fax: +81-3-33461274.

17-23. Quadratische Formen, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 146)

18-23. Second European Conference on Computer Vision, Santa Margherita Ligure, Italy. (Jul./Aug. 1991, p. 645)
24-30. Kommutative Algebra und Algebraische Geometrie, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 146)
*25-28. NATO Advanced Research Workshop: Asymptotic-Induced Numerical Methods for PDE's, Critical Parameters, and Domain Decomposition, Beaune, France.

Information: H.G. Kaper, Math. and Comp. Sci. Div., Argonne Nat'l Lab., 9700 South Cass Ave., Argonne, IL 604394844; 708-972-7162; kaper@mcs.anl.gov.

29-31. Twenty-first International Symposium on Multi-Valued Logic, Sendai 980, Japan. (Jan. 1990, p. 62)
31-June 6. Singularitaten, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)

31-June 6. Free Resolutions in Algebraic Geometry and Representation Theory, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)

June 1992

June 1992. IMACS Symposium on Numerical Computing and Mathematical Modelling, Bangalore, India. (Oct. 1990, p. 1141) 1-5. Seventh International Conference on

Graph Theory, Combinatorics, Algorithms, and Applications, Western Michigan University, Kalamazoo, MI. (May/Jun. 1991, p. 476) 1-5. IMA Workshop on Linear Algebra for Control Theory, University of Minnesota, Minneapolis, MN. (Oct. 1990, p. 1141)
7-13. Computational Group Theory, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)
8-11. Sixth SIAM Conference on Discrete Mathematics, University of British Columbia, Vancouver, Canada. (May/Jun. 1991, p. 476)

* 8-13. Zero-dimensional Schemes, Ravello, Italy.

Scientific Committee: E. Ballico (Trento), L. Chiantini (Napoli), C. Ciliberto (Roma), A.V. Geramita (Kingston), F. Orecchia (Napoli), L. Robbiano (Genova). Invited Speakers: J. Elias, D. Eisenbud, S. Greco, M. Green, J. Harris, A. Hirschowitz, S. Katz, P. Maroscia, J. Migliore, A. Ragusa, F.O. Schreyer, B. Sturmfels, G. Valla, W. Vogel, C. Weibel. Information: Conference Coordinator, F. Orecchia, Dip. di Matem, Univ. di Napoli, Via Mezzocanone 8, 80134 Napoli, Italia; email: orecchia@inacised.unina>it.
12-14. Canadian Mathematical Society Summer Meeting, York University, North York, Ontario, Canada. (Nov. 1990, p. 1289) 14-20. Fifth International Symposium on Statistical Decision Theory and Related Topics, Purdue University, West Lafayette, IN. (Sep. 1990, p. 938)
14-20. Freiformkurven und Freiformflachen, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)
15-19. Twenty-first International Conference on Stochastic Processes and their Applications, Toronto, Canada. (May/Jun. 1990, p. 613)

* 15-19. Fourth Conference on Formal Power Series and Algebraic Combinatorics, Université du Quebec a Montréal.

Program: The purpose of this conference is to thoroughly explore the relationships between combinatorics and computer science and their applications in other parts of mathematics and science. The conference will consist of 9 invited 50 -minute talks and of about 27 contributed 30 -minute communications. The official languages are French and English. Conference Topics: Formal power series in relation to combinatorics, computer science, and control theory; combinatorics on words and formal languages; algebraic and enumerative combinatorics; orthogonal polynomials, q-analogues; combinatorics and group representations; algorithms and data structures; computer algebra.

Invited Speakers: J. Berstel, LITP, Univ. Paris VII; D. Foata, Univ. de Strasbourg; A. Garsia, U.C.S.D.; I.M. Gelfand, Rutgers Univ.; A. Joyal, UQAM; A. Lascoux, LITP, Univ. Paris VII; J. Stembridge, Univ. of Michigan; V. Strehl, Univ. Erlangen; X.G. Viennot, Univ. Bordeaux I.
Call for Papers: Deadline for a submission of a communication: November 15, 1991. Please send an extended abstract (4 to 10 pages) to the chairman of the program committee.
Information: Laboratoire de Combinatoire et d'Informatique Mathematique (LACIM), Univ. du Quebec a Montreal (UQAM), Case Postale 8888, Succ. A, Montreal (Quebec), Canada H3C 3P8; Tel: 514-987-7902; Fax: 514-987-8477; email: lacim@lacim.uqam.ca.
17-20. Fourth International Conference on Computers and Learning, ICCAL '92, Acadia University, Nova Scotia, Canada. (Feb. 1991, p. 147)
21-27. Porous Media, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)
*22-25. Seventh Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, CA.

Program: The LICS Symposium aims for wide coverage of theoretical and practical issues in computer science that relate to logic in a broad sense, including algebraic, categorical, and topological approaches.
Conference Topics: (Suggested): Abstract data types, automated deduction, concurrency, constructive mathematics, data base theory, finite model theory, knowledge representation, lamda and combinatory calculi, logical aspects of computational complexity, logics in artificial intelligence, logic programming, modal and temporal logics, program logic and semantics, rewrite rules, software specification, type systems, verification.
Call for Papers: Seven hard copies of a detailed abstract (not to exceed 4000 words) should be received by December 9, 1991. In addition, an electronic version of the cover page in plain ASCII format should be received at lics92@cis.upenn.edu by Decemebr 9, 1991. Authors without access to email should send a hard copy of the cover page. Send to the Program Chair: A. Scedrov, Inst. for Research in Cognitive Science, Univ. of Pennsylvania, 3401 Walnut St., Suite 400C, Philadelphia, PA 191046228; email: lics92@cis.upenn.edu; Fax: 215-573-2048.
Information: Publicity Chair, D. Leivant, School of Comp. Sci., Carnegie Mellon Univ., Pittsburgh, PA 15213; email: lics@cs.cmu.edu.

23-26. Homotopy Theory, Sorrento, Italy. (Jul./Aug. 1991, p. 645)
28-July 4. Hyperbolic Systems of Conservation Laws, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)
*29-30. International Conference on the Development of Mathematics from 1900 to 1950, Luxembourg.

Organizing Committee: P. Dugac, Paris; J. Mawhin, Louvain-La-Neuve; J.P. Pier, Luxembourg.

Information: Société Math. du Luxembourg, Centre Univ. de Luxembourg, 162 A, Avenue de la Faiencerie, L-1511 Luxembourg.
29-July 1. Joint Meeting with the London Mathematical Society, Cambridge, England.

Information: H. Daly, American Mathematical Society, Post Office Box 6248, Providence, Rhode Island 02940.

29-July 5. Nineteenth International Colloquium on "Group Theoretical Methods in Physics", Salamance, Spain. (May/Jun. 1991, p. 476)

July 1992

1-10. Stochastic Analysis Workshop of Guadeloupe-Silivri, Pointe-à-Pitre, France. (Jul./Aug. 1991, p. 645)
5-11. Mathematische Modellierung und Simulation Elektrischer Schaltungen, Oberwolfach, Germany. (Jul./Aug. 1991, p. 645)
6-10. European Congress of Mathematics, Paris, France. (May/Jun. 1991, p. 476)
*6-10. Mathematical Conferences in Perth, University of Western Australia.

Program: Three conferences will be held at the University of Western Australia from July $6-10$. This is a unique opportunity for mathematicians to meet with experts from the various branches of Mathematics. Here is the information for the three: Thirty-sixth Annual Meeting of the Australian Mathematical Society. Invited Speakers: S. Amari (Tokyo), P. Kenderov (Bulgarian Acad. of Sci.), J. Marsden (Berkeley), R. Phelps (Washington), J. Yorke (Maryland).
Information: P.F. Siew, School of Math. and Stat., Curtin Univ. of Tech., Bentley 6102; email: tsiewpf@cc.curtin.edu.au. Eleventh Conference of the Australian Statistical Society Conference Topics: Accident and injury statistics, medical imaging, statistics involved in law and proof, chemometrics/process modelling in industries, applied chaos/nonlinear time series, combinatorics and design and statistical consulting.

Information: R. John, School of Agriculture, Univ. of Western Australia, Nedlands, WA 6009; aerdj@uniwa.uwa.oz.au. Eighteenth Australasian Conference on Combinatorial Mathematics and Combinatorial Computing.
Invited Speakers: R.A. Bailey (Goldsmiths College, London), B. Bollobas (Cambridge), P. Lorimer (Auckland), C.M. O'Keefe (Adelaide), S.B. Rao (ISI, Calcutta), D. Street (UNSW), J. Thas (Gent), and D. Younger (Waterloo).
Information: K. Vijayan, Math. Dept., Univ. of Western Australia, Nedlands, WA 6009; vijayan@madvax.maths.uwa.oz.au.

* 6-31. IMA Summer Program on Environmental Studies: Mathematical, Computational, and Statistical Analysis, Institute for Mathematics and its Applications, University of Minnesota.

Information: Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall, 206 Church St., S.E., Minneapolis, MN 55455-0436; 612-624-6066; Fax: 612-626-7370; email: ima_staff@ima.umn.edu.
*6-August 14. Summer Program in Mathematical Physiology, Mathematical Sciences Research Institute, Berkeley, CA.

Purpose: The purpose of the workshops is to support existing collaborations between mathematicians and biologists, to encourage new collaborations, to train young mathematical biologists, and to bring mathematicians with no previous experience into the field. Each workshop will have 15 participants, 10 researchers in the topic of the workshop, 2 mathematical biologists working in other fields, and 3 mathematicians (undergraduate students, graduate students, or Ph.D. mathematicians) with little or no previous experience in mathematical biology. In addition to the workshop participants, there will be 15 places for long term participants, students or researchers who wish to attend several or all of the workshops. Applications for participation or support should be received at MSRI by January 10, 1992. Information: N. Kopell and M. Reed, Summer Program in Mathematical Physiology, MSRI, 1000 Centennial Dr., Berkeley, CA 94720.

11-18. St. Andrews Colloquium, University of St. Andrews, Scotland. (Jul./Aug. 1991, p. 645)

12-17. International Colloquium on Automata, Languages and Programming, Vienna, Austria. (Jul./Aug. 1991, p. 645)
12-18. Arithmetic Algebraic Geometry, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)

19-24. SIAM Annual Meeting (SIAM's 40th Anniversary), Los Angeles, CA. (Feb. 1991, p. 147)
19-25. Lower-Dimensional Theories and Domain Decomposition Methods in Mechanics, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)
19-25. Applications of Nonstandard-Analysis to Analysis, Functional Analysis, and Probability Theory, Heinrich Fabri-Institut der Universität Tübingen, Blaubeuren (Ulm), Federal Republic of Germany. (Jul./Aug. 1991, p. 645)
20-24. The Fifth International Conference on Fibonacci Numbers and their Applications, University of St. Andrews, St. Andrews, Scotland. (May/Jun. 1991, p. 476)
*20-24. Algorithms for Approximation, Cranfield Institute of Technology, Oxford.

Program: This conference will provide an opportunity for the exchange of ideas about current research on the approximation of functions and data, including the design and analysis of algorithms and the application of approximation theory and methods to practical problem areas.
Invited Speakers: I. Barrodale (Victoria, Canada), C. de Boor (Wisconsin), C. Brezinski (Lille, France), M.G. Cox (NPL, England), W. Dahmen (Berlin, Germany), J. Gregory (Brunel, England), E. Grosse (AT\&T Bell Labs), W. Light (Leicester, England), T. Lyche (Oslo, Norway), J.C. Mason (Cranfield, England), M.J.D. Powell (Cambridge, England), S. Seatzu (Cagliari, Italy).
Information: E. Smith, Applied and Computational Mathematics Group, RMCS (Cranfield), Shrivenham, Swindon, Wilts SN6 8LA, England.

20-26. International Conference on Algebraic Geometry, Université Paris-Sud. (Please note date change from Apr. 1991, p. 363)
26-31. Eighteenth International Symposium on Rarefied Gas Dynamics (RGD18), University of British Columbia, Vancouver, Canada. (May/Jun. 1991, p. 477)
26-August 1. Variationsrechnung, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)

August 1992

August 1992. The International Conference Lobachevsky and Modern Geometry devoted to the 200th Anniversary of Lobachevsky's birthday, Kazan, USSR. (Feb. 1991, p. 147)
2-8. Algebraische Zahlentheorie, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)
3-7. Sixth Workshop on Lie-Admissible

Formulations, Clearwater, FL. (Mar. 1991, p. 244)

3-7. Fifth International Meeting of Statistics in the Basque Country, San Sebastin, Spain. (Jul./Aug. 1991, p. 646)
*3-7. Second Meeting of the International Linear Algebra Society (ILAS), University of Lisbon, Portugal.

Program: There will be about 12 onehour invited talks and 28 half-hour invited talks. Also, 15-20 minute talks are encouraged.
Organizing Committee: J.A. Dias Da Silva, Univ. de Lisboa; D.H. Carlson, San Diego State Univ.; D. Hershkowitz, Technion-Israel Inst. of Tech.; T.J. Laffey, Univ. College, Belfield; G.N. de Oliveira, Univ. de Coimbra; H. Schneider, Univ. of Wisconsin, Madison.
Information: D. Hershkowitz, Math. Dept., Technion-Israel Inst. of Tech., Haifa 32000, Israel; mar23aa@technion.bitnet.

9-15. Jordan-Algebren, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147) 16-22. Reelle Analysis, Oberwolfach, Germany. (Jul./Aug. 1991, p. 646)
16-23. Seventh International Congress on Mathematical Education (ICME-7), Québec, Canada.
*17-23. Seventh International Conference on Mathematical Education (ICME-7), Université Laval, Québec, Canada.

Program: This is the seventh in a series of quadrennial congresses of the International Commission on Mathematical Instruction, a commission of the International Mathematical Union. It is expected to attract some 3500 participants from 75 countries. The program will cover major areas of mathematics education at the elementary, secondary, and postsecondary levels. Activities will include lectures, working groups, topic groups, short presentations, project presentations, workshops, exhibitions of material, and a special half-day Miniconference on calculators and computers.
Short Presentations: Applications to make a short presentation must be submitted before January 31, 1992. It can take the form of a poster, a videotape or a computer software.
Registration: Early registration is encouraged. The schedule of registration fees provides for significant savings for those who preregister by December 15, 1991. Information: Congrès ICME-7, Université Laval, Quebec G1K 7P4 Canada; Tel: 418-656-7592; Fax: 418-656-2000; email: icme-7@vm1.ulaval.ca.

19-26. World Congress of Nonlinear Analysts, Melbourne, FL. (Nov. 1990, p. 1289)

22-28. Eighteenth International Congress of Theoretical and Applied Mechanics,
Technion-Israel Institute of Technology, Haifa, Israel. (Jan. 1991, p. 52)
23-29. Mathematical Finance, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)

26-28. IMACS RM2S '92 Kobe, Kobe University, Kobi, Japan. (May/Jun. 1991, p. 477) 30-September 5. Komplexe Analysis, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 147)

September 1992

September 1992. IMACS 2nd International Conference on System Simulation and Scientific Computing-BICSC ${ }^{\prime} 92$, Beijing, China. (May/Jun. 1991, p. 477)
6-12. Topologie, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)

* 8-11. IMA Tutorial: Introduction to Linear Multivariable Control, Optimal Design, and Parameter Estimation, Institute for Mathematics and its Applications, University of Minnesota.

Information: Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall, 206 Church St., S.E., Minneapolis, MN 55455-0436; 612-624-6066; Fax: 612-626-7370; email: ima_staff@ima.umn.edu.

13-19. 4-Dimensional Manifolds, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)
16-18. Second SIAM Conference on Control in the 90s, Minneapolis, MN. (Feb. 1991, p. 148)

17-19. International Conference on Group Theory, University of Timisoara, Romania. (Jul./Aug. 1991, p. 646)
20-26. Funktionalgeichungen, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)
*21-25. IMA Workshop on Robust Control Theory, Institute for Mathematics and its Applications, University of Minnesota.

Information: Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall, 206 Church St., S.E., Minneapolis, MN 55455-0436; 612-624-6066; Fax: 612-626-7370; email: ima_staff@ima.umn.edu.

[^32]
October 1992

4-10. Funktionalanalysis, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148) 11-17. Arbeitsgemeinschaft mit Aktuellem Thema, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)

* 12-16. IMA Workshop on Control Systems Design for Advanced Engineering Systems: Complexity, Uncertainty, Information, and Organization, Institute for Mathematics and its Applications, University of Minnesota.

Information: Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall, 206 Church St., S.E., Minneapolis, MN 55455-0436; 612-624-6066; Fax: 612-626-7370; email: ima_staff@ima.umn.edu.

16-19. Second SIAM Conference on Dynamical Systems, Salt Lake City, UT. (Jul./ Aug. 1991, p. 646)
18-24. Geometrie, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)
22-30. Forty-sixth Conference and Congress of the International Federation for Information and Documentation, Madrid, Spain. (May/Jun. 1991, p. 477)
25-31. Stochastische Analysis, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)

30-November 1. Central Section, Right State University, Dayton, OH.

Information: W. Drady, American Mathematical Society, P.O. Box 6887, Povidence, RI 02940.

The following new announcements will not be repeated until the criteria in the last paragraph in the box at the beginning of this section are met.

November 1992

1-7. Kombinatorik, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148) 8-14. Numerische Integration, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)

* 13-19. IMA Workshop on Control and Optimal Design of Distributed Parameter Systems, Institute for Mathematics and its Applications, University of Minnesota.

Information: Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall, 206 Church St., S.E., Minneapolis, MN 55455-0436; 612-624-6066; Fax: 612-626-7370; email: ima_staff@ima.umn.edu.

14-16. The Third Biennial Conference of
the Allahabad Mathematical Society, Allahabad, India. (May/Jun. 1991, p. 477)
15-21. Komplexitatstheorie, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)

16-20. International Congress on Numerical Methods in Engineering and Applied Sciences, University of Concepción, Concepción, Chile. (Jul./Aug. 1991, p. 646)

* 16-20. IMA Period of Concentration: Flow Control, Institute for Mathematics and its Applications, University of Minnesota.

Information: Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall, 206 Church St., S.E., Minneapolis, MN 55455-0436; 612-624-6066; Fax: 612-626-7370; email: ima_staff@ima.umn.edu.

29-December 5. Theory of Large Deviations, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)

December 1992

6-12. Theory and Numerical Methods for Initial-Boundary Value Problems, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)
7-11. IMACS Symposium on Scientific Computing and Mathematical Modelling, Bangalore, India. (May/Jun. 1991, p. 477)
13-19. Asymptotische Statistik, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)
*27-31. Holiday Symposium on Lie Group Representations and Combinatorics, New Mexico State University, Las Cruces, NM.

Program: This year's symposium is a series of ten lectures, two each day, by G. Benkart of the Univ. of Wisconsin. The lectures span roughly three periods: (i) the classical era of Schur and Weyl, (ii) the middle period of Littlewood-Richardson and Schensted, and (iii) the modern era. There will additional sessions for contributed papers, research ideas, and discussion.
Information: R.J. Wisner, Lie Group Symposium, Dept. of Math. Sciences, New Mexico State Univ., Box 30001, Las Cruces, NM 88003-0001; 505-646-3901.

January 1993

3-7. International Conference on Scientific Computation and Differential Equations, Auckland, New Zealand. (May/Jun. 1991, p. 477)

13-16. Joint Mathematics Meetings, San Antonio, TX. (including the annual meetings of the AMS, AWM, MAA, and NAM)

Information: H. Daly, AMS, P.O. Box 6887, Providence, RI 02940.

March 1993

24-25. Central Section, DePaul University, Chicago, IL.

Information: W. Drady, AMS, P.O. Box 6887, Providence, RI 02940.

April 1993

9-10. Western Section, University of Utah, Salt Lake City, Utah.

Information: W. Drady, AMS, P.O. Box 6887, Providence, RI 02940.

May 1993

20-23. International Conference on Approximation Probability and Related Fields, University of California, Santa Barbara, CA. (May/Jun. 1991, p. 477)
21-22. Central Section, Northern Illinois University, DeKalb, IL.

Information: W.S. Drady, AMS, P.O. Box 6887, Providence, RI 02940.

October 1993

22-23. Central Section, Texas A\&M University, College Station, TX.

Information: W.S. Drady, AMS, P.O. Box 6887, Providence, RI 02940.

January 1994

5-8. Joint Mathematics Meetings, Cincinnati, OH . (including the annual meetings of the AMS, AWM, MAA, and NAM)

Information: H. Daly, AMS, P.O. Box 6248, Providence, RI 02940.

March 1994

25-26. Central Section, University of Kansas, Manhattan, KS.

Information: W.S. Drady, AMS, P.O. Box 6887, Providence, RI 02940.

August 1994

3-11. The International Congress of Mathematicans 1994, Zürich, Switzerland. (Mar. 1991, p. 244)

New AMS Publications

membenambernand

SPINOR CONSTRUCTION OF VERTEX OPERATOR ALGEBRAS, TRIALITY, AND $E_{8}^{(1)}$ Alex J. Feingold, Igor B. Frenkel, and John F. X. Ries, Editors
(Contemporary Mathematics, Volume 121)
The theory of vertex operator algebras is a remarkably rich new mathematical field which captures the algebraic content of conformal field theory in physics. Ideas leading up to this theory appeared in physics as part of statistical mechanics and string theory. In mathematics, the axiomatic definitions crystallized in the work of Borcherds and in Vertex Operator Algebras and the Monster, by Frenkel, Lepowsky, and Meurman. The structure of monodromies of intertwining operators for modules of vertex operator algebras yields braid group representations and leads to natural generalizations of vertex operator algebras, such as superalgebras and para-algebras. Many examples of vertex operator algebras and their generalizations are related to constructions in classical representation theory and shed new light on the classical theory.

This book accomplishes several goals. The authors provide an explicit spinor construction, using only Clifford algebras, of a vertex operator superalgebra structure on the direct sum of the basic and vector modules for the affine Kac-Moody algebra $D_{n}^{(1)}$. They also review and extend Chevalley's spinor construction of the 24 -dimensional commutative nonassociative algebraic structure and triality on the direct sum of the three 8 -dimensional D_{4}-modules. Vertex operator para-algebras, introduced and developed independently in this book and by Dong and Lepowsky, are related to one-dimensional representations of the braid group. The authors also provide a unified approach to the Chevalley, Griess, and E_{8} algebras and explain some of their similarities. A third goal is to provide a purely spinor construction of the exceptional affine Lie algebra $E_{8}^{(1)}$, a natural continuation of previous work on spinor and oscillator constructions of the classical affine Lie algebras. These constructions should easily extend to include the rest of the exceptional affine Lie algebras. The final objective is to develop an inductive technique of construction which could be applied to the Monster vertex operator algebra.

Directed at mathematicians and physicists, this book should be accessible to graduate students with some background in finite-dimensional Lie algebras and their representations. Although some experience with affine Kac-Moody algebras would be useful, a summary of the relevant parts of that theory is included. This book shows how the concepts and techniques of Lie theory can be generalized to yield the algebraic structures
associated with conformal field theory. The careful reader will also gain a detailed knowledge of how the spinor construction of classical triality lifts to the affine algebras and plays an important role in a spinor construction of vertex operator algebras, modules, and intertwining operators with nontrivial monodromies.

Contents

Affine algebras and representations; Spinor construction of vertex operator superalgebras; Spinor construciton of the Chevalley algebra and triality for D_{4}; Spinor construction of triality for $D_{4}^{(1)}$; Spinor construction of a vertex operator para-algebra for $D_{4}^{(1)}$; Spinor construction of E_{8}; Spinor construction of vertex operator algebras for $E_{8}^{(i)}$.

1980 Mathematics Subject Classifications: 17B65, 17B67, 81R10;
17A70, 17B25, 17B68, 81T40
ISBN 0-8218-5128-4, LC 91-24409, ISSN 0271-4132
146 pages (softcover), September 1991
Individual member \$20, List price \$34,
Institutional member \$27
To order, please specify CONM/121N
M.2.

DERIVATES OF INTERVAL FUNCTIONS

Brian S. Thomson

(Memoirs of the AMS, Number 452)
In the study of the derivation properties of interval functions, there are certain arguments that reappear in many settings. In this book, the author seeks to present a unified approach to some of these techniques. The motivation grows out of the interesting and important study of Rogers and Taylor characterizing those interval functions which are, in a sense, absolutely continuous with respect to the s-dimensional Hausdorff measure.

This problem leads naturally to an investigation of Lipschitz numbers $D^{s}(f, x)=\lim \sup _{y, z \rightarrow x, y<x<z}(f(z)-f(y)) /(z-y)^{s}$ and to s-dimensional integrals $\int_{a}^{b} f(x) d x^{s}=\lim \sum_{i=1}^{n} f\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right)^{s}$.

The exposition is presented in the setting of interval functions on the real line and the differentiation, measure-theoretic, and variational properties are developed. The author limits attention to the one-dimensional case; many of the arguments can be used in higher dimensions, but the richer geometry and larger choice of differentiation bases are apt to obscure the natural simplicity of the ideas. Also presented are applications to the Hausdorff and packing measures, as well as to the classical differentiation theory of real functions.

Contents

Covering relations; The variation; Derivates; Absolute continuity and singularity, Measures; Real functions.

1980 Mathematics Subject Classifications: 26A21, 26A24
ISBN 0-8218-2503-8, LC 91-22745, ISSN 0065-9266
96 pages (softcover), September 1991
Individual member $\$ 12$, List price $\$ 20$,
Institutional member \$16
To order, please specify MEMO/452N

rumbencenmennox

STATIONARY SUBDIVISION

Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli

(Memoirs of the AMS, Number 453)
Subdivision methods in computer graphics constitute a large class of recursive schemes for computing curves and surfaces. They seem to have their origin in the geometric problem of smoothing the corners of a given polyhedral surface-in fact, these methods are sometimes called "wood carver" algorithms because the repeated smoothing operations are analogous to sculpting wood.

This book presents a systematic development of the basic mathematical principles and concepts associated with stationary subdivision algorithms. The authors pay special attention to the structure of such algorithms in a multidimensional setting and analyze the convergence issue using appropriate tools from Fourier analysis and functional analysis. The analytic structure of the limiting curves and surfaces is revealed in two ways: The smoothness of these surfaces is determined by certain algebraic properties of the algorithm, while the highest order derivatives of the limiting surfaces are shown to be fractals. Scientists interested in computer graphics, splines, wavelets, and multiresolution analysis should find useful the analytic and algebraic tools developed here.

Contents

Subdivision schemes: Convergence concepts and the associated functional equation; Contractivity of the subdivision operator, Subdivision from dimension compression; Solution of the functional equation; Algebraic properties of subdivision schemes; Matrix refinement equation; Smoothness of S-refinable functions and consequences.

1980 Mathematics Subject Classifications: 41A15, 41A63, 65D15
ISBN 0-8218-2507-0, LC 91-22743, ISSN 0065-9266
186 pages (softcover), September 1991
Individual member \$15, List price \$25,
Institutional member \$20
To order, please specify MEMO/453N

HISTORICAL PROCESSES

Donald A. Dawson and Edwin A. Perkins
 (Memoirs of the AMS, Number 454)

The historical process is constructed to be a superprocess associated with a general motion process and branching mechanism, which is enriched so as to contain information on genealogy. In other words, it is a Markov process taking values in the space of measures on the set of possible histories. Using the canonical representation for the infinitely divisible random measures which describe the process at fixed times, the authors obtain analytical and probabilistic representations for the associated Palm measures. They employ these representations to obtain results on the modulus of continuity and equilibrium structure for a class of superprocesses in \mathbb{R}^{d} and to establish
that super-Brownian motion in dimensions $d \geq 3$ has constant density with respect to the appropriate Hausdorff measure.

Contents

Definitions, preliminaries and generalities; The probabilistic structure of H_{t}; Palm measures and a 0-1 law, Hausdorff measure and the support of super-Lévy processes; The structure of equilibrium measures; Weak convergence of branching particle systems; A modulus of continuity for the supports of super-diffusions.

1980 Mathematics Subject Classifications: 60H15, 60J80, 60J60
ISBN 0-8218-2508-9, LC 91-22744, ISSN 0065-9266
179 pages (softcover), September 1991
Individual member $\$ 15$, List price $\$ 25$,
Institutional member \$20
To order, please specify MEMO/454N

REPRESENTATIONS OF FINITE
DIMENSIONAL ALGEBRAS

H. Tachikawa and V. Dlab, Editors

(Conference Proceedings, Canadian Mathematical Society, Volume 11)
This volume contains the proceedings of the Tsukuba International Conference on Representations of Algebras and Related Topics (fifth ICRA), held at the University of Tsukuba, August 13-18, 1990. The conference focused on the rapid development of research on representations of finite-dimensional algebras and group representations. A subset of the fifty-seven lectures are collected here, together with a number of other papers not originally presented at the conference. With contributions by some of the world's leading experts in this area, this book provides a valuable overview of the frontier of research in representations of algebras.

Contents

I. Agoston and A. P. Dean, P-bases for torsion-free regular modules; H. Asahiba, The selfinjectivity of a local algebra A and the condition $E x t_{A}^{f}(D A, A)=0$; I. Assem, J. Nehring, and W. Schewe, Fundamental domains and duplicated algebras; M. Auslander and I. Reiten, On a theorem of E. Green on the dual of the transpose; V. M. Bondarenko and A. G. Zavadskij, Posets with an equivalence relation of tame type and of finite growth; W. L. Burt and M. C. R. Butler, Almost split sequences for bocses; T. Dana-Picard, 7-dimensional algebras with mixed basis-graph; J. A. de la Peña, The Weyl group of a wild graph; G. D'Este, Algebras with a large dual; D. Happel and L. Unger, A family of infinite-dimensional non-selfextending bricks for wild hereditary algebras; O. Kerner and F. Lukas, Regular modules over wild hereditary algebras; S. Koshitani, On p-radical groups in representation theory of finite groups; N. Marmaridis, Extensions of finite dimensional algebras and tilting modules; H. A. Merklen, On Auslander-Reiten sequences of triangular matrix algebras; V. A. Ponomarev, Lattices $L\left(A_{n}^{\nu}\right) ;$ K. W. Roggenkamp, The structure of the principal p-block with cyclic normal dēféct group; \mathbf{D}. Simson, Two-peak posets of finite prinjective type; A. G. Zavadskij, An algorithm for posets with an equivalence relation.

1980 Mathematics Subject Classification:
ISBN 0-8218-6016-X, LC 91-24244, ISSN 0731-1036
322 pages (softcover), September 1991
Individual member \$55, List price $\$ 92$,
Institutional member \$74
To order, please specify CMSAMS/11N

VISCOSITY SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS Michael Crandall

In this videotaped lecture, Michael Crandall provides an excellent expository introduction to the theory of viscosity solutions of partial differential equations, an area that has come to fruition in recent years through the work of a number of researchers. The theory, which applies to scalar fully nonlinear PDEs of the form $F\left(x, u, D u, D^{2} u\right)=0$, has yielded very general existence and uniqueness theorems. The theory provides an elegant and efficient way to approach cases in which F is a first order Hamilton-Jacobi equation, as well as cases in which $F=0$ is a fully nonlinear uniformly elliptic second order equation. The theory also admits the possibility of solutions u which are nowhere differentiable. Accessible to a general mathematical audience, this lecture provides a good balance of theory and
examples. The topic provides an entré into study of PDEs without an overwhelming dose of technical machinery, and Crandall makes judicious choices about which technical details to include and which to leave out. As a result, this lecture would be especially suitable for beginning graduate students or advanced undergraduates. The videotape is accompanied by lecture notes.
1980 Mathematics Subject Classification: 35
ISBN 0-8218-8062-4
NTSC format on 1/2" VHS videotape; approx. one hour, September 1991 Individual member $\$ 29.95$, List price $\$ 49.95$, Institutional member $\$ 39.95$
To order, please specify VIDEO/66N

Erratum: In the New AMS Publications section of the July/August 1991 Notices, MEMO/448, "The Metric Induced by the Robin Function," incorrectly lists Norman Levenberg and Hiroshi Yamaguchi as editors. They are the authors.

RELIABILITY OF COMPUTER AND COMMUNICATION NETWORKS

Fred Roberts, Frank Hwang, and Clyde Monma, Editors

Reliability problems arise with increasing frequency as our modern systems of telecommunications, information transmission, transportation, and distribution become more and more complex. In December 1989 at DIMACS at Rutgers University, a workshop on Reliability of Computer and Communication Networks was held to examine the discrete mathematical methods relevant to these problems. There were nearly ninety participants, including theoretical mathematicians, computer scientists, and electrical engineers from academia and industry, as well as network practitioners, engineers, and reliability planners from leading companies involved in the use of computer and communications networks. This volume, published jointly with the Association for Computing Machinery, contains the proceedings from this Workshop.

The aim of the Workshop was to identify the latest trends and important open problems, as well as to survey potential practical applications. The Workshop explored questions of computation of reliability of existing systems and of creating new designs to insure high reliability, in addition to the closely related notion of survivability. Redundancy, single stage and multistage networks, interconnected networks, and fault tolerance were also covered. The Workshop emphasized practical applications, with many invited speakers from a variety of companies which are dealing with practical network reliability problems. The success of the Workshop in fostering many new interactions among researchers and practitioners is reflected in the proceedings, which provide an exciting look at some of the major advances at the forefront of this important field of research.

All prices subject to change. Free shipment by surface; for air delivery, please add $\$ 6.50$ per title. Prepayment required. Order from American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 029011571, or call toll free 800-321-4AMS (321-4267) in the continental U.S. and Canada to charge with Visa or MasterCard.

1991 Mathematics Subject Classification: 05, 68, 90, 94 ISBN 0-8218-6592-7, LC 91-9953; ISSN 1052-1798, 247 pages (hardcover), June 1991
Individual member \$26, List price \$43, Institutional member \$34, To order please specify DIMACS/5NA

Proceedings of a DIMACS Workshop • Volume 5

AMS Reports and Communications

Recent Appointments

Committee members' terms of office on standing committees expire on January 31 following the year given in parentheses following their names, unless otherwise specified.

President Michael Artin has appointed the following:

William Browder to the Committee to Select the Winner of the Award for Public Service. Continuing members of the committee are Ronald G. Douglas, chair, Robert M. Fossum (ex officio), John C. Polking, and David P. Roselle; Richard M. Hain (1993), Douglas A. Lind (1993), and Henry Pinkham (1993) to the Committee on Centennial Fellowships. John B. Wagoner (1992) has been appointed chair. Continuing members of the committee are Robert L. Bryant (1992), Joseph Lipman (1992), and Raghavan Narasimhan (1992). Terms expire on June 30; Vaughan F. R. Jones (1994), Jane Cronin Scanlon (1994), and Jean Taylor (1994) to the Committee to Select the Winner of the Steele Prize. Continuing members of the committee are Sylvain E. Cappell (1993), Alexandre J. Chorin (1992), William J. Haboush (1992), Arthur M. Jaffe (1992), Harry Kesten (1993), Joseph J. Kohn (1993), George Lusztig (1992), and Mark Mahowald, chair (1992). Terms expire on June 30; Robert M. Fossum, Ramesh A. Gangolli, M. Susan Montgomery, Mary Ellen Rudin, and David A. Sanchez to an ad hoc AMS-MAA Committee on Cooperation. The other members of the committee are Jerry Alexanderson, Michael Artin (ex officio), Susan Forman, Deborah T. Haimo (ex officio), Don Kreider, Andrew Sterrett, and Alan C. Tucker; Robert R. Phelps to the ad hoc AMS-MAA-SIAM Committee
on Preparation for College Teaching. Other members of the commttee are Donald W. Bushaw, Bettye Anne Case, chair, Robert H. McDowell, Richard S. Millman, Richard D. Ringeisen, Stephen B. Rodi, and Guido L. Weiss.

Presidents Deborah T. Haimo (MAA) and Michael Artin (AMS) have appointed Thomas E. Armstrong, John Chollet, Sister Marie A. Dowling, James Gilroy, William H. Jaco (ex officio), Alan F. Karr, Nathaniel Knox, Robert LeWand, George Mackiw, Kenneth A. Ross (ex officio), Lance W. Small (ex officio), and Marcia P. Sward (ex officio) to the AMS-MAA Arrangements Committee for the Baltimore Meeting. Professor Kart has been appointed chair.

Richard P. Stanley (1994) was appointed as representative to the Committee on American Mathematics Competition by Ex-President William Browder. The term expires on June 30.

Statistics on Women Mathematicians Compiled by the AMS

At its August 1985 meeting, the Council of the AMS approved a motion to regularly assemble and report in Notices information on the relative numbers of men versus women in at least the following categories: membership in the AMS; invited hour addresses at AMS meetings; speakers at special sessions at AMS meetings; and members of editorial boards of AMS journals.

It was subsequently decided that this information would be gathered by determining the sex of the individuals in the above categories based on name identification and that additional information on the number of Ph.D.'s granted to women would also be collected using the AMS-MAA Annual Survey. Since name identification was
used, the information for some categories necessitated the use of four classifications:

Male: names that were obviously male;

Female: names that were obviously female;

Unknown: names that could not be identified as clearly male or female (e.g., only initials given); and

Foreign: foreign names that could not be identified as clearly male or female.

The following is the sixth reporting of this information. Updated reports will appear annually in Notices.

Members of the AMS Residing in the U.S. Male: 14,188		
Female:	3,151	716
Unknown:	1,947	10%
Foreign:	523	3%
Total checked:	19,809	
Invited Hour Address Speakers		
at AMS Meetings (1981-1990)		
Male:	357	93%
Female:	28	7%
Unknown:	1	0%
Foreign:	0	0%
Total checked:	386	

Speakers at Special Sessions		
at AMS Meetings (1986-1990)		
Male:	3,528	83%
Female:	290	7%
Unknown:	204	5%
Foreign:	198	5%
Total checked:	4,220	

Trustees and Council Members							
		1990		1989		1988	

Members of Editorial Boards of AMS Journals																				
	1990		1989		1988		1987		1986		1985		1984		1983		1982		1981	
Total:	183		194		161		133		109		102		93		90		83		85	
Male:	171	93\%	182	94\%	148	92\%	125	94\%	104	95\%	94	92\%	85	91\%	84	93\%	77	93\%	79	93\%
Female:	12	7\%	11	6\%	13	8\%	8	6\%	5	5\%	8	8\%	8	9\%	6	7\%	6	7\%	6	7\%

Ph.D.s Granted to U.S. Citizens

	1990		1989		1988		1987		1986		1985		1984		1983		1982		1981	
Total:	401		411		363		362		386		396		433		455		519		567	
Male:	312	78\%	313	76\%	287	79\%	289	80\%	304	79\%	315	80\%	346	80\%	366	80\%	431	83\%	465	\%
Female:	89	22\%	98	24\%	76	21\%	73	20\%	82	21\%	81	20\%	87	20\%	89	20\%	88	17\%	102	18\%

MEMOIRS
 of the American Mathematical Society
 Volume 90

Abstract

Maximal Subgroups of Exceptional Algebraic Groups Gary M. Seitz Number 441 The goal of this book is the determination of the maximal closed connected subgroups of the simple algebraic groups of exceptional type. The main result recovers the results of Dynkin and extends them to cover the case of algebraic groups over algebraically closed fields of positive characteristic. The author first reduces to the case of semisimple subgroups, and then studies them via their action on the Lie algebra of the overlying exceptional group. The analysis is facilitated by a particular 1-dimensional torus of the subgroup which determines a labelling of the Dynkin diagram of the exceptional group. The results of this paper, when combined with previous results concerning maximal subgroups of classical algebraic groups, yield a reasonably complete analysis of the maximal closed connected subgroups of simple algebraic groups.

1980 Mathematics Subject Classifications: 20 ISBN 0-8218-2504-6, LC 90-26491,
ISSN 0065-9266
197 pages (softcover), March 1991
Individual member \$16,
List price $\$ 26$,
Institutional member \$21
To order please specify MEMO/441NA

Boundedness Results for Operators with Singular Kernels on Distribution Spaces
Rodolfo H. Torres
Number 442

Discrete decomposition techniques for spaces for functions or distributions are very useful tools for studying many problems in analysis. In this work, the author uses this type of decomposition, associated with the so-called \varnothing-transform and wave-let-transform theories, to analyze a large class of operators, including pseudodifferential operators, Calderón-Zygmund operators, and other operators with singular kernels. The methods used combine Littlewood-Paley type characterizations of spaces of distributions with certain atomic and molecular decompositions. In this way, the study of operators on most of the classical function spaces-such as Hardy spaces, Besov-Lipschitz spaces, and Sobolev spaces-can be accomplished in a unified manner. The book is written in an expository style that makes it suitable for advanced graduate students in analysis

```
1980 Mathematics Subject Classifications: 43;
46,47
ISBN 0-8218-2505-4, LC 90-26446,
ISSN 0065-9266
172 pages (softcover), March }199
Individual member $11, List price $18,
Institutional member $14
To order please specify MEMO/442NA
```


Mapping Class Groups of Low Genus and Their Cohomology
 D.J. Benson and F.R. Cohen Number 443

This book is concerned with the calculation of the cohomology of the mapping class group of a closed oriented surface of genus two. The methods used involve braid groups, modular representations of symmetric groups, and configuration spaces.

1980 Mathematics Subject Classifications: 57, 20; 55
ISBN 0-8218-2506-2, LC 90-26421,
ISSN 0065-9266
104 pages (softcover), March 1991
Individual member \$12, List price \$20, Institutional member $\$ 16$
To order please specify MEMO/443NA

[^33]
Officers and Committee Members

Numbers to the left of headings are used as points of reference in a index to AMS committees which follows this listing. Primary and secondary headings are:

1 Officers
1.1 Liaison Committee

2 Council
2.1 Executive Committee of the Council

3 Board of Trustees
4 Committees
4.1 Committees of the Council
4.2 Editorial and Communications Committees
4.3 Committees of the Board of Trustees
4.4 Internal Organization of the AMS
4.5 Program and Meetings
4.6 Status of the Profession
4.7 Prizes and Awards
4.8 Institutes and Symposia
4.9 Joint Committees

5 Representatives
6 Index
Terms of members expire on January 31 following the year given unless otherwise specified.

1. Officers

President	Michael Artin	1992
Ex-President	William Browder	1991
Vice-Presidents	Lenore Blum	1992
	Chandler Davis	1993
	Dennis P. Sullivan	1991
Secretary	Robert M. Fossum	1992
Associate		1992
Secretaries	Joseph A. Cima	1992
	W. Wistar Comfort	1991
	Andy Roy Magid	1991
	Lance W. Small	1992
Treasurer	Franklin P. Peterson	
Associate		
Treasurer	Steve Armentrout	1992

1.1. Liaison Committee

All members of this committee serve ex officio.

Chair	Michael Artin
	Robert M. Fossum
	Franklin P. Peterson

2. Council

2.0.1. Officers of the AMS

President	Michael Artin	1992
Ex-President	William Browder	1991
Vice-Presidents	Lenore Blum	1992
	Chandler Davis	1993
	Dennis P. Sullivan	1991
Secretary	Robert M. Fossum	1992

Associate			
Secretaries*	Joseph	Cima	1992
	W. Wis	Comfort	1992
	Andy	Magid	1991
	Lance	Small	1991
Treasurer	Frankli	P. Peterson	1992
Associate			
Treasurer	Steve	nentrout	1992
2.0.2. Representatives of Committees			
American Journal of			
Mathematics	M. Sala	Baouendi	1992
Bulletin	Richard	S. Palais	1992
Colloquium	Charles	L. Fefferman	1991
Journal of the AMS	Wilfrie	Schmid	
Committee to Monitor			
Problems in			
Communication	Arthur	Jaffe	1991
Mathematical Reviews	B. A.		1992
Mathematical Surveys and			
Mathematics of Computation			
	Walter	autschi	1992
Proceedings	William	J. Davis	1991
Science Policy Committee			
	Michae	C. Reed	1992
Transactions and Memoirs			
	David J.	Saltman	1994
2.0.3. Members-at-Large			
Jonathan L. Alperin	1991	Frank Gilfeather	1993
Sheldon Axler	1992	Carl Pomerance	1992
Joan S. Birman	1992	Michael C. Reed	1991
Fan R. K. Chung	1991	Hugo Rossi	1992
Charles Herbert Clemens	1992	William P. Thurston	1991
Lawrence J. Corwin	1991	Steven H. Weintraub	1993
David A. Cox	1993	Ruth J. Williams	1993
John M. Franks	1993	Shing-Tung Yau	1992

2.1. Executive Committee of the Council

Chair | Michael Artin | ex officio | |
| :--- | :--- | ---: |
| | M. Salah Baouendi | 1993 |
| | William Browder | ex officio |
| Robert M. Fossum | ex officio | |
| | Arthur M. Jaffe | 1994 |
| | Hugo Rossi | 1992 |
| | William P. Thurston | 1991 |

3. Board of Trustees

| | Steve Armentrout
 Michael Artin |
| :--- | :--- | | ex officio |
| :--- |
| ex officio |

[^34]

4.3.6. Endowment			4.4. Internal Organization of the				
	Andrew M. Gleason			ematical Socie			
Chair	W. Ted Martin Cathleen S. Morawetz						
			Standing Committees				
4.3.7. Investment							
			4.4.1. Archives				
	Frederick W. Gehring	1992	Andrew M. Gleason				
Chair	Franklin P. Peterson			Franklin P. Peterson			
			Chair4.4.2.	Everett Pitcher			
4.3.8. Legal Aid	Steve Armentrout			4.4.2. Committee on Committees			
				James G. Arthur	1992		
Chair				Michael Artin	ex officio		
				M. Salah Baouendi	1992		
4.3.9. Long Range Planning			Chair	Lenore Blum	1992		
All members of this committee serve ex officio.				Robert M. Fossum John M. Franks	ex officio		
M. Salah Baouendi				Tsit-Yuen Lam	1992		
Robert M. Fossum				Joshua A. Leslie	1992		
Frederick W. Gehring				George R. Sell	1992		
Ronald L. Graham				James D. Stasheff	1992		
William H. Jaco				William Velez	1992		
Franklin P. Peterson				Sylvia M. Wiegand	1992		
Chair	Hugo Rossi		4.4.3. Library Committee				
	Wilinam P. Thurston		Co-chair Nancy Anderson				
4.3.10. Membership			Richard A. Askey				
Consultant	M. Salah Baouendi 1993			Dorothy McGarry			
	Susan Friedlander 1992		Co-chai				
Chair			James Rovnyak				
	Frederick W. Gehring	1992		Mary Ann Southern			
	Wen-Ching Li Hugo Rossi	1993		Jack Weigel			
	Hugo Rossi 1991						
4.3.11. The Publication Program				Ad Hoc Committees			
Chair	Steve Armentrout	1993	4.4.4. Applications of Mathematics				
	Robert Devaney	1992	Frederick \mathbf{J}. Almgren, Jr. Chair Jerry L. Bona				
	Robert M. Fossum	ex officio					
	Eric Friedlander	1992	Chair	Jerry L. Bona Hermann Flaschka			
	Ramesh A. Gangolli	1992		Hermann Flaschka			
	William H. Jaco	ex officio		David Mumford			
	Cathleen S. Morawetz	1991		Ivar Stakgold			
	Andrew M. Odlyzko	1992		Hans F. Weinberger			
	John C. Polking	ex officio		Hans F. Weinberger			
	Paul J. Sally, Jr.	ex officio	4.4.5. 1990 Election Tellers				
4.3.12. Salaries			Leo P. Comerford, Jr. Robert E. Megginson				
All members of this committee serve ex officio.							
	Steve Armentrout		4.5. Program and Meetings				
Chair			Frederick W. Gehring				
	Franklin P. Peterson		Standing Committees				
	Paul J. Sally, Jr.						
4.3.13. Staff and Services			4.5.1. Program Committee for National Meetings				
Chair	Steve Armentrout Franklin P. Peterson Paul J. Sally, Jr.	ex officio ex officio		James G. Arthur	1991		
				Spencer Bloch	1992		
				Robert M. Fossum	ex officio		
				Dusa McDuff	1993		
Ad Hoc Committee				Peter Sarnak	1991		
				Nancy K. Stanton	1993		
			Chair	Jean E. Taylor	1991		
4.3.14. Institutional Membership			4.5.2. Central Section Program Committee				
Consultant	Carol-Ann Blackwood			John M. Franks 1992			
	Ramesh A. Gangolli			Carolyn S. Gordon	1991		
Chair	Frederick W. Gehring Donovan H. Van Osdol William A. Veech	ex officio	Chair	Robert Griess	1991		
				Andy Roy Magid	ex officio		
				Jang-Mei Wu	1992		

4.9.3. AMS-ASA-AWM-IMS-MAA-NCTM-SIAM Committee on Women in the Mathematical Sciences
NCTM members' terms expire April 1 of the year given.

	Marsha J. Berger (SIAM)	1992
	Marjorie M. Enneking (NCTM)	1992
Chair	Nancy Floumoy (IMS)	1992
	Susan Geller (AMS)	1991
	Sue E. Goodman (AMS)	1992
	Mary Hesselgrave (MAA)	1991
	Joan Hutchinson (AWM)	1993
	Jeanne W. Kerr (AMS)	1992
	Edith Luchins (MAA)	1991
	Joyce R. McLaughlin (SIAM)	1993
	Anne Parkhurst (ASA)	1991
	Magda Peligrad (IMS)	1992
	Linda R. Petzold (SIAM)	1992
	Frances Rosamond (MAA)	1992
	M. Beth Ruskai (AMS)	1991
	Alice T. Schafer (MAA)	1993
	Evelyn Silvia (AWM)	1993

4.9.4. AMS-ASL-IMS-SIAM Committee on Translations from Russian and Other Slavic Languages
 Chair Peter Landweber (AMS) 1991

AMS Subcommittee Members

Consultant	V. I. Arnol'd David G. Ebin	1991
Consultant	S. G. Gindikin Consultant Chair	Askol'd Georgievic Khovanskii Peter Landweber (AMS)
	Alexander Lichtman	1991
Consultant	Arunas Liulevicius	1991
	N. K. Nikol'skii	1993
	Washek Pfeffer	1993
ASL Subcommittee Members		
Chair	Vladimir Lifschitz	1993
	Elliott Mendelson	1992
	Grigori Mints	1993
	Benjamin F. Wells	1992

IMS Subcommittee Members

Chair | | M. I. Freidlin |
| :--- | :--- |
| | B. Pittel |
| | A. Rukhin |
| | W. J. Studden |

4.9.5. AMS-IMS-SIAM Committee on Joint Summer Research Conferences in the Mathematical Sciences

Terms expire on June 30

	John A. Burns (SIAM)	1992
	Fan R. K. Chung (AMS)	1993
Chair	Leonard Evens (AMS)	1993
	Martin Golubitsky (SIAM)	1992
	Anthony W. Knapp (AMS)	1992
	Peter W. K. Li (AMS)	1993
	Emanuel Parzen (IMS)	1991
	Stewart B. Priddy (AMS)	1994
	Michael Shub (AMS)	1994
	Gregg J. Zuckerman (AMS)	1992

4.9.6. AMS-LMS Joint Program Committee

William Abikoff (AMS)
Sir Michael Atiyah (LMS)
J. M. Ball (LMS)

Hyman Bass (AMS)
Robert M. Fossum (AMS)
Sir John Kingman (LMS)

4.9.7. AMS-MAA Data Committee

Edward A. Connors (AMS) 1993
Consultant
Lincoln K. Durst
John D. Fulton (MAA)
1991
James F. Hurley (AMS) 1991
Charlotte Lin (AMS) 1992
Don O. Loftsgaarden (MAA) 1993
David J. Lutzer (MAA)
James W. Maxwell (AMS) ex officio
Chair Donald E. McClure (AMS) 1993
Donald C. Rung (AMS) 1992

4.9.8. AMS-MAA Committee on Teaching Assistants

 and Part Time Instructors (TA/PTI)| Thomas F. Banchoff (AMS) | 1992 |
| :--- | :--- |
| Edward A. Connors (AMS) | 1991 |
| Stephen A. Doblin (MAA) | 1991 |
| John P. Huneke (MAA) | 1992 |
| Don R. Lick (MAA) | 1991 |
| Shelba J. Morman (MAA) | 1992 |
| Thomas T. Read (AMS) | 1991 |

4.9.9. AMS-MAA Joint Archives Committee
 Leonard Gillman
 Uta C. Merzbach
 Everett Pitcher
 Chair Sanford L. Segal

4.9.10. AMS-MAA Joint Meetings Committee

All members of this committee serve ex officio.

Consultant	H. Hope Daly
Chair	Robert M. Fossum
	William H. Jaco
	Kenneth A. Ross
	Marcia P. Sward

4.9.11. AMS-MAA Arrangements Committee for the Baltimore Meeting January 8-11, 1992

Thomas E. Armstrong	
John Chollett	
Sister Marie A. Dowling	
James F. Gilroy	
William H. Jaco	ex officio
Alan F. Karr	
Nathaniel Knox	
Robert LeWand	
George Mackiw	ex officio
Kenneth A. Ross	ex officio
Lance W. Small	ex officio

4.9.12. AMS-MAA Joint Program Committee for the Baltimore Meeting

> Roger Horn (MAA)
> Raymond L. Johnson (AMS)
> Gerald Porter (MAA)
> Nancy K. Stanton (AMS)
4.9.13. AMS-MAA Arrangements Committee for the
Orono Meeting
August 8-11, 1991
Joseph A. Cima
Clayton Dodge
Pao Sheng Hsu
William H. Jaco
Philip Locke
John Mairhuber
Grattan Murphy
Kenneth A. Ross
Charles Slavin
Donald B. Small
William Soule
Marcia P. Sward ex officio \quad ex officio
4.9.14. AMS-MAA Joint Program Committee for the Orono Meeting

	Peter Gilkey (AMS)
	Gerald J. Porter (MAA)
	Jean E. Taylor (AMS)
Chair	Audrey A. Terras (MAA)

4.9.15. AMS-MAA Committee on Summer Meetings

Consultant	H. Hope Daly (AMS) Robert M. Fossum (AMS) Co-chair
	William H. Jaco (AMS)
Co-chair	Gerald J. Porter (MAA)
	Kenneth A. Ross (MAA)
	John M. Smith (MAA)

4.9.16. AMS-MAA-SIAM Joint Administrative Committee
All members of this committee serve ex officio.
Gerald L. Alexanderson (MAA)
I. Edward Block (SIAM)

Chair Robert M. Fossum (AMS)
Samuel Gubins (SIAM)
William H. Jaco (AMS)
Donald L. Kreider (MAA) Robert E. O'Malley, Jr. (SIAM) Franklin P. Peterson (AMS) Marcia P. Sward (MAA)
4.9.17. AMS-MAA-SIAM Joint Committee on Employment Opportunities

Stanley Benkoski (AMS)	1993
Peter E. Castro (SIAM)	1992
Ronald M. Davis (MAA)	1993
James W. Maxwell	ex officio
S. Brent Morris (AMS)	1991
Marc A. Rieffel (MAA)	1991
Leon H. Seitelman (SIAM)	1991

4.9.18. AMS-MAA-SIAM Joint Policy Board

for Mathematics (see 1991 Mathematical Sciences Professional Directory, page 27)

4.9.19. AMS-SIAM Committee on Applied Mathematics

	James M. Hyman	1993
	Andrew J. Majda	1992
	Lawrence A. Shepp	1991
	Michael Shub	1993
Chair	Joel Spencer	1992
	Gilbert Strang	1991

4.9.20. AMS-SIAM Committee to Screen Applicants

 for Graduate Study from the People's Republic of China$\left.\begin{array}{lll} & \begin{array}{c}\text { David Benney } \\ \text { Robert Bryant }\end{array} \\ \text { 4.9.21. AMS-SIAM-SMB Committee on } \\ \text { Mathematics in the Life Sciences }\end{array}\right)$

Ad Hoc Committees
4.9.22. AMS-MAA Committee on Cooperation

Jerry Alexanderson
Michael Artin ex officio
Susan Forman
Robert M. Fossum
Ramesh A. Gangolli
Deborah T. Haimo
ex officio
Don Kreider
M. Susan Montgomery

Mary Ellen Rudin
David A. Sanchez
Andrew Sterrett
Alan C. Tucker

4.9.23. AMS-MAA-SIAM Committee on Preparation for College Teaching

Chair
Donald W. Bushaw
Bettye Anne Case
Robert H. McDowell
Richard S. Millman
Robert R. Phelps
Richard D. Ringeisen
Stephen B. Rodi
Guido L. Weiss

5. Representatives

5.0.1. Advisory Board of the National Translations Center of the John Crerar Library
 Ralph P. Boas

5.0.2. American Association for the Advancement of Science
Terms expire on February 12
Section A Cathleen S. Morawetz 1992
Section B Clifford Taubes 1992
Section L Richard A. Askey 1992
Section Q Jerry L. Bona 1992
Section T Martin D. Davis 1992

5.0.3. Commission on Professionals in Science and Technology
 ```Edward A. Connors```

5.0.4. Committee on the American Mathematics Competition
Term expires on June 30
5.0.5. Conference Board of the Mathematical SciencesMichael Artin1992
5.0.6. Fulkerson Prize Committee
Alan J. Hoffman
5.0.7. MAA Committee on Guidelines
Donovan H. Van Osdol 1992
5.0.8. MAA Committee on Undergraduate Program in Mathematics
Harvey B. Keynes 1993
5.0.9. U.S. National Committee on Theoretical and Applied Mechanics
Term expires on October 31
Constantine M. Dafermos 1992
6. Index
1990 Election Tellers 4.4.5
ABC Committee 4.3.1
AMS Liaison Committee with Deutsche Mathematiker Vereinigung 4.9 .1
AMS-AAAS-MAA Committee on Opportunities in Mathematics for Underrepresented Minorities 4.9.2
AMS-ASA-AWM-IMS-MAA-NCTM-SIAM Committee on Women in the Mathematical Sciences 4.9.3
AMS-ASL-IMS-SIAM Committee on Translations from Russian and Other Slavic Languages 4.9 .4
AMS-IMS-SIAM Committee on Joint Summer Research Conferences in the Mathematical Sciences 4.9 .5
AMS-LMS Joint Program Committee 4.9.6
AMS-MAA Arrangements Committee for the Baltimore Meeting January 8-11, 1992 4.9.11
AMS-MAA Arrangements Committee for the Orono Meeting August 8-11, 1991 4.9 .13
AMS-MAA Committee on Cooperation 4.9 .23
AMS-MAA Committee on Summer Meetings 4.9 .16
AMS-MAA Committee on Teaching Assistants and Part Time Instructors (TA/PTI) 4.9 .8
AMS-MAA Data Committee 4.9 .7
AMS-MAA Joint Archives Committee 4.9 .9
AMS-MAA Joint Meetings Committee 4.9 .10
AMS-MAA Joint Program Committee for the Baltimore Meeting 4.9 .12
AMS-MAA Joint Program Committec for the Orono Meeting 4.9 .14
AMS-MAA-SIAM Committee on Preparation for College Teaching 4.9.24
AMS-MAA-SIAM Joint Administrative Committee 4.9.17
AMS-MAA-SIAM Joint Committee on Employment Opportunities 4.9 .18
AMS-MAA-SIAM Joint Policy Board for Mathematics (see 1991 Mathematical Sciences Professional Directory, page 27) 4.9 .19
AMS-SIAM Committee on Applied Mathematics 4.9.20
AMS-SIAM Committee to Screen Applicants for Graduate Study from the People's Republic of China 4.9.21
AMS-SIAM-SMB Committee on Mathematics in the Life Sciences 4.9.22
Abstracts Editorial Committee 4.2.1
Academic Freedom, Tenure, and Employment Security 4.6.1
Academic Review 4.6.2
Administrative Committee 4.9.17
Advisory Board of the National Translations Center of the John Crerar Library 5.0.1
Agenda and Budget 4.3.1
Agenda for Business Meetings 4.5.6
American Association for the Advancement of Science 5.0.2
American Journal of Mathematics, Society's Representatives 4.2.2
American Mathematics Competition, Committee on 5.0.4
Appeals Committee on Discounted Subscriptions 4.3.2
Applications of Mathematics 4.4.4
Applied Mathematics, AMS-SIAM Committee on 4.9 .20
Archives 4.4.1
Arrangements Committee for the Baltimore Meeting 4.9.11
Arrangements Committee for the Orono Meeting 4.9.13
Audit 4.3.3
Automatic Theorem Proving, Committee to Recommend Winners of Prizes for 4.7.7
Award for Public Service, Committee to Select the Winner of 4.7.1
Board of Trustees 3
Bulletin (New Series) 4.2.3
CAFTES 4.6.1
CBMS 5.0.5
CSP 4.6.8
Centennial Fellowships 4.7.2
Central Section Program Committee 4.5.2
Chinese, Translation from 4.2.17
Cole Prize, Committee to Select the Winner of 4.7.8
Collected Works 42.4
Colloquium 4.2.5
Comm-Comm 4.2.6
Commission on Professionals in Science and Technology 5.0.3
Committee on Committees 4.4.2
Committee on the American Mathematics Competition 5.0.4
Committee to Monitor Problems in Communication 4.2.6
Committees 4
Committees of the Board of Trustees 4.3
Committees of the Council 4.1
Communication, Committee to Monitor Problems in 4.2.6
Computer Operations and Facilities, Visiting Committee on 43.4
Conference Board of the Mathematical Sciences 5.0.5
Contemporary Mathematics 4.2.7
Cooperation with Latin American Mathematicians 4.6.10
Cooperative Symposia 4.8.1
Coordinating Committee for the Doctoral Program in Mathematics 4.6.11
Corporate Relations 4.3 .5
Council 2
Data Committee 4.9.7
Deutsche Mathematiker Vereinigung, AMS Liaison Committee with 4.9.1
Developing Countries, Service to Mathematicians in 4.6.9
Discounted Subscriptions, Appeals Committee on 4.3.2
Doctoral Program in Mathematics, Coordinating Committee for 4.6.11
EC 2.1
Eastern Section Program Committee 4.5.3
Editorial Boards 4.1. 1
Editorial and Communications Committees 4.2
Education 4.6.3
Education in Mathematics, Liaison Committee on 4.6.5
Election Tellers 4.4.5
Employment Opportunities 4.9.18
Endowment 4.3.6
Ethics 4.6.7
Executive Committee of the Council 2.1
Fulkerson Prize Committee 5.0.6
Gibbs Lecturer for 1991 and 1992, Committee to Select 4.5.7
Graduate Studies in Mathematics 4.2.8
Graduate Study from the People's Republic of China 4.9.21
Guidelines, MAA Committee on 5.0.7
History of Mathematics 4.2.19
Human Rights of Mathematicians 4.6.4
Index 6
Institutes and Symposia. 4.8
Institutional Membership 4.3.14
Internal Organization of the American Mathematical Society 4.4
Investment 4.3.7
JCEO 4.9.18
JPBM 4.9.19
Japanese, Translation from 4.2.18
Joint Administrative Committee 4.9.17
Joint Archives Committee 4.9.9
Joint Committees 4.9
Joint Meetings Committee 4.9.10
Joint Policy Board 4.9.19
Joint Summer Research Conferences 4.9.5
Journal of the AMS 4.2.9
LRP 4.3.9
Latin American Mathematicians, Cooperation with 4.6.10
Legal Aid 4.3.8
Liaison Committee 1.1
Liaison Committee on Education in Mathematics 4.6.5
Liaison Committee with AAAS 4.8.2
Library Committee 4.4.3
Life Sciences 4.9.22
Long Range Planning 4.3.9
MAA Committee on Guidelines 5.0.7
MAA Committee on Undergraduate Program in Mathematics 5.0 .8
Mathematical Reviews 4.2 .10
Mathematical Surveys and Monographs 4.2.11
Mathematicians in Developing Countries, Service to 4.6.9
Mathematics in the Life Sciences 4.9.22
Mathematics of Computation 4.2.12
Members-at-Large 2.0.3
Membership 4.3.10
Memoirs 4.2.16
Monitor Problems in Communication, Committee to 4.2.6
Monographs 4.2.11
National Awards and Public Representation 4.7 .3
National Meetings 4.5.1
National Translations Center of the John Crerar Library, Advisory Board of the 5.0.1
Nominating Committee 4.1.2
Notices 4.2.13
Officers 1
Officers of the AMS 2.0.1
Opportunities in Mathematics for Underrepresented Minorities 4.9 .2
PSAM 4.2.15
Pi Mu Epsilon Liaison Committee 4.6.6
Prizes and Awards 4.7
Proceedings 4.2.14
Proceedings of Symposia in Applied Mathematics 4.2.15
Professional Ethics 4.6.7
Professionals in Science and Technology, Commission on 5.0.3
Program Committees:
Central. 4.5.2
Eastern 4.5.3
National Meetings 4.5.1
Southeastern 4.5.4
Western 4.5.5
Program and Meetings 4.5
Progress in Mathematics 4.5.8
Publication Program 4.3.11
Representatives 5
Representatives of Committees 2.0.2
Reprinted Books 4.2.20
Russian and Other Slavic Languages, Translations from 4.9.4
Salaries 4.3.12
Satter Prize for 1991, Committee to Select the Winner of the 4.7.5
Science Policy 4.6.8
Service to Mathematicians in Developing Countries 4.6.9
Sigma Xi Liaison Committee 4.6.12
Southeastern Section Program Committee 4.5.4
Soviet Mathematicians, Committee to Study Relations with 4.6.13
Special Symposia 4.8.3
Staff Salaries 4.3.12
Staff and Services 4.3.13
Status of the Profession 4.6
Steele Prizes 4.7.6
Subcommittee on Appointments of the Committee on National Awards and Public Representation 4.7.4
Subscriptions 4.3.2
Summer Institutes and Special Symposia 4.8.3
Summer Research Conferences 4.9.5
Tellers, 1990 Election 4.4.5
The Publication Program 4.3.11
Theoretical and Applied Mechanics 5.0.9
Transactions 4.2 .16
Transactions and Memoirs 4.2.16
Translations:
4.2.17
4.2.17
Chinese 4.2.18
Russian and Other Slavic Languages 4.9.4
Trustees3
U.S. National Committee on Theoretical and Applied Mechanics 5.0 .9
Undergraduate Program in Mathematics, MAA Committee on 5.0.8
Underrepresented Minorities 4.9.2
University Lecture Series 4.2.21
Western Section Program Committee 4.5.5
Women in the Mathematical Sciences 4.9.3

This is the second edition of The Joy of $T_{E} X$, the user-friendly guide to $\mathcal{A} \mathcal{M S}-T_{E X}$, which is a software package based on the revolutionary computer typesetting language $T_{E X} X \mathcal{A} \mathcal{M} \mathcal{S}-T_{E} \mathrm{X}$ was designed to simplify the typesetting of mathematical quantities, equations, and displays, and to format the output according to any of various preset style specifications. This second edition of Joy has been updated to reflect the changes introduced in Version 2.0 of the $\mathcal{A} \mathcal{M} \mathcal{S}-T_{E X}$ macro package.

The first two parts of the manual, "Starters" and "Main Courses," teach the reader how to typeset the kind of text and mathematics one ordinarily encounters. "Sauces and Pickles," the third section, treats more exotic problems and includes a 60 -page dictionary on special techniques. The manual also includes descriptions of conventions of mathematical typography to help the novice technical typist. Appendices list handy summaries of frequently used and more esoteric symbols.

This manual will prove useful for technical typists as well as scientists who prepare their own manuscripts. For the novice, exercises sprinkled generously throughout each chapter encourage the reader to sit down at a terminal and learn through experimentation.

1980 Mathematics Subject Classifications: 00, 68 ISBN 0-8218-2997-1, LC 90-1082
320 pages (softcover), September 1990
Indilldual member $\$ 30$, List price $\$ 38$,
Instiutional member \$34
To order, please specify JOYT/NA

All prices subject to change. Free shipment by surface; for air delivery, please add $\$ 6.50$ per title. Prepayment required. Ordor from American Mathematical Society, P.O. Box 1571, Annex Station, Providence, R102901-1571, or call toll tree 800-321-4AMS (321-4267) in the continental U.S. and Canada to charge with VISA or MasterCard.

Miscellaneous

Personals

John L. Harer, of the University of Michigan, was appointed Radford Professor of Mathematics and Department Head at Washington and Lee University, as of July 1, 1991.

Dale W. Lick, President and Professor of Mathematics, University of Maine, will become President and Professor of Mathematics, Florida State University, on August 1, 1991.

Henry Sharp, Jr., Radford Professor of Mathematics and Department Head at Washington and Lee University, retired in April 1991 and was named Radford Professor Emeritus by the University's Board of Trustees.

Deaths

John E. Berterman, of Alexandria, Virginia, died on March 2, 1991, at the age of 64 . He was a member of the Society for 41 years.

Siegfried R. Goldner, Professor Emeritus of the University of Stellenbosch, died on June 19, 1989, at the age of 72 . He was a member of the Society for 31 years.

William F. Hill, Retired Professor of East Texas State University, died on January 26, 1991, at the age of 73. He was a member of the Society for 35 years.

Robert J. Lambert, Professor/ Associate Director Emeritus of Iowa State University, died on April 22,

1991, at the age of 69 . He was a member of the Society for 41 years.

Donald B. Owen, of Southern Methodist University, died on May 5, 1991, at the age of 69 . He was a member of the Society for 43 years.

Heinz Schoneborn, of Rheinisch Westälische Technische Hochschule Aachen, died on June 20, 1991, at the age of 69 . He was a member of the Society for 27 years.

Helen F. Story, of Largo, Florida, died on June 20, 1991, at the age of 87. She was a member of the Society for 39 years.

Lys A. Waltien, of the New York City Board of Education, died on March 27, 1991, at the age of 56 . She was a member of the Society for 1 year.

Memorial Gifts and Commemorative Gifts to the American Mathematical Society

You have an opportunity to honor the memory of a colleague, friend or family member with a memorial gift in support of the Society's work to promote mathematical scholarship and research.

If you would like to make a donation, please complete the attached form and return it to the address below. The Society will acknowledge your gift by sending notification to the person you
designate. In addition an acknowledgement will be sent to you upon receipt of the gift.

Memorial gifts to the Society, or gifts in honor of special occasions are a distinctive way to remember a colleague, friend or family member while supporting the work of the American Mathematical Society.

New Members of the AMS

ORDINARY MEMBERS

Ahmad Abbasi, Ferdowsi Univ of Mashad, Iran
Julie Maria Aguirre, El Cerrito, CA
Jeremy David Avigad, Berkeley, CA
Francoise Axel, Univ of Paris-Sud. Orsay, France
John C Baltzer, J C Baltzer AG, Basel, Switzerland
Kenneth David Berg, IBM, Tampa, FL
Bernd H Borchert, Heidelberg, Germany
Sharon G Boswell, Univ of Newcastle, Australia
Valleri L Boyd, Laurel, MD
William Reid Boyd, Dorset, England
Are Magnus Bruaset, Univ of Oslo, Norway
Philippe C Byrnes, Palo Alto, CA
Javier Campos, Univ of Zaragoza, Spain
Santiago Agustin Cardenas, Malaga, Spain
Manuel Jesus Castro, Malaga. Spain
Li Chao, Laramie, WY
Stan Chirita, Iasi, Romania
Thomas J Chung, Kalamazoo, MI
Jannie I Clookey, Middlebury College, VT
Jerry Clayton Collins, Vanderbilt Univ, Nashville, TN
Ted J Courant, Univ of California Santa Cruz
Teresa Crespo, Univ of Barcelona. Spain
Matthew J Dyer, Univ of Notre Dame, IN
Sait M Eroglu, Karadeniz Technical Univ, Trabzon, Turkey
Ali R Faiz, Pennington Gap, VA
Jill Marie Fantauzza, Hoboken, NJ
Samuel L Ferguson, Laurel, MD
Albert Meads Fisher, Yale Univ, New Haven, CT
Ron Fitzgerald, HBJ Holt College Publishers of Canada, Toronto, Ontario
Liviu Florescu, Univ Al Cuza Iasi, Romania
Jose Maria Gallardo, Malaga, Spain
Joaquin M Gutierrez Del Alamo, ETS de Ingenieros Industriales, Madrid, Spain

Florin Iacob, Univ Al Cuza Iasi, Romania
Richard Ottmar Jozsa, Laurel Cottage, West Sussex, England
Shyam L Kalla, Maracaibo, Venezuela
Melissa M Keating, Providence, RI
Emil Kelevedzhiev, Bulgarian Academy of Sciences, Sofia
Donald B Kinghorn, Washington State Univ, Pullman
B Klotzek, Potsdam, Germany
Wang-Sang Koon, Berkeley, CA
Tairoku Kose, Yokohama, Japan
Katalin Kovacs. Eotvos Lorand Univ, Budapest, Hungary
Aleksander Kowalski, Marie Curie-Sklodowska Univ, Lublin, Poland
I S Krasil'shchik, Moscow, USSR
Arkadii Kryazhimskii, Academy of Science of the USSR, Sverdlovsk
Lubor Malina, ENSET, Tunis, Tunisia
Carlos Martel, Madrid, Spain
Mary Hope McIlwain, Furman Univ, Greenville, SC
Alexis Michel, Talence, France
David John Moews, Univ of California Berkeley
Michael G Morrissey, Stevens Institute of Technology, Hoboken, NJ
Roderick Moten, Hempstead, NY
Martin E Neuwirther, Vienna, Austria
Nguyen Dong Yen, Institute of Mathematics, Hanoi, Socialist Republic of Vietnam
Nobuhiko Nohda, Ibaraki-Ken, Japan
Rutger Noot, Univ of Utrecht, Netherlands
Yuval Peres, Ramat Hasharon, Israel
Leif Persson, Univ of Unea, Sweden
Miroslav Ploscica, Kosice, Czechoslovakia
Gh Procopiuc, Iasi, Romania
Eduardo F Rego, Porto, Portugal
Caroline J Ritz-Gold, Biomolecular Sciences, Fremont, CA
Daniel Paul Roop, Pound, VA
Alexander Ryba, Marquette Univ, Milwaukee, WI
Rose Saint John, Berkeley, CA

Alexey V Samokhin, MIIGA, Moscow, USSR
Angel San Miguel, Palencia. Spain
Beryl Shaw, Baruch College (CUNY), New York
Huang Shu, Southwest Jiaotong Univ, Sichuan, People's Republic of China
Athanassios G Siapas, Massachusetts Institute of Technology, Cambridge
Amanda Jill Smith, Ashland, OR
James B Sutcliffe, Westmount, Quebec Canada
Nathaniel John Thurston, Princeton, NJ
Dolores M Tichenor, Tri-State Univ, Angola, IN
Antonio A Virvel, Malaga, Spain
Rong Liang Wang, Qingdao Univ of Oceanology, People's Republic of China
Xiaoming Xu , Jiaotong Univ, Shanghai, People's Republic of China
Elhassan Zerouali, Univ de Bordeaux I, Talence, France
Marius Zimand, Univ of Bucharest, Romania

RECIPROCITY MEMBERS

Australian Mathematical Society Kewei Zhang
Deutsche Mathematiker-Vereinigung e. V. Claudia Cottin Karl-Goswin Grosse-Erdmann Anand Srivastav
Indian Mathematical Society Conjeevaram Srirangachari Seshadri
Irish Mathematical Society Donal O'Regan Eugene O'Riordan
Korean Mathematical Society Dong Myung Chung Hyung Kook Kim
London Mathematical Society John Henry McDonnel

Mathematical Society of Japan

Nakao Hayashi

Motoko Kotani
Koichiro Naito
Hiroshi Yamaguchi
New Zealand Mathematical Society Gaven John Martin
Norsk Matematisk Foreningros Knut Martin Morken
Société Mathématique Suisse Markus Hegland
Société Mathématique de France
Michael Coornaert
Sabah Fakir
J Faraut
Gerard Michon
Benoit Perthame
Société de Mathématiques Appliquées
et Industrielles
Denis A Serre
Sociedad Matemática Mexicana Rafael G Campos
Societat Catalana de Matemàtiques Eduardo Gallego
Suomen Matemaattinen Yhdistys Jukka A Pihko
Unione Matematica Italiana Giuseppe Di Fazio
Wiskundig Genootschap Tim Bedford Arno R van den Essen

NOMINEE MEMBERS

Eastern Michigan University James Hamilton Galloway
Florida State University James D Balliette Zihua Du Todd Andrew Hendricks Junqi Li
Yong Yuan Li
Xiaozhong Liao Andrea Charlene McMullen Denise A Szecsei John Phillip Taylor Andrew T Thies

Burt John Walsh	Mark Allen Lesperance	Jin Yan Lu	VPI \& SU
Hong Jiang Wang	Jeffrey Lawrence Poet	Mohammed Zhoui	Mark Timothy Borisuk
Liang Zhang	Chuntao Yan	University of Hartford	Washington State University
Shunping Zhuang	Memphis State University	Joel Rosenberg	Wolfgang G Boehnke
Ithaca College	John H Peacher-Ryan	University of Illinois at Chicago	Miguel Angel Olmos Gomez
Margaret A Clark	North Carolina State University	John Frederick Erickson	Mark O Taylor
Johns Hopkins University, Baltimore	Hughart O C Roberts	University of Missouri, St Louis	Jack Wrigley
Chi-ming Yeung	Texas A \& M University	Qiang Sun	Western Michigan University
Kansas State University	Manna Luo	University of Tulsa	Sherry L Dixon
Hanan J Amro	University de Montreal	Marci Peterson Ballard	Daniel J Harned
Anwar A Ayyad	Alain Beliveau	Jami Briana Boettcher	Stavros C Pouloukas
David Wayne Bishop	Adrie Freve	Cheryl Hunting	Wichita State University
Ramani Dissanayake	Sylvie Gervais	Jerome Dean McCoy Jr	Jihad S Qaddour
Wayne Lawrence Glantz	Denis Larocque	Mehmet Turegun	

Visiting Mathematicians
 (Supplementary List)

The list of visiting mathematicians includes both foreign mathematicians visiting in the United States and Canada, and Americans visiting abroad. Note that there are two separate lists.

Name and Home Country
Cox, Dennis (U.S.A.)
Basu, Sanjib (India)
Ellis, Graham (Great Britain)

Gregori, Giovanni (Italy)
Hardie, Keith (South Africa)
Heathcote, Christopher (Australia)
Henkin, Gennadii (USSR)
Huh, Myung-Hoe (Korea)
Illman, Sören (Finland)
Joshi, Shrikant N. (India)
Karandikar, Rajeeva (India)
Maejima, Makoto (Japan)
Novikov, Roman (USSR)
Pinsky, Ross (Israel)
Ray, Urmie (India)
Simanyi, Nandor (Hungary)
Weron, Aleksander (Poland)
Yakovlev, Andrej (USSR)
Zubelli, Jorge (Brazil)

American Mathematicians Visiting Abroad

Host Institution
University of Bonn
Field of Special Interest Statistics

Period of Visit
9/91-12/91

Visiting Foreign Mathematicians

University of California, Santa Barbara	Classical and Bayesian Inference	9/91-6/92
Northwestern University	Algebraic Topology	9/91-8/92
Northwestern University	Partial Differential Equations	9/91-12/91
Northwestern University	AlgebraicTopology	9/91-12/91
University of California, Santa Barbara	Statistics	1/92-6/92
Yale University	Complex Analysis, Wavelets	9/91-10/91
Ohio State University	Statistics	7/91-1/92
Princeton University	Topology	9/91-6/92
Ohio State University	Statistics	9/91-6/92
University of California, Santa Barbara	Prediction and Filtering	9/91-3/92
University of California, Santa Barbara	Probability	1/92-3/92
Yale University	Complex Analysis, Wavelets	9/91-12/91
University of Maryland	Stochastic Processes and Partial Differential Equations	8/91-8/92
Northwestern University	Group Theory	9/91-8/93
Northwestern University	Ergodic Theory	9/91 8/92
University of California, Santa Barbara	Probability	1/92-4/92
University of California, Santa Barbara	Biomathematics	7/91-12/91
University of California, Santa Cruz	Partial Differential Equations	7/91-6/92

Classified Advertisements

SUGGESTED USES for classified advertising are positions available, books or lecture notes for sale, books being sought, exchange or rental of houses, and typing services.

THE 1991 RATE IS $\$ 55.00$ per inch on a single column (one-inch minimum), calculated from the top of the type; $\$ 25$ for each additional $1 / 2$ inch or fraction thereof. No discounts for multiple ads or the same ad in consecutive issues. For an additional $\$ 10$ charge, announcements can be placed anonymously. Correspondence will be forwarded.

Advertisements in the "Positions Available" classified section will be set with a minimum one-line headline, consisting of the institution name above body copy, unless additional headline copy is specified by the advertiser. Advertisements in other sections of the classified pages will be set according to the advertisement insertion. Headlines will be centered in boldface at no extra charge. Classified rates are calculated from top of type in headline to bottom of type in body copy, including lines and spaces within. Any fractional text will be charged at the next $1 / 2$ inch rate. Ads will appear in the language in which they are submitted.

Prepayment is required of individuals but not of institutions. There are no member discounts for classified ads. Dictation over the telephone will not be accepted for classified advertising.

DEADLINES are listed on the inside front cover or may be obtained from the AMS Advertising Department.
U. S. LAWS PROHIBIT discrimination in employment on the basis of color, age, sex, race, religion or national origin. "Positions Available" advertisements from institutions outside the U. S. cannot be published unless they are accompanied by a statement that the institution does not discriminate on these grounds whether or not it is subject to U . S. laws. Details and specific wording may be found near the Classified Advertisements in the January and July/August issues of the Notices.

SITUATIONS WANTED ADVERTISEMENTS from involuntarily unemployed mathematicians are accepted under certain conditions for free publication. Call toll-free 800-321-4AMS (321-4267) in the U.S. and Canada for further information.

SEND AD AND CHECK TO: Advertising Department, AMS, P.O. Box 6248, Providence, Rhode Island 02940. AMS location for express delivery packages is 201 Charles Street, Providence, Rhode Island 02904. Individuals are requested to pay in advance, institutions are not required to do so. AMS FAX 401-455-4004.

POSITIONS AVAILABLE

CALIFORNIA

CALIFORNIA INSTITUTE OF TECHNOLOGY Applied Mathematics

Postdoctoral positions as Research Fellow for one or possibly two years doing joint research under the direction of senior faculty are available. The research is sponsored and frequently involves large scale computations in some area of continuum mechanics and fluid dynamics. Research in numerical analysis and parallel computing is also active. Current salaries are about $\$ 30,000$ for 11 months. Send detailed vita, bibliography and three letters of reference to The Executive Officer, Applied Mathematics 217-50, Caltech, Pasadena, CA 91125. Caltech is an Equal Opportunity/Affirmative Action Employer. Women and minorities are encouraged to apply.

CALIFORNIA INSTITUTE OF TECHNOLOGY Applied Mathematics

The Applied Mathematics program at Caltech invites applications for a tenure-track or possibly tenured appointment in the case of exceptionally well-qualified applicants. Candidates should have a demonstrated ability to carry out high quality research in their fields of Applied Mathematics and be willing to participate in the teaching program at graduate and undergraduate levels. Applicants should submit a detailed curriculum vitae and list of publications with at least three letters of recommendation or the names of referees to The Executive Of-
ficer, Applied Mathematics 217-50, Caltech, Pasadena, CA 91125. Caltech is an Equal Opportunity/Affirmative Action Employer. Women and minorities are encouraged to apply.

CONNECTICUT
 SOUTHERN CONNECTICUT STATE UNIVERSITY New Haven, CT 06515 Department of Mathematics

Tenure-track position (subject to funding) at asst/assoc rank beginning $8 / 21 / 92$ to teach undergraduate/graduate statistics and mathematics courses. Teaching load: 12 hours $/$ sem. Qualifications: doctorate in statistics, evidence in quality teaching, potential for scholarly growith. Salary is competitive. Send letter of application, vita, transcripts, three letters of recommendation to Dr. Helen Bass, Chair. Full consideration given to applications received by 12/13/91 or until position filled. (AA/AOE).

SOUTHERN CONNECTICUT STATE UNIVERSITY New Haven, CT 06515
 Department of Mathematics

Tenure-track position (subject to funding) at asst/assoc rank beginning 8/21/92 to teach undergraduate/graduate mathematics courses, especially those involving applications. Teaching load: 12 hours/sem. Qualifications: doctorate in mathematics with appropriate specializations, e.g., discrete mathematics, numerical analysis, differential equations. Evidence of quality teach-
ing, potential for scholarly growth; experience in business and/or industry desirable. Salary is competitive. Send letter of application, vita, transcripts, three letters of recommendation to Dr. Helen Bass, Chair. Full consideration given to applications received by $12 / 13 / 91$ or until position filled. (AA/AOE).

MASSACHUSETTS WELLESLEY COLLEGE Department of Mathematics Wellesley, MA 02181

Two or three tenure-track positions at the Asst. Professor level beginning Fall 1992. The teaching load is currently four courses per year. Requirements include a Ph.D. in mathematics (completed, or expected by June 1992), excellence in and commitment to both undergraduate teaching and mathematical research in a liberal-arts environment. Candidates with research interests in any area of mathematics will be considered. Applicants should send a curriculum vitae and arrange for at least three letters of recommendation that address both teaching and research. Applications and recommendation letters should be sent to arrive by December 6, 1991, to ensure full consideration. Reply to: Search Committee, Dept. of Math., Wellesley College, Wellesley, MA 02181. Wellesley College is an Equal Opportunity/Affirmative Action Employer and particularly encourages applications from women and minority candidates.

MISSOURI

ACTUARIAL RESEARCH ASSISTANT

Actuarial Research Assistant to apply knowledge of advanced mathematics theories in probability, statistics, and stochastic processes to the field of pension plan asset and liability forecasting. Develop methodology and computer software for forecasting pension plan assets and liability under various business and economic scenarios. Perform actuarial valuations to calculate funding and expense requirements for pension plans. Perform other complex analytical studies involving interest, mortality, morbidity, and other actuarial factors. Salary: $\$ 33,250.00$ per year/40 hour week. Requirements: M.S. degree in Mathematics. Must have extensive knowledge of Actuarial mathematics as evidenced by the passing of all associateship examinations offered by the Society of Actuaries, such as A.S.A. designation. Must present evidence of graduate training in the advanced theory of stochastic processes or evidence of at least one year of research experience in the advanced theory of stochastic processes. Applicants must presently be eligible for permanent employment in the U.S. An employer paid ad. Resumes to: Mrs. Jimmie Gaston, ALC Specialist, Job Service, 505 Washington. St. Louis, Missouri 63101. Refer to Job Order \#479147. EOE/AA

OHIO

OBERLIN COLLEGE

 Department of MathematicsA full-time, tenure-track position beginning 1992-93. Responsibilities include teaching undergraduate courses ($5 /$ year) including abstract algebra, academic advising, work with honor students, service on committees and sustained scholarly production. All specialties considered but preference given to algebraists. Qualifications required include the Ph.D. degree (in hand or expected by September 1992). Candidates must demonstrate potential excellence in teaching. Oberlin is a selective college playing a historic role in the education of minorities and women, and with a strong record producing students earning a Ph.D. degree in science and mathematics. Applications from female and minority candidates welcomed. Please send a letter of application, curriculum vitae, academic transcripts, and 3 letters of reference to Michael Henie, Department of Mathematics, Oberlin College, Oberlin OH 44074 by November 4, 1991. Applications received afterwards may be considered until the position is filled. AA/EOE

PENNSYLVANIA

CARNEGIE MELLON UNIVERSITY Department of Mathematics

The Department expects to make two tenuretrack appointments, to begin in the Fall of 1992, at the Assistant Professor level. We seek candidates in areas of research which strongly intersect those of the current faculty of the Department. Applicants should send a vita, list of publications, and a statement describing current and planned research, and arrange to have at least three letters of recommendation sent to the committee. All communications should be addressed to : Tenure-track Appointments Committee, Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213. Carnegie Mellon University is an Affirmative Action/Equal Opportunity Employer.

CARNEGIE MELLON UNIVERSITY Department of Mathematics

The Department expects to make four to five Post-doctoral appointments for 1992-1993 in the area of applied analysis. This is a one-year (twelve month) joint appointment by the Department and the Center for Nonlinear Analysis. Recipients will teach at most one course per semester. Applicants should send a vita, list of publications, a statement describing current and planned research, a statement of teaching experience, and arrange to have at least three letters of recommendation sent to the committee. All communications should be addressed to: Postdoctoral Appointments Committee, Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213. Carnegie Mellon Univer-
sity is an Affirmative Action/Equal Opportunity Employer

LEHIGH UNIVERSITY

The Department of Mathematics at Lehigh University invites applications and nominations for two tenure-track positions beginning with the Fall Semester 1992. Both positions are at the level of Assistant Professor. Preference will be given to researchers in the continuum from algebraic topology through differential geometry to global analysis and in algebra, specifically in an area overlapping combinatorics, discrete mathematics, and computational algebra.

Candidates for the positions must have an earned doctorate in mathematics and an excellent record in teaching and research. Applicants should send a curriculum vita, reprints of published papers (or accepted for publication), and at least three letters of recommendation to Search Committee, Department of Mathematics (Bldg 14), Lehigh University, Bethlehem, PA 18015. Applications from minorities and women are strongly encouraged. The selection process will begin in January 1992, and continue until the positions are filled.

Lehigh University is an equal opportunity and affirmative action employer.

TEXAS

UNIVERSITY OF TEXAS AT EL PASO Department of Mathematical Sciences

The Department of Mathematical Sciences invites applications for a tenure-track Assistant Professorship, and for a tenured or tenuretrack Associate or Full professorship, both to begin duties in Fall 1992. The availability of these positions is subject to final budgetary approval (which is not anticipated before October, and which may require both positions to be filled at the Assistant level). Research interests in the Department include analysis, numerical analysis, number theory, probability, statistics, topology and ordered algebraic systems. Candidates with research interests in numerical analysis, applied analysis, discrete mathematics, (or which match current research in the department) will receive some preference, but all areas will be considered. The department offers Bachelors and Masters degrees in Mathematics, Applied Mathematics and Statistics as well as an Actuarial Science concentration. Salaries are competitive. Women and minority candidates are especially encouraged to apply. Assistant professor candidates must show strong potential for excellence in teaching and research. For an Associate or Full Professorial appointment the candidate must have excellent teaching credentials and a nationally established research record; some success in attracting outside funding is preferred. Send complete curriculum vitae (with email address if available) and arrange for three letters of reference to be sent to James E. Nymann, Chairman, Faculty Recruiting Committee, Department of Mathematical Sciences, The University of Texas at El Paso, El Paso,

Texas 79968-0514. Email inquiries may be made to simon@math.ep.utexas.edu. Consideration of applications will begin December 2. Applications received after this date may be considered until the positions are filled or the search abandoned. The right to leave positions unfilled is reserved.

The University of Texas at El Paso is an Affirmative Action/Equal Opportunity Employer.

VIRGINIA

MARY WASHINGTON COLLEGE Department of Mathematics

Applications are invited for at most two tenuretrack Assistant Professor positions effective 8/15/92. Candidates should have a Ph.D. in Mathematics and be committed to teaching. Those who also desire to continue their research (in any area) or to make significant service contributions (to the Department and College) are particularly encouraged to apply. The Department has ten full-time faculty. The usual teaching load is four courses per semester with ≈ 25 students per lower-level course and \approx 14 students per upper-level. Mary Washington College is a small (≈ 3500) undergraduate liberal arts college, and the Department has $70+$ majors. Areas of faculty (research) activity include semigroups, graph theory, topology, number theory, and differential geometry. Send vita to:

Marie Sheckels
Department Search Committee
Dept. of Mathematics
Mary Washington College
Fredericksburg, VA 22401
The review of applicants will begin in November 1991, and will continue until the positions are filled. Mary Washington College is an Equal Opportunity/Affirmative Action Employer.

AUSTRIA
 JOHANNES KEPLER UNIVERSITÄT Linz, Austria

At the Johannes Kepler Universität Linz(Austria), the tenured position of a Full Professor for Numerical Mathematics (formerly held by Prof. Wacker) is to be filled.

The Search Committee looks for an established researcher in a computer-oriented subarea of Numerical Mathematics with teaching experience, who is also willing and able to perform research cooperations with industry and extra-university research organisations.

The legal requirements for an appointment are:

1. a doctorate in a field relevant for the position,
2. qualification in research equivalent to the Austrian "venia docendi" ("habilitation"),
3. proof of teaching qualification.

Qualified women are explicitly encouraged to apply.

Applications should be addressed to "Dekan der Technisch Naturwissenschaftlichen Fakultät
der Johannes Kepler Universität Linz, A-4040 Linz, Austria" and should arrive there by October 11, 1991.

CANADA

UNIVERSITY OF ALBERTA

Statistics and Applied Probability

The Department of Statistics and Applied Probability invites applications for two tenure track positions at the Assistant Professor level (current salary range $\$ 36,910$ to $\$ 46,514$ per annum). Minimum qualifications: Ph.D. degree in Probability or Statistics. For one of the positions preference will be given to applicants with an applied or consulting background. Interested individuals should send curriculum vitae, including a list of publications, a statement of citizenship, and names of three persons who will supply letters of reference to:

Dr. E. E. Aly
Chairman
Department of Statistics \& Applied Probability
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
In accordance with Canadian Immigration requirements, priority will be given to Canadian citizens and permanent residents of Canada. Ciosing date for applications: January 3, 1992. The University of Alberta is committed to the principal of equity in employment. The University encourages applications from Aboriginal persons, disabled persons, members of visible minorities, and women.

NEW ZEALAND

THE UNIVERSITY OF WAIKATO Hamilton, New Zealand LECTURER IN MATHEMATICS

The University of Waikato invites applications for a Lectureship in Mathematics within the Department of Mathematics and Statistics. This Department, together with the Department of Computer Science and the Waikato Centre for Applied Statistics, forms the School of Computing and Mathematical Sciences. The Department of Mathematics and Statistics has 16.5 full-time equivalent staff, and approximately 2500 course enrollments across all Schools of Study in the University. Teaching and research supervision is done at undergraduate, Masters, and Doctoral levels.

The Department wishes to appoint someone with teaching interests and a strong research record in numerical analysis and computational mathematics. It especially welcomes applications from mathematicians who combine a firm grasp of classical numerical analysis with experience of its application to problems in science or industry.

The salary range for Lecturers is currently \$NZ37,440-\$NZ49,088 per annum.

Enquiries of an academic nature should be made to Professor D. S. Bridges, telephone (64)

71562889 or email: bridges@waikato.ac.nz (via Internet). Information on the method of application and conditions of appointment can be obtained from the Academic Staff Unit, University of Waikato, Private Bag 3105, Hamilton, New Zealand, telephone (64) 71 562889, Fax (64) 71560135 . Applications quoting reference number A91/41 should reach the Aacademic Staff Unit by 30 September 1991.

Places for appointees' children may be available in the creche run by Campus Creche Socitey (Inc.). The University welcomes applications from suitable people regardless of race, creed,marital status, or disability.

VICTORIA UNIVERSITY OF WELLINGTON New Zealand
 LECTURESHIPS IN MATHEMATICS

Applications are invited from suitably qualified persons in all areas of pure mathematics for two posts available from 1 February 1992 Candidates are expected to have a proven record of achievements in research and be committed to excellence in teaching.

Enquiries about academic aspects of the positions may be directed to Professor Rob Goldblatt, Department of Mathematics, email (internet): rob@auri.vuw.ac.nz, fax (64) 4712070.

Salary scale for Lecturers is $N Z \$ 37,440-$ NZ\$49,088 per annum. Conditions of appointment and method of application available from the Appointments Administrator, Victoria University of Wellington, P O Box 600, Wellington, New Zealand (fax(64)4 711700) with whom applications close on 1 October 1991.

THE UNIVERSITY IS AN EQUAL OPPORTUNITY EMPLOYER

MISCELLANEOUS

Notices Volumes Available

An essentially complete set (only six semimonthly issues missing from the 32 yearly sets) of Notices from 1959-1990 is available for donation. Interested parties should contact W.C. Royster, Dept. of Math., University of Kentucky, Lexington, KY 40506-0108, 606-257-4994 or email: royster@ukcc.bitnet.

Coauthor wanted to help write research announcement. Amateur mathematician has found an improved system of concrete mathematics. A preliminary version is available for study. Respond to applicant code 1366, AMS Notices, Adv. Coord., P.O. Box 6248, Providence, RI 02940-6248.

POSITION WANTED

JOLLY, ROBERT F., Ph.D., 1963, University of Texas, Austin, Analysis (Wall) and Continuum Theory (Moore). Available immediately for fulltime teaching. Call (808)874-9390 or (213)4545817 and leave message. References: Burton Jones, James Rogers and John Neuberger.

RESEARCH AND TEACHING MATHEMATICIAN. Ph.D. 1988. USSR Specialty: probability, reliability theory, queueing theory. Nine years experience in research, two years teaching. Twenty published articles, one book. Resume available upon request. Available immediately. 31 years old. Permanent resident of the U.S. Novikov, 2702 Industrial Dr. 224C, Bowling Green, KY 42101.

PUBLICATIONS FOR SALE

MATH SCI PRESS, 53 Jordan Rd., Brookline, MA 02146, 617-738-0307. GEOMETRIC COMPUTING SCIENCE: FIRST STEPS, by R. Hermann. $\$ 85.394$ pages. Interdisciplinary Mathematics, vol. 25.

We buy periodicals in mathematics and many other subjects. Please call 1-(800) 521-0061 or (713) 556 -0061. Lists of available material may be sent to fax number (713) 556-1406 or to: Research Periodicals \& Book Services, Inc., P.O. Box 720728, Houston, Texas 77272, U.S.A.

PUBLICATIONS WANTED

Wanted: Mathematical books, journals, reprints, ephemera. Contact R. K. Dennis, Math. Dept., White Hall, Cornell U., Ithaca, NY 14853-7901 Tel: 607-255-4027, FAX: 607-255-7149. email: dennis@mssun7.msi.cornell.edu

Helpyour students discover more meaningful relationships.

Renewed for' 91 : a free classroom display device with purchase of 30 calculators.
Showing is much more powerful than telling. So we've developed special classroom displays for our most advanced calculators.
The scientific expandable HP 48SX calculator, the cost-effective HP 28 S and the new HP 48S are designed to put your students on the cutting edge of calculus and engineering. With more built-in functions and graphics solutions than any other calculators. If your department or students purchase 30 HP 48SX, HP 28 S or HP 48 S calculators (or a mix of all three), we'll give you free an HP 48SX and plug-in classroom display (a $\$ 900$ retail value). Or a classroom display version of the HP 28 S (a $\$ 600$ retail value). And free teaching materials in the bargain.
Call (503) 757-2004 from 8 am to 3pm PDT for details. Or write: Calculator Support, Hewlett-Packard, 1000 NE Circle Blvd., Corvallis, OR 97330. Offer ends October 31, 1991, and applies to instructors at college and high school levels only.

(hp)
 HEWLETT
 PACKARD

SOUTH AUSTRALIA

Applications are invited from both women and men for this position: PROFFSSOR OF PURH MATHTMMATICS

(Tenurable)
(Ref: 1520). Applications and expressions of interest are invited for appointment to the Chair of Pure Mathematics within the Department of Pure Mathematics in the Faculty of Mathematical and Computer Sciences. The Chair will be available from 1 September 1991, following the resignation of Professor William Moran FAA.

The University is seeking applicants with a capacity for leadership who can make a major contribution to excellence in teaching and research in Pure Mathematics. The main established areas of research in pure mathematics within the University are algebra, finite geometry, combinatorics, number theory, convexity, differential geometry, geometric analysis (including representation theory) and analysis and applications (including mathematical physics). Applicants of high calibre with research interests and expertise in one of these areas would be preferred.

In view of the recognised educational need to increase the proportion of women among academic staff in Pure Mathematics, the University is actively seeking applications from outstanding women who satisfy the above requirements.

Further infromation about the Department of Pure Mathematics and the duties of the position may be obtained from Dr. Jane Pitman, Head, Department of Pure Mathematics, telephone (61 8) 228 5079, facsimile (61 8) 2240464.

It is University policy to encourage women to apply for consideration for appointment to tenurable academic appointments. Holders of full-time tenured or tenurable academic appointments have the opportunity to take leave without pay on a half-time basis for a specific period of up to ten years when this is necessary for the care of children.

INFORMATION about the general conditions of appointment and selection criteria may be obtained from the Director, Personnel Services, facsimile (61 8) 2234820.

SALARY: AUS $\$ 67,812$ per annum (salary currently under review). Subject to consent by the University, Professors may undertake a limited amount of consultative work. Assistance with removal expenses to Adelaide will be provided.

APPLICATIONS, IN DUPLICATE, quoting reference number 1520 and giving full personal particulars (including whether candidates hold Australian permanent residency status), details of academic qualifications, and telephone and facsimile numbers, together with names and addresses (with facsimile numbers if possible) of three referees should reach the Director, Personnel Services at the University of Adelaide, GPO Box 498, Adelaide, South Australia, 5001, Telex UNIVAD AA 89141, Facsimile (61 8) 2234820 not later than 27 September 1991.

It is hoped that interviews for the Chair will be held by the end of the year.
The University reserves the right to make enquiries of any person regarding any candidate's suitability for appointment, not to make an appointment or to appoint by invitation.

New in 1991 from Birkhäuser

COMING IN FALL 1991 -
R. Kadison, University of Pennsylvania, and J.R. Ringrose, University of Newcastle
Fundamentals of the Theory of Operator Algebras, Volume III
Elementary Theory - An Exercise Approach
The many readers of the highly acclaimed treatise on which this volume is based will enthusiastically welcome the authors' decision to share with them their detailed solutions to the stimulating and penetrating exercises that appeared in the first volume. With clarity, thoroughness, and depth, these solutions supplement the basic theory and provide an invaluable tool for students and researchers in mathematics and theoretical physics and engineering. They provide models which test understanding and suggest alternate methods and styles for producing further solutions and extending knowledge in such areas as functional analysis and quantum physics.
1991/278 pp./Hardcover/\$34.50/ISBN 0-8176-3497-5

New in the Progress in Mathematics series -

G.O. Michler, Universität GHS Essen and C.M. Ringel,

Universität Bielefeld, Universitätsstrasse (Eds.)

Representation Theory of Finite Groups and Finite-Dimensional Algebras

Topics discussed include the modular representation of groups (Clifford matrices, character degrees, computational aspects), the representation theory of finite-dimensional algebras (tame and wild algebras, combinatorial and homological methods), the isomorphism problem for integral group rings, and applications to Galois theory. Both research workers and graduate students will find here a useful overview of the field and recent developments in it.
1991/520 pp./Hardcover/\$86.50/ISBN 0-8176-2604-2
Progress in Mathematics, Volume 95
C. Godbillon (1937-1990)

Feuilletages

Etudes géométriques

Covering the entire range from the introduction of foliations to recent results on this topic, "Feuilletages" stands out for its completeness and methodology. This textbook provides an excellent tool for courses in geometry and topology. An extensive bibliography adds to its value. This work forms a vital part of the author's mathematical legacy and testifies to his versitality and ingenuity.
1991/474 pp./Hardcover/\$138.00/ISBN 0-8176-2638-7
Progress in Mathematics, Volume 98

M.E. Taylor, University of North Carolina, Chapel Hill Pseudodifferential Operators and Nonlinear PDE

For the past 25 years the theory of pseudodifferential operators has played an important role in many exciting and deep investigations into linear PDE. Over the past decade, this tool has also begun to yield interesting results in nonlinear PDE. Devoted to a summary and reconsideration of some uses of pseudodifferential operator techniques in nonlinear PDE, this book should be of interest to graduate students, instructors, and researchers interested in partial differential equations, nonlinear analysis in classical mathematical physics and differential geometry, and in harmonic analysis.
1991/213 pp./Hardcover/\$49.50/ISBN 0-8176-3595-5
Progress in Mathematics, Volume 100

New in the Mathematical Modeling series -
 C. Jeffries, Clemson University, Clemson, SC

Code Recognition and Set Selection with Neural Networks

A fundamental goal of artifical neural network research is to recognize with n neurons any combination of any of the 2 possible binary n-strings, all without spurious attractors. This volume presents the theory of a specific high order neural network which achieves this goal. Intended for use in beginning graduate courses in neural networks, this book should also serve electrical engineers and computer scientists interested in the dynamical system approach to neural networks.

```
1991/165 pp./Hardcover/\$49.50/ISBN 0-8176-3585-8
Mathematical Modeling, Volume 7
```


New series -

Mathematics: Theory and Applications

M. do Carmo, Instituto de Matematica Pura e Applicada Riemannian Geometry

This is the only text of its kind to treat the traditional subject of Riemannian geometry from a modern, geometrical point of view, compared with a massive computational and algebraic machinery. So outstanding and unique that the University of Pennsylvania uses it in Portugese, this book is written in a clear, lucid, and intuitive style.
1991/Approx. 300 pp., 53 illus./Hardcover/\$42.50(tent.)/ISBN 0-8176-3490-8 Mathematics: Theory and Applications
K. Knudsen Jensen, University of Pennsylvania, Philadelphia, PA, and K. Thomsen, Matematisk Institut, Aarhus, Denmark

Elements of KK-Theory

Discusses the fundamentals of KK-Theory: the Kasparov groups and their functoriality in relation to the Kasparov product. The existing pictures of KK-Theory are described in detail and their equivalence with all arguments exposed and explained. Furthermore, the connection to the theory of C^{*}-algebras and operator theory. In this way the book opens the gates to a new and highly sophisticated mathematical theory with applications far beyond the basis from which it is developed.
1991/202 pp./Hardcover/\$49.50(tent.)/ISBN 0-8176-3496-7
Mathematics: Theory and Applications

Order Today!

- Call Toll-Free 1-800-777-4643. In NJ, please call (201)348-4033. Your reference number is $Y 503$.
- Send payment plus $\$ 2.50$ for postage and handling to: Birkhäuser, c/o Springer-Verlag New York, Inc., Order Fulfillment - Dept. Y503, P.O. Box 2485, Secaucus, New Jersey 07096-2491.
- Visit your Local Technical Bookstore.

Visa, MasterCard, American Express and Discover charge cards as well as personal checks and money orders are acceptable forms of payment. All orders will be processed upon receipt. If an order cannot be fulfilled within 90 days, payment will be refunded. Prices quoted are payable in U.S. currency or equivalent.

Springer for Mathematics

D. Bressoud, Pennsylvania State University, PA

Second Year Calculus: From Celestial Mechanics to Special Relativity
Covers multi-variable and vector calculus, emphasizing the historical physical problems which gave rise to the concepts of calculus. From the birth of the mechanized view of the world in Isaac Newton's Mathematical Principles of Natural Philosophy to the dawn of a radically new age in Albert Einstein's Special Theory of Relativity the development is discussed from the modern viewpoint of differential forms. Using this concept, the student learns to compute orbits and rocket trajectories, model flows and force fields, and derive the laws of electricity and magnetism. These exercises and observations of mathematical symmetry enable the student to better understand the interaction of physics and mathematics.
1991/388 pp., 98 illus./Softcover/\$29.95/ISBN 0-387-97606-X
Undergraduate Texts in Mathematics
Readings in Mathematics
S. Wiggins, California Institute of Technology, Pasadena, CA Chaotic Transport in Dynamical Systems

Provides a new and more realistic framework for describing the dynamics of non-linear systems. A number of issues arising in applied dynamical systems from the viewpoint of problems of phase space transport are raised in this monograph. Illustrating phase space transport problems arising in a variety of applications that can be modeled as time-periodic perturbations of planar Hamiltonian systems, the book begins with the study of transport in the associated two-dimensional Poincaré Map. This serves as a starting point for the further motivation of the transport issues through the development of ideas in a non-perturbative framework with generalizations to higher dimensions as well as more general time dependence.
A timely and important contribution to those concerned with the applications of mathematics.
1991/app. 336 pp., 116 illus./Hardcover/\$39.95
ISBN 0-387-97522-5
Interdisciplinary Applied Mathematics, Volume 2
R.Dautray, Centred 'Etudes deLimeil, France; J.-L.Lions, Collége de France, Paris, France

Mathematical Analysis and Numerical
 Methods for Science and Technology

Evolution Problems I, Volume 5

This up-to-date publication contains important information for researchers in mechanics, physics, engineering, chemistry and other branches of applied mathematics which deal with theoretical and numerical resolution of physical models on computers. One of six volumes, this book fills the literary gap created by the recent flux of large computers and their methods of computation.
1991/app. 728 pp., 37 illus./Hardcover/\$120.00
ISBN 0-387-50205-X
Order Today!

- Call: Toll-Free 1-800-SPRINGE(R): 1-800-777-4643. In NJ call 201-348-4033
($8: 30 \mathrm{AM}-4: 30$ PM EST). Your reference number is S 903 .
- Write: Send payment plus $\$ 2.50$ for postage and handling to: Springer-Verlag New York, Inc., Order fulfillment-S903, PO Box 2485, Secaucus. NJ 07096-2491.
- Visit : Your local technical bookstore.

Instructors: Call or Write for information on textbook examination copies!
Y.V. Egorov and M.A. Shubin, Moscow State University, USSR (Eds.)

Foundations of the Classical Theory

Partial Differential Equations I

Presents an introduction to the classical theory, emphasizing physical methods and physical interpretations. The first of the two chapters contains a derivation of some of the classical partial differential equations, with a discussion of the limitations of the physical models upon which the derivations are based. The second chapter discusses the classical methods for studying PDEs, including the theory of distributions and the Petrovskij classification into elliptic parabolic and hyperbolic equations. The more advanced methods discussed are spectral theory, the method of planar waves and the theory of semigroups. Although much of the material is standard, the approach reflects the latest context in mathematical research. Every topic considered is placed in its present context in mathematical research, yet the book never loses sight of the nonspecialist reader with an interest in physical applications.
1991/app. 248 pp., 4 illus./Hardcover/\$79.00
ISBN 0-387-52002-3
Encyclopaedia of Mathematical Sciences, Volume 30
A. Jones, La Trobe University, Bundoora, Australia; S.A. Morris, University of Wollongong, Australia; and K. Pearson, La Trobe University, Bundoora, Australia

Abstract Algebra and Famous Impossibilities

The famous problems of squaring the circle, doubling the cube, and trisecting the angle have captured the imagination of both professional and amateur mathematicians for over two thousand years. These problems, however, have not yielded to purely geometrical methods. It was only the development of abstract algebra in the nineteenth century which enabled mathematicians to arrive at the surprising conclusion that these constructions are not possible. This text aims to develop the abstract algebra.
1991/app. 200 pp., 27 illus./Softcover/\$29.95
ISBN 0-387-97661-2
Universitext

T. Banchoff and J. Wermer, Brown University, Providence, RI Linear Algebra Through Geometry

Second Edition

Introduces the concepts of linear algebra through the careful study of two-and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. Topics include systems of linear equations in n variables, inner products, symmetric matrices and quadratic forms. The final chapter treats applications of linear algebra to differential systems, least squares approximations and curvature of surfaces in three-space. The only prerequisites (with the exception of one section on systems of differential equations) are high school geometry, algebra, and introductory trigonometry.
1991/app. 312 pp., 92 illus./Hardcover/\$39.95
ISBN 0-387-97586-1
Undergraduate Texts in Mathematics

Springer-Verlag

At last...the place for

EXPERIMENTAL MATHEMATICS

EDITOR IN CHIEF:

David B. A. Epstein

EDITOR:
Silvio Levy

ADVISORY BOARD:
Hendrik W. Lenstra, Jr.
Albert Marden
Jean-Pierre Serre
William P. Thurston

ASSOCIATE EDITORS:
Frederick J. Almgren
Henri Cohen
Robert L. Devaney
Ronald L. Graham
David A. Hoffman
Rafael de la Llave
David Mumford
Ulrich Pinkall
Peter C. Sarnak

Statement of Philosophy:
EXPERIMENTAL MATHEMATICS publishes experimental work intended to develop mathematical theory and insight.
Mathematical experimentation has a distinguished tradition; experiments often play an important role in formulating
new conjectures and discovering paths toward the proof of such conjectures and of other results. In the past this
work has usually been kept in private notebooks.
The goal of EXPERIMENTAL MATHEMATICS is to make this interplay between theory and experimentation more yisible and fruitful, and to help the development of standards for the reporting of experimental results in mathematics, such as exist for other experimental sciences.
Within this framework, the following types of submissions will be considered: reports of specific mathematical experiments; algorithms relevant to mathematics and mathematical experimentation; surveys of the state of experimental mathematics in particular subject areas; and presentations of software packages of sufficient mathematical sophistication and consequence. This list is not meant to be exhaustive.
The main test of publishability of a paper in any category is its potential relevance to the development of mathematical theory and insight. In particular, the value of an experiment lies in the weight and interest of the conjectures, theorems and proofs inspired by it. In addition, enough information should be provided to enable other workers to duplicate the experiment. Algorithms should be accompanied, where appropriate, by an analysis of their complexity and by proofs of termination and correctness.
EXPERIMENTAL MATHEMATICS intends to cover all areas of mathematics. Although nearly all mathematical experiments are done by computer, experimental work of other types is not excluded.

Submission Information:

Papers should be submitted in quadruplicate to the Journal Department of Jones and Bartlett Publishers, 20 Park Plaza, Boston, MA 02116. Artwork must include at least one camera-ready set. We accept and encourage the submission of papers set in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and will send more detailed formatting instruction including $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macros upon request.

Subscription Information:

Subscription price to EXPERIMENTAL MATHEMATICS is $\$ 130$ per volume ($\$ 40$ to members of the American Mathematical Society plus $\$ 5$ Postage and Handling)--1 volume, 4 issues per year, to begin publication in 1992. For more information, please call 1-800-832-0034.

July 6 - August 14, 1992
at the Mathematical Sciences Research Institute
In the summer of 1992 the Mathematical Sciences Research Institute will sponsor a six week program focusing on the applications of mathematics to cell biology and integrative physiology. The program will be organized into one week and two week workshops with two workshops running concurrently. The workshops, dates, and organizers are as follows:

July 6 - July 10

Neurons in Networks I: Cellular Neurophysiology
Neurons in Networks II: Emergent Properties of Networks of Neurons
J. Rinzel
N. Kopell

July 13 - July 17
Neurons in Networks III: Neural Development K. Miller
Neurons in Networks IV: Auditory Neural Processing M. Reed
July 20 - July 24
Mathematical Models of Cellular, Circadian, and Hormonal Rhythms
J. Keizer

Mathematical Models of Excitable Tissue
J. Keener

July 27 - July 31
Mathematical Modeling in Immunology I
A. Perelson

Mechanochemical Engines
G. Oster

August 3 - August 7

Mathematical Modeling in Immunology II
A. Perelson

Biological Fluid Dynamics I
L. Fauci and C. Peskin

August 10 - August 14
Molecular Structures and Dynamics
Biological Fluid Dynamics II
T. Schlick
L. Fauci and C. Peskin

The purpose of the workshops is to support existing collaborations between mathematicians and biologists, to encourage new collaborations, to train young mathematical biologists, and to bring mathematicians with no previous experience into the field. Each workshop will have 15 participants, 10 researchers in the topic of the workshop, 2 mathematical biologists working in other fields, and 3 mathematicians (undergraduate students, graduate students, or Ph.D. mathematicians) with little or no previous experience in mathematical biology. In addition to the workshop participants, there will be 15 places for long term participants, students or researchers who wish to attend several or all of the workshops.

To apply for financial support or to obtain more information about the topics of the workshops, please write to: Nancy Kopell and Michael Reed, Summer Program in Mathematical Physiology, MSRI, 1000 Centennial Drive, Berkeley, CA 94720. Applicants should state clearly whether they wish to be long term participants or workshop participants and which workshops they wish to attend. Students should send a letter explaining their background and interests and arrange for one letter of recommendation to be sent. Researchers should indicate their interest and experience in mathematical biology and include a current vita and bibliography. Women and minorities are encouraged to apply. Applications for participation and/or support should be received at MSRI by January 10, 1992. Funding for the program is provided through MSRI by the NSF Division of Mathematical Sciences. Additional support has been requested from the NSF Division of Instrumentation and Resources.

The Institute is committed to the principles of Equal Opportunity and Affirmative Action

Intrigued?

$$
1+1+(1+1+1) \leftrightarrow
$$

$$
(1+1+(1+1+1)) \leftrightarrow \sqrt{ })
$$

Then consider joining a highly talented group of mathematicians whose job it is to deduce structure where structure is not apparent, to find patterns in seemingly random sets, to create order out of chaos.

These are the mathematicians of the National Security Agency. They contribute to the solution of cryptologic problems using Number Theory, Group Theory, Finite Field Theory, Linear Algebra, Probability Theory, Mathematical

Statistics, Combinatorics and more. And they function as a true community, exchanging ideas and working with some of the finest minds-and most powerful computers-in the country.

If you love problem-solving and like the idea that those solutions will be applied to real world problems, look into a career with NSA. Send your resume to the address below or contact your campus placement office.

FORUM MATHEMATICUM An international journal devoted to pure and applied mathematics as well as mathematical physics

Editors:

M. Brin (College Park, MD)
F. R. Cohen (Rochester, NY)
V. Enss (Aachen, Germany)
R. Fintushel (East Lansing, MI)
M. Fliess (Gif-sur-Yvette, France)
M. Fukushima (Osaka, Japan)
G. Gallavotti (Rome, Italy)
R. Göbel (Essen, Germany)
K. H. Hofmann (Darmstadt, Germany)
J. Lindenstrauss (Jerusalem, Israel)
D. H. Phong (New York, NY)
D. Ramakrishnan (Pasadena, CA)
A. Ranicki (Edinburgh, UK)
P.-A. Raviart (Palaiseau, France)
P. Sarnak (Stanford, CA)
D. S. Scott (Pittsburgh, PA)
D. Segal (Oxford, UK)
B. Shiffman (Baltimore, MD)
F. Skof (Turin, Italy)
K. Strambach (Erlangen, Germany)
H. J. Sussmann (New Brunswick, NJ)
G. Talenti (Florence, Italy)

Subscription Information:

FORUM MATHEMATICUM ISSN 0933-7741

1991, Volume 3 (6 issues)
$\$ 245.00$, plus postage and handling
Single issue price: $\$ 53.00$

1992, Volume 4 (6 issues)
$\$ 255.00$, plus postage and handling
Single issue price: $\$ 55.00$

For North America:
Walter de Gruyter, Inc.
200 Saw Mill River Road, Hawthorne, NY 10532

In fact, it's created by TCI Software Research Inc., the same scientists who brought you $\mathrm{T} 3_{\mathrm{m}}$.
Scientific Word $_{\mathrm{m}}$ is the latest in PC word processing for Windows 3.0.

The file storage format is T_{E}. It is a full document editor, not a previewer. You compose and edit directly on the screen without being forced to think in $T_{E} X$.
Your input is mathematics, and your output is $\mathrm{T}_{\mathrm{E}} \mathrm{X}$.
Discover the genius when you combine the power of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ with the simplicity of Scienitfic Wordim.
To be a part of this exciting new discovery, contact TCI Software Research Inc. Call 1-800-874-2383, toll free, and ask to be put on the list for this summer's special Scieniluc Word ${ }_{m}$ introductory offer.

1190 FOSTER ROAD LAS CRUCES, NM 88001
TEL:(505)522-4600
FAX:(505)522-0116 TELEX: 317629

Cambridge University Press

Logic and Information

K. Devlin

1991336 pp. 41030-4 Hardcover about $\$ 34.50$

Numerical Recipes Routines and Examples in BASIC
 Julien C. Sprott
 In association with Numerical Recipes Software
 1991416 pp. 40689-7 Paper $\$ 32.50 / 40688-9$ Diskette $\$ 32.50$

Analytic Pro-p Groups

J. D. Dixon, M. D. F. Du Sautoy, A. Mann, and D. Segal

London Mathemotical Society Lecture Note Series 157
1991260 pp. $39580-1$ Paper $\$ 34.50$

Representations and Cohomology of

 Finite GroupsVolume 1: Basic Representative Theory of Finite Groups and Associative Algebras
Volume 2: Cohomology of Groups and Modules D. J. Benson

Cambridge Studies in Advanced Mathematics 30 and 31
Vol 1: $1991236 \mathrm{pp} .36134-6$ Hardcover $\$ 39.50$
Vol 2: 1991250 pp . $36135-4$ Hardcover about $\$ 39.50$
Groups: St. Andrews 1989
Volume 1 and 2
Edited by C. M. Campbell and E. F. Robertson
London Mathematical Society Lecture Note Series 159 and 160
Vol 1: 1991264 pp. $39849-5$ Paper $\$ 32.50$
Vol 2: $1991264 \mathrm{pp} .40669-2$ Poper $\$ 32.50$

Representations of Finite Groups of Lie Type François Digne and Jean Michel
London Mathematical Society Student Texts 21
1991165 pp. 40117-8 Hardcover $\$ 44.50 / 40648-X \quad$ Paper $\$ 17.95$

Theory of Singularities and its Applications

V. I. Arnold

Lezione fermiane
1991120 pp. 42280-9 Paper $\$ 19.95$

Lectures on Block Theory

Burkhard Külshammer

London Mathematical Society Lecture Note Series 161
1991113 pp . 40565-3 Paper $\$ 22.95$

Discrete Mathematics

An Introduction for Software Engineers
Mike Piff
$1991328 \mathrm{pp} .38475-3$ Hardcover $\$ 59.50 / 38622-5$ Paper $\$ 16.95$

Chaotic Behaviour of Deterministic Dissipative Systems
 M. Marek and I. Schreiber
 1991280 pp. 32167-0 Hardcover \$79.50

Available in bookstores or write:
CAMBRIDGE UNIVERSITY PRESS
40 West 20th Street, New York, NY 10011-4211.
Call toll-free 800-872-7423.
MasterCard VISA accepted. Prices subject to change.

1992 CRM Summer School on CONTROL THEORY

July 13 to August 7, 1992
UNDER THE DIRECTION OF FRANCIS CLARKE
Course 1
OPTIMAL CONTROL \& VISCOSITY SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS WENDELL FLEMING (Applied Mathematics, Brown) and H.M. SONER (Mathematics, Carnegie-Mellon)

Course 2
OPTIMAL CONTROL VIA NONSMOOTH ANALYSIS
PHILIP LOEWEN (Mathematics, UBC)
Course 3
SYSTEMS OF VECTOR FIELDS \& FINITE-DIMENSIONAL CONTROL THEORY HECTOR SUSSMANN (Mathematics, Rutgers)

Course 4
INTRODUCTION TO H ${ }^{\circ}$ OPTIMAL CONTROL ALLEN TANNENBAUM (Electrical Engineering, Minnesota)

These courses are intended for an audience of graduate students. Only doctoral students or those having their Ph.D. degree for less than a year will be permitted to attend the courses. There will be in addition a few special lectures by other invited speakers.

- The deadline to register is February 28, 1992.•

Research Professorships

at the Mathematical Sciences Research Institute 1000 Centennial Drive, Berkeley, California 94720

The Mathematical Sciences Research Institute (MSRI), announces the availability of Research Professorships for the 1992-93 year.

These awards are intended for midcareer mathematicians; the applicant's Ph.D. should be 1986 or earlier. An award for a full academic year will be limited to a ceiling of $\$ 30,000$ and normally will not exceed half the applicant's salary. Appointments can be made for a portion of the year; the $\$ 30,000$ ceiling and half salary limit would then be prorated. It is anticipated that between six and ten awards will be made. In addition to the basic stipend, there will be an award for round trip travel to MSRI.

In 1992-93 MSRI will feature three programs: Algebraic Geometry for the entire year, Symbolic Dynamics for the first half, and Transcendence and Diophantine Problems in the second half. Please consult the general MSRI announcement for 1992-93 elsewhere in this issue of the Notices. Research Professorships are directed to applicants in all fields of the mathematical sciences. There are also Senior Memberships, which normally offer smaller awards. An applicant can apply for both (but only one award will be made per applicant). Women and minority candidates are especially encouraged to apply.
MSRI does not use formal application forms. An application should include a vita, a bibliography, a plan of research, and a statement concerning financial requirements. Two letters of reference are required. Candidates are asked to make sure that their application materials and the two letters arrive by October 1, 1991. Late applications cannot be assured a complete consideration. Awards will be announced in early December, 1991.

Send applications to the Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley CA 94720.
The Institute is committed to the principles of Equal Opportunity and Affirmative Action.

Computational Number Theory

Proceedings of the Colloquium on Computational Number Theory held at Kossuth Lajos University, Debrecen (Hungary), September 4-9, 1989
Edited by Attila Pethö, Michael Pohst, Hugh C. Williams, and
Horst Günter Zimmer
1991. xiii + 342 pages.

ISBN 0-89925-674-0 Cloth \$74.95
The volume contains 28 original research and survey articles and is devoted to the interaction of modern scientific computation and classical number theory. The contributions, ranging from effective finiteness results to efficient algorithms in elementary, analytic and algebraic number theory, provide a broad
 view of the methods and results encountered in the new and rapidly developing area of computational number theory. Topics covered include finite fields, quadratic forms, number fields, modular forms, elliptic curves and diophantine equations. In addition, two new number theoretical software packages, KANT and SIMATH, are described in detail with emphasis on algorithms in algebraic number theory.

Walter de Gruyter

Berlin • New York

For North America:

Walter de Gruyter, Inc. 200 Saw Mill River Road Hawthorne, NY 10532

The Five College Regional Geometry Institute

 COMPUTATIONAL ALGEBRAIC GEOMETRYJuly 6-31, 1992, Amherst College, Amherst, MA
For the summer of 1992, the Five College Regional Geometry Institute, funded by the NSF, will concentrate on COMPUTATIONAL ALGEBRAIC GEOMETRY. The goal of the Institute is to acquaint students and researchers with the new computational methods in algebraic geometry.

The Research Committee for the Institute consists of Eduardo Cattani (University of Massachusetts), David Cox (Amherst College), Alan Durfee (Mount Holyoke College), David Eisenbud (Brandeis University), Marc Giusti (Ecole Polytechnique), Antonella Grassi (Tufts University), Michael Stillman (Comell University), and Bemd Sturmfels (Comell University).

David Eisenbud (Brandeis) and Michael Stillman (Comell) will give an introduction to computational techniques in algebraic geometry. There will also be demonstrations of programs like Maple, REDUCE, Macaulay and CoCoA , and the Institute will have 30 workstations for participants to use.

There will be lecture series on Varieties of Low Dimension and Codimension, Combinatorial Methods in Algebraic Geometry, and Applications and Computational Issues. So far, the following speakers have agreed to come: John Canny (Berkeley), Wolfram Decker (Saarbrucken), Marc Giusti (Ecole Polytechnique), Joe Harris (Harvard), Sheldon Katz (Oklahoma State), Richard Stanley (MIT), Bemd Sturmfels (Comell), and Andrei Zelevinski (Northeastem).

In addition to algebraic geometers and graduate students, the Institute will draw together high school faculty, education researchers and undergraduate students. We expect substantial interaction among these groups.

The Institute seeks approximately 40 mathematicians who have active research programs in or closely related to algebraic geometry and who are willing to engage in activities with the other groups at the Institute. Transportation, meals, and lodging will be provided, as well as a stipend for those not already receiving NSF funding. Preference will be given to participants able to stay the entire month. There is also funding for about 16 graduate students.

Details of the application procedure will be available in September 1991. The deadline for application is March 15, 1992. For more information, contact David Cox, Department of Mathematics, Amherst College, Amherst MÁ 01002, USA. Phone: 413-542-2082 Email: rgi@cs.amherst.edu

> Seventh International Conference on Graph Theory, Combinatorics, Algorithms, and Applications Western Michigan University 1-5 June 1992

The Department of Mathematics and Statistics will host the Seventh International Conference on Graph Theory, Combinatorics, Algorithms, and Applications June 1-5, 1992. These quadrennial conferences commenced in 1968, with the last one in 1988. Proceedings of the past six conferences have been published by Springer-Verlag and by WileyInterscience.

The seventh conference, expected to attract participants from all over the world, will include five days of principal, invited, and contributed presentations dealing with current research in the various topics of the conference. Presentations will be given at the Western Michigan University Conference Facility, the FetzerCenter. In addition to the all day mathematics sessions, there will be several special events including an informal reception on Monday evening, June 1, and the Conference Banquet on Thursday, June 4.

The directors of the conference are Yousef Alavi, Joseph McCanna, Allen Schwenk, and Arthur White of Western Michigan University, and Ronald Graham of AT\&T Laboratories.

For further information, write to: The Directors
Seventh International Conference Dept. of Mathematics \& Statistics Western Michigan University Kalamazoo, MI 49008-5152

Phone: (616)-387-4510
Fax: (616)-387-3999
Email:
Schwenk@gw.wmich.edu

Littlewood-Paley Theory and the Study of Function Spaces

CBMS Regional Conference Series, Number 79 • Supported by the National Science Foundation

Littlewood-Paley theory was developed to study function spaces in harmonic analysis and partial differential equations. Recently, it has contributed to the development of the \varnothing-transform and wavelet decompositions. Based on lectures presented at the NSF-CBMS Regional Research Conference on Harmonic Analysis and Function Spaces, held at Auburn University in July 1989, this book is aimed at mathematicians, as well as mathematically literate scientists and engineers interested in harmonic analysis or wavelets. The authors provide not only a general understanding of the area of harmonic analysis relating to Littlewood-Paley theory and atomic and wavelet decompositions, but also motivation and background helpful in understanding the recent theory of wavelets.

The book begins with some simple examples which provide an overview of the classical Littlewood-Paley theory. The \varnothing-transform, wavelet, and smooth atomic expansions are presented as natural extensions of the classical theory. Finally, applications to harmonic analysis (Calderón-Zygmund operators), signal processing (compression), and mathematical physics (potential theory) are discussed.

1991 Mathematics Subject Classification: 42
ISBN 0-8218-0731-5, LC 91-11230,
ISSN 0160-7642
132 pages (softcover), May 1991
Individual member $\mathbf{\$ 2 4}$, List price $\$ 40$,
To order please specify CBMS/79NA

[^35]
JOURNEY TO A STRANGE NEW WORLD

T he University Press Book News says, "Soviet mathematician Fomenko augments his technical books and papers with visual impressions of mathematical concepts, often reminiscent of Escher, and with allusions to Breughel and Dürer."

[^36]
Mathematical Impressions

by Anatolǐ̆ T. Fomenko

Experience a mathematical world of intuition and inspiration! With his art, Fomenko dramatically explores the connection between the mathematical world and the real world by creating a strange parallel world where the two meet and merge into one. The results are stimulating to both the imagination and the eye. Over 80 dramatic illustrations in both black and white and striking full color take you on a journey through fantastic landscapes and poetic images. Fomenko himself acts as your guide, describing in accompanying text the mathematical motivation behind each illustration, as well as the emotional, historical, or mythical subtexts they evoke.

Now, for a limited time, you can experience the strange new world of Anatoliĭ Fomenko for $\mathbf{3 0 \%}$ off the list price. But hurry; this offer expires August 30, 1991. Order your copy today!

1980 Mathematics Subject Classification: 00
ISBN 0-8218-0162-7, LC 90-47514
194 pages (hardcover), December 1990
List price $\$ 45$, Special Discount $\$ 32$
To order, please specify MATIMP/NA

All prices subject to change. Free shipment by surface; for air delivery, please add $\$ 6.50$ per title. Prepayment required. Order from American Mathematical Society, P. O. Box 1571, Annex Station, Providence, RI 02901-1571, or call toll free 800-321-4AMS (321-4267) in the continental U. S. and Canada to charge with Visa or MasterCard.

AMERICAN MATHEMATICAL SOCIETY

Secondary Fields of Interest (choose from the list at right)

Address for all mail
\qquad
\qquad
\qquad
Telephone number(s)
Electronic address

Signature

Prepayment Methods and Mailing Addresses
 All payments must be in U.S. Funds.

Send checks, money orders, UNESCO coupons to American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 02901-1571

To use VISA or MasterCard, fill in information requested and mail to American Mathematical Society, P.O. Box 6248, Providence, RI 029406248 or call (401) 455-4000 or 1-800-321-4AMS.

For Foreign Bank Transfers: The name and address of the AMS bank is Rhode Island Hospital Trust National Bank, Account \#000-753-111, One Hospital Trust Plaza, Providence, RI 02903, U.S.A.
(January-December)
Date 19

Fields of Interest

If you wish to be on the mailing lists to receive information about publications in fields of mathematics in which you have an interest, please consult the list of major headings of the 1991 Mathematics Subject Classification below. Select no more than five category numbers and fill in the numbers where indicated on the left. These categories will be added to your computer record so that you will be informed of new publications or special sales in the fields you have indicated.

00 Genera

01 History and biography
03 Mathematical logic and foundations
04 Set theory
05 Combinatorics
06 Order, lattices, ordered algebraic structures
08 General algebraic systems
Number theory
Field theory and polynomials
Commutative rings and algebras
Algebraic geometry
Linear and multilinear algebra; matrix theory
Associative rings and algebras
Nonassociative rings and algebras
Category theory, homological algebra
K-theory
Group theory and generalizations
Topological groups, Lie groups
Real functions
Measure and integration
Functions of a complex variable
Potential theory
Several complex variables and analytic spaces
Special functions
Ordinary differential equations
Partial differential equations
Finite differences and functional equations
Sequences, series, summability
Approximations and expansions
42 Fourier analysis
43 Abstract harmonic analysis
44 Integral transforms, operational calculus
45 Integral equations
46 Functional analysis
47 Operator theory
49 Calculus of variations and optimal control;
optimization
51 Geometry
52 Convex and discrete geometry
53 Differential geometry
54 General topology
55 Algebraic topology
57 Manifolds and cell complexes
58 Global analysis, analysis on manifolds
60 Probability theory and stochastic processes
62 Statistics
65 Nurnerical analysis
68 Computer science
70 Mechanics of particles and systems
73 Mechanics of solids
76 Fluid mechanics
78 Optics, electromagnetic theory
80 Classical thermodynamics, heat transfer
81 Quantum theory
82 Statistical mechanics, structure of matter
83 Relativity and gravitational theory
85 Astronomy and astrophysics
86 Geophysics
90 Economics, operations research, programming, games
92 Biology and other natural sciences, behavioral sciences
93 Systems theory; control
94 Information and communication, circuits

Membership Categories

Please read the following to determine what membership category you are eligible for, and then indicate below the category for which you are applying.

For ordinary members whose annual professional income is below $\$ 45,000$. the dues are $\$ 78$, for those whose annual professional income is $\$ 45,000$ or more, the dues are $\$ 104$.

The CMS Cooperative Rate applies to ordinary members of the AMS who are also members of the Canadian Mathematical Society and reside outside of the U.S. For members whose annual professional income is $\$ 45,000$ or less, the dues are $\$ 66$ and for those whose annual professional income is above $\$ 45,000$, the dues are $\$ 88$.

For a joint family membership, one pays ordinary dues, based on his or her income, and the other pays ordinary dues based on his or her income, less $\$ 20$. (Only the member paying full dues will receive the Notices and the Bulletin as a privilege of membership, but both members will be accorded all other privileges of membership.)

Minimum dues for contributing members are $\$ 156$.
For either students or unemployed individuals, dues are \$26, and annual verification is required.

The annual dues for reciprocity members who reside outside the U.S. and Canada are $\$ 52$. To be eligible for this classification, members must belong to one of those foreign societies with which the AMS has established a reciprocity agreement, and annual verification is required. Reciprocity members who reside in the U.S. or Canada must pay ordinary member dues (\$78 or \$104).

The annual dues for external members, those who reside in developing countries which do not have any mathematical society, are $\$ 55$.

Members can purchase a multi-year membership by prepaying their current dues rate for either two, three, four or five years. This option is not available to either unemployed or student members.

1992 Dues Schedule (January through December)

For any category of membership where more than one dues level is given, see the above for descriptions of Members' Categories.

Ordinary member . \square. $\$ 78$ - $\$ 104$
CMS Cooperative rate . \square. $\$ 66 \square \$ 88$
Joint family member (full rate) . \$78
Joint family member (reduced rate) . \square \$58 \square \$84
Contributing member (minimum \$156) .

Unemployed member (please verify) ${ }^{2}$........................... \square. $\$ 26$
Reciprocity member (please verify) ${ }^{3}$.............. \square \$52■ \$78■\$104
External member. \square. $\$ 55$
Multi-year membership . \$ for years
1 Student Verification (sign below)
I am a full-time student at.
. currently working toward a degree.
2 Unemployed Verification (sign below) I am currently unemployed and actively seeking employment. My unemployment status is not a result of voluntary resignation or of retirement from my last position.

3 Reciprocity Membership Verification (sign below) / am currently a member of the society indicated on the right and am therefore eligible for reciprocity membership.

Reciprocating Societies

Allahabad Mathematical Society
Asociación Matemática Española
Australian Mathematical Society
Berliner Mathematische Gessellschaft e.V.
Calcutta Mathematical Society
Dansk Matematisk Forening
Deutsche Mathematiker-Vereinigung e.V.
ㅁ Edinburgh Mathematical Society
\square Gesellschaft für Angewandte Mathematik und Mechanik
Glasgow Mathematical Association Indian Mathematical Society Iranian Mathematical Society Irish Mathematical Society Íslenzka Staerð̈fraeØafélagið Israel Mathematical Union János Bolyai Mathematical Society Korean Mathematical Society London Mathematical Society Malaysian Mathematical Society Mathematical Society of Japan Mathematical Society of the Philippines Mathematical Society of the Republic of China New Zealand Mathematical Society Nigerian Mathematical Society Norsk Matematisk Forening Österreichische Mathematische Gesellschaft Polskie Towarzystwo Matematyczne Punjab Mathematical Society Ramanujan Mathematical Society Real Sociedad Matemática Española Sociedad Colombiana de Matemática Sociedad de Matemática de Chile Sociedad Matemática de la Republica Dominicana
\square Sociedad Matemática Mexicana Sociedade Brasileira Matemática
\square Sociedade Brasileira de Matemática
Aplicada e Computacional
$\square \quad$ Sociedade Paranaense de Matemática
Sociedade Portuguesa de Matemática
Societat Catalana de Matemàtiques
Société de Mathématiques Appliquées et Industrielles
\square Société Mathématique de Belgique

- Société Mathématique de France Société Mathématique Suisse Southeast Asian Mathematical Society
Suomen Matemaattinen Yhdistys
Svenska Matematikersamfundet
Union Mathemática Argentina
Unione Matematica Italiana
Vijnana Parishad of India Wiskundig Genootschap

Order Form

For VISA or MasterCard orders, send to:
American Mathematical Society
P.O. Box 6248

Providence, Rhode Island 02940-6248
(800) 321-4AMS (321-4267)

Ordered by: \qquad
\qquad

Charge by phone in the continental U.S. and Canada
 800-321-4AMS (321-4267)

\square Check or Money Order \quad VISA \quad MasterCard

Card Number																	

Card Expiration Date \qquad Signature \qquad

Shipping and Handling

Free shipment by surface: for air delivery, please add $\$ 6.50$ per book.

Prices are subject to change without notice.
Books are sent via surface mail (UPS to U.S. addresses and printed matter elsewhere) unless air delivery is requested. The shipping and handling charges for air delivery book orders are shown in the table. Journal back numbers, Mathematical Reviews indexes and review volumes are sent via surface mail to any destination unless air delivery is requested. Postage for surface mail is paid by the AMS. Air delivery rates, which will be quoted upon request, must be paid by the purchaser. Software: Nonindividual customers need not prepay provided a Purchase Order number is given with the order. Software/books are sent via UPS to U.S. addresses and via U.S. postal service air parcel post to addresses outside the U.S. Add shipping and handling for Software/Books: $\$ 8$ per order in the U.S. and Canada; $\$ 35$ per order air delivery outside the U.S. and Canada.
Customers in these areas should request price information from and direct their orders to the following distributors:
Europe/Middle East/Africa: Clarke Assoc.-Europe Ltd., 13a Small Street, Bristol BS1 1DE, England. Tel. 01-0272268864. Telex 445591 CALORB G; Fax 0272-266437

Japan: Maruzen Co. Ltd., P.O. Box 5050. Tokyo International 100-31, Japan. Tel. Tokyo 272-7211, Telex J26516 India: Allied Publishers Pvt. Ltd., 15, J. N. Herdia Marg., Ballard Estate, Bombay 400038, India

Staple here

Fold here

NO POSTAGE NECESSARY

IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL

POSTAGE WILL BE PAID BY ADDRESSEE

Customer Services

AMERICAN MATHEMATICAL SOCIETY
P. O. Box 6248

Providence, RI 02940-6248

Fold here

Change of Address

Members of the Society who move or who change positions are urged to notify the Providence Office as soon as possible.

Journal mailing lists must be printed four to six weeks before the issue date. Therefore, in order to avoid disruption of service, members are requested to provide the required notice well in advance.

Besides mailing addresses for members, the Society's records contain information about members' positions and their employers (for publication in the Combined Membership List). In addition, the AMS maintains records
of members' honors, awards, and information on Society service. Information of the latter kind appears regularly in Notices.

When changing their addresses, members are urged to cooperate by supplying the information requested below. The Society's records are of value only to the extent that they are current and accurate.

If your address has changed or will change within the next two or three months, please fill out this form, supply any other information appropriate for the AMS records, and mail to the address given below.

Name: \qquad Customer code: \qquad
Change effective as of: \qquad
Old mailing address: \qquad
NEW mailing address: \qquad
New position: \qquad
If mailing address is not that of your employer, please supply the following information:
New employer:
Location of employer: \qquad
Telephone number(s): \qquad
Electronic address(es): \qquad
Recent honors and awards:
Personal items for publication in Notices: \qquad

Mail completed form to:
Customer Services, AMS, P.O. Box 6248, Providence, RI 02940 or send the above information by email to: amsmem@math.ams.com or cust-serv@math.ams.com.

Fold here

NO POSTAGE NECESSARY
IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL

Customer Services
AMERICAN MATHEMATICAL SOCIETY
P. O. Box 6248

Providence, RI 02940-6248

Fold here

Lukasiewicz-Moisil Algebras
by V. Boicescu, A. Flipoliu, G. Georgescu and S. Rudeanu

Annals of Discrete Mathematics Voume 49
1991 xvi +584 pages
Price: US \$ 143.00/DII 250.00
ISBN 0-444-88444-0
The Lukasiewicz-Moisil algebras were created by Moisil as an algebrailc counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developeed to a considerable extent both as an algebraic theory of intinsic interest and in view of its applications to logic and switching theory. This book gives an overview of the theory, comprising bothclassical results and recent contributions, meluding those of the authors. N -valued arid θ-valued algebras are presented, as well as θ;algebras will negation. Mathematicians interested in latice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

Frontiers in Pure and Applied Mathematics

A Coilection of Papers dedicated to Jacques-Louis Lions on the occasion of his Sixtieth Birthday
edited by R. Dautray
1991 xxxvi +286 pages
Price: US \$ 108.50 / Dfl. 190.00
ISBN 0-444-88133-6
The sixtieth birthday of the eminent mathematician, Jacques-Louis Lions, was celebrated in Paris with a gathering of his frients. from the scientific community all over the world. Several hundred scientists met for a week at the Sorbonne and nineteen of the lectures they. delivered have been collected in this unique volume, which is an investigation of the fronters of mathematics.

Eulerian Graphs and Related Topics

by H. Fleischner

The two volumes comprising Part 1 of this work embrace the theme of eulerian trails and
covering walks. They should appeal both to researchers and students, as they contain enough material for an undergraduate or graduate graph theory course which emphasizes eulerian graphs, and thus can be read by any mathematician not yet familiar with graph theory. But they are also of interest to researchers in graph theory because they contain many recent results, some of which are only partial solutions to more general problems A number of conjectures have been included as well. Various problems (such as finding eulerian tralls, cycle decompositions, postman tours and walks through labyrinths) are also addressed algorithmically.

Part 1, Volume 1

Armals of Discrete Mathematics Volume 45
$1991 \times 1 \mathrm{lv}+392$ pages
Price: US $\$ 105.50$ / Dfl. 185.00
ISENO-444-88395-9

Part 1, Volume 2

Arnals of Discrete Mathematics Volume 50
$1991 x+326$ pages
Pice. US $\$ 100.00$ / Dfl. 175.00
ISEN O-444-89110-2

Combinatorics

ecited by A. Hajnal, L. Lovász and V.T. Sós
Coloquia Mathematica Societatis János Bolyai Volume 52

1988596 pages
Price:US $\$ 254.50$ / Dfl. 445.00
ISBN 0-444-70345-4
Distituited in the Fast European Countries. China. Cuba, Mongolia, North Korea and Vietnam by klutura

Leacing combinaterialists from around the world coniribuled to this volume. The plenary lecturers were the following: I. Beck (on combinatorial games), B. Eollobas (on cycles in random graphsi) A. Erowwer (on extremal design theory), P. Ereós lon problems and results in combinatorics). C. Godsin (on the application of Inear algebra min combinatorics), L. Lovász (on matching theory, A A. Razborov (on Boolean complexity), M. Saks (on collective coin flipping), and A. Schriver lon disioint paths in graphs).

Qualitative Theory of Differential Equations

Proceedings of the Third Colloquium on the Qualitative Theory of Differential Equations, Szeged, Hungary, 22-26 August 1988
edited by B. Sz. Nagy and L. Hatvani
Colloquia Mathematica Societatis János Bolyai Volume 53

1990684 pages
Price: US \$ 185.50 / Dfl. 325.00
ISBN 0-444-87407-0
Distributed in the East European Countries, China. Cuba. Mongolia, North Korea and Vietnam by KULTURA

This volume contains expounded versions of the lectures given at the recent Colloquium. The papers are mostly devoted to the study of asymptotic properties of (and stability problems relating to) solutions of ordinary and functional differential equations. Also featured is the new approach to nonlinear differential equations, using the methods of abstract dynamical systems. Papers concerned with applications in mechanics, physics, biology, and control, may also be found.

Send your orders to
In the USA and Canada:
Elsevier Science Publishing Co. Inc., P.O. Box 882. Madison Square Station New York, NY 10159, USA.
Telex: 420643
Fax: (New York) 212-633-3990
In all other countries:
Elsevier Science Publishers.
attn: Marijcke Haccou,
P.O. Box 103, 1000 AC Amsterdam,

The Netherlands.
Telex: 18582 espa nl
Fax: (Amsterdam) 020-5862-616
We accept Access. Eurocard, MasterCard, American Express, VISA (with signature and expiry date noted) as well as Bank Draft/Eurocheque/ International Money Order/Postal Cheque/ Official Purchase Order Form.

Springer for Mathematics

Happy Anniversary to the Graduate Texts in Mathematics series! Graduate Texts in Mathematics, now in its twentieth year, is one of the most successful mathematics series in the world. It offers introductions to modern mathematics in both current research and classical topics. The volumes are selected for their clear and precise writing as well as for their careful expositions of the theories they present. The texts are suitable not only for advanced graduate courses but also for individyal study by students and by research mathemáticians looking for further insight into particular branches of mathematics.

New Edition!

B.A. Dubrovin and A.T. Fomenko, both of Moscow State University, USSR; S.P. Novikov, L.D. Landau Institute for Theoretical Physics, Moscow, USSR

Modern Geometry: Methods and Applications

Part I: The Geometry of Surfaces, Transformation Groups and Fields, Second Edition

The first of a three volume introduction to modern geometry, with emphasis on applications to other areas of mathematics and theoretical physics. Topics covered include tensors and their differential calculus, the calculus of variations in one and several dimensions, and geometric field theory. The authors have adhered to a principle of minimal abstractness of exposition and terminology, giving preference to geometric intuition over excessive rigour, and significant examples over general theorems.
1991/app. 488 pp., 45 illus./Hardcover/\$59.80
ISBN 0-387-97663-9
Graduate Texts in Mathematics, Volume 93
A. Beardon, Cambridge University, England Iteration of Rational Functions
Complex Analytic Dynamical Systems
Presents a comprehensive, detailed and carefully organized treatment of the foundations for the theory of iteration of rational functions of a complex variable. Material extends from the original memoirs of Fatou and Julia to the recent and important results and methods of Sullivan and Shishikura. Many of the details of the proofs have not occurred in print before. The theory of dynamical systems and chaos has recently undergone a rapid growth in popularity. This text focuses on the specialized area of complex analytic dynamics, currently a very active area in mathematics.
1991/app. 272 pp., 35 illus./Hardcover/\$39.95
ISBN 0-387-97589-6
Graduate Texts in Mathematics, Volume 132
C.A. Berenstein, University of Maryland, College Park, MD; R. Gay, University of Bordeaux, France Complex Variables:

An Introduction

Gives an overview of the basic properties of holomorphic functions of one complex variable. Topics include a detailed description of differential forms, homotopy theory, and homology theory, as well as the analytic properties of holomorphic functions, the solvability of the inhomogeneous CauchyRiemann equation with emphasis on the notion of compact families, the theory of growth of subharmonic functions, and an introduction to the theory of sheaves, covering spaces and Riemann surfaces. A large number of exercises of differing levels of difficulty are included.
1990/650 pp., 68 illus./Hardcover/\$59.00
ISBN 0-387-97349-4
Graduate Texts in Mathematics, Volume 125
W.S. Massey, Yale University, New Haven, CT

A Basic Course in Algebraic

Topology

Intended as a text for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2 -manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology: An Introduction(GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised and corrected.
1991/428 pp., 57 illus./Hardcover/\$49.95
ISBN 0-387-97430-X
Graduate Texts in Mathematics, Volume 127

Order Today!

- Call: Toll-Free 1-800-SPRINGE(R): 1-800-777-4643 In NJ call 201-348-4033 (8:30 AM - 4:30 PM EST). Your reference number is $\mathbf{S 9 0 4}$.
- Write: Send payment plus $\$ 2.50$ for postage and handling to: Springer-Verlag New York, Inc., Order fulfillment-S904, PO Box 2485, Secaucus, NJ 07096-2491.
- Visit : Your local technical bookstore.

Instructors: Call or Write for information on textbook examination copies!

[^0]: The American Mathematical Society/Mathematical Reviews is an equal opportunity employer.

[^1]: * Departments granting at least ten doctorates during the ten-year period.

[^2]: -from Myths of Gender: Biological Theories about Women and Men, by Anne Fausto-Sterling. Basic Books, 1985

[^3]: -from "Science, Facts, and Feminism," by Ruth Hubbard. Feminism and Science. Nancy Tuana, Editor, Indiana University Press, 1989.

[^4]: —from Math Eauals: Biographies of Women Mathematicians and Related Activities, by Teri Perl. Addison-Wesley Publishing Company, Inc., 1978.

[^5]: ${ }^{1}$ The AWM was established in 1971 to serve and encourage women to study and have active careers in the mathematical sciences. Membership, now numbering over 4000 , includes both women and men from the United States and around the world, representing all parts of the mathematical community. For more information about the AWM, its programs and activities write: AWM, Box 178, Wellesley College, Wellesley, MA 02181.
 ${ }^{2}$ Symposium speakers were: Carolyn Dean, Bernadette Perrin-Riou, MeiChi Shaw, Jiang-Hua Lu, Ruth J. Williams, Laurette Tuckerman, Lynne M. Butler, Joan Feigenbaum, Elise Cawley and Jill Pipher. Graduate student speakers were: Andrea Bertozzi, Jill Dietz, Ellen Gethner, Miilja-Riita Hakosalo, Deanna Hausperger, Kitty Holland, Diana Major, Susan Schwartz, Melanie Stein and Julia Yang. Debbie Lockhart and Hugo Rossi led the Luncheon discussion.

[^6]: ${ }^{3}$ See for example, Rebekka Struik's article, "The Two City Problem," (AWM Newsletter, September 1974) or Marian Pour-El's article in Mathematics Tomorrow (edited by L.A. Steen, Springer-Verlag, 1981).
 ${ }^{4}$ Here I was in illustrious company. Before me there was Julia Robinson who, from time to time, was a lecturer at Berkeley until she was elected to the National Academy of Sciences in 1975 (and then immediately promoted to full professor). With me as lecturer was Karen Uhlenbeck. After that, there was a long line of prominent women mathematicians (and AWM members) including Chuu-Lian Terng, AWM President Jill Mesirov and Ruth Charney, member of the AWM Executive Committee.

[^7]: ${ }^{5}$ Although, when I thought back, the three women in my class in graduate school all had been born in New York City, all were Jewish (at least in part), all studied at women's schools, married in college, had babies while in graduate school, and all studied logic.
 ${ }^{6}$ There is an interesting story here which I heard then for the first time. In 1888 , Kovalevsky submitted her paper, "On the Rotation of a Solid Body about a Fixed Point" to the French Academy of Sciences to compete for the Prix Bordin. Papers had to be submitted anonymously with signatures coded by the author. That motto was Kovalevsky's code. Her anonymous paper was deemed so exceptional that the prize money was increased from 3000 to 5000 francs.

[^8]: ${ }^{7}$ As I recall, shortly after the AWM applied for affiliate membership in the CBMS, a mysterious math society, apparently originating in the mid-west, decided it also was worthy of CBMS membership. Its application caused something of a commotion, prompting the CBMS to reevaluate its membership criteria. This delayed AWM's entrance for about a year, but in the end, AWM was able to meet the stiffer requirements.

[^9]: ${ }^{8}$ In the interim, women had been invited sporadically to speak at local meetings: Pauline Sperry (1933), Emmy Noether (1934), Olga Taussky-Todd (1959), Cathleen Morawetz (1969), Mary Ellen Rudin (1971), Mary Elizabeth Hamstrom (1972).

[^10]: ${ }^{9}$ See AWM Newsletters and also, Math Equals by Teri Perl, (Addison-Wesley, 1978). A number of biographies of women mathematicians by women mathematicians have appeared in the Newsletters over the years. As an example, in the July 1978 issue, Bhama Srinivasan writes about Ruth Moufang (19051977), dedicating her article to the many mathematicians who have exclaimed, "You mean Moufang is a woman?"

[^11]: ${ }^{10}$ Their stories are published in the September 1978 and May-June 1980 Newsletters. Also see Pat Kenschaft's article, "Black Women in Mathematics in the United States," (American Mathematical Monthly, vol. 8, no. 6, 1981). Lee Lorch plays an important role here. Three women who studied with him at Fisk (during the period 1950-1955) went on to get Ph.D.s in mathematics: Etta Falconer, Vivienne Mayes-Malone and Gloria Hewitt.

[^12]: "Y, a pioneer in the application of non-linear mathematics to understanding chemical and biological phenomena, is recipient of numerous honors and awards, including a Sloan, a Guggenheim and a MacArthur "genius" award.

[^13]: ${ }^{12}$ Not completely. It should be noted, for example, that the AWM by-laws were written and passed during Judy Roitman's term. Creatively, they stipulated both formal structure and procedures for AWM's governance, while at the same time leaving room for flexibility.
 ${ }^{13}$ An impressive list of such Council members, contained in the September 1978 Newsletter, indicates broad AWM membership interests and affiliations: pure and applied mathematics research; colleges, universities and research institutions; math education; career counseling; teacher education; four-year state colleges; two-year community colleges; high school math teachers; history; and retired women.
 ${ }^{14}$ According to (MP), "when the University [of California at Berkeley] press office received the news [of Robinson's election], someone from there called the mathematics department to find out who Julia Robinson was. 'That's Professor Robinson's wife.' 'Well,' replied the caller, 'Professor Robinson's wife has just been elected to the National Academy of Sciences.' "
 ${ }^{15}$ The Emmy Noether Lecturers have been: F. Jessie MacWilliams, Olga Taussky-Todd, Julia Robinson, Cathleen S. Morawetz, Mary Ellen Rudin, Jane Cronin Scanlon, Yvonne Choquet-Bruhat, Joan S. Birman, Karen K. Uhlenbeck, Mary F. Wheeler, Bhama Srinivasan, Alexandra Bellow.

[^14]: ${ }^{16}$ In 1979, at the summer Meeting in Duluth, Judy Roitman organized an AWM panel "Mathematics Education: A Feminist Perspective" to discuss these new programs and strategies. Speakers included: Deborah Hughes Hallett, Diane Resek, and myself.

[^15]: ${ }^{17}$ McKee went on to stress how Noether's methods were directly applicable to her own work and living. Her remarks seem particularly relevant today, as the math community seeks words and ways to communicate to policy makers,

[^16]: and the public, the value of mathematics: "Miss Noether's methods of working and thinking became the basis for my analytical work at the research agency of the Pennsylvanian State Legislature for almost thirty years. It is probably heresy for me to mention this in front of so many theoretical mathematicians but there is a great need in government for abstract imaginative thinkers to help solve all sorts of problems. For example: What are the basic cost factors in a given government funded program? What is the taxpayer's money really accomplishing? During my career we searched for answers to these questions in such areas as the construction of public school buildings, the operating of State mental hospitals, the faculty workload at various levels of education, highway engineering as directed toward traffic safety. We chewed over the characteristics and searched for the basic independent variables when considered from all possible points of view. Other times the problem was to find the relevant variables to determine an equitable distribution of appropriations. What was the most important factor? population density? financial need? or simple geography? . .." (See the Symposium proceedings.)
 ${ }^{18}$ Contributors to the Noether proceedings include: Armand Borel, Walter Feit, Nathan Jacobson, Jeanne LaDuke, Marguerite Lehr, Ruth S. McKee, Uta C. Merzbach, Emiliana P. Noether, Gottfried E. Noether, Grace S. Quinn, Judith D. Sally, Richard G. Swan, Olga Taussky, Karen Uhlenbeck, Michele Vergne.
 ${ }^{19}$ Special credit for securing funds is due Eleanor Palais, longtime chair of the AWM Fund-raising Committee, and to Mary Gray and Alice Schafer.

[^17]: ${ }^{20}$ The panelists (Nancy Johnson, Louise Hay, Lucy Garnett, Marci Perlstadt and myself) talked about personal computing, running a math department with computers, evolution from mathematician to the field of computers, and computers in, and influence on, mathematical research-all quite novel topics at the time.
 ${ }^{21}$ Speakers included Judith Sunley, Alice Schafer, Rhonda Hughes, and Cora Sadosky.
 ${ }^{22}$ For remarks on previous mathematical mentors of women in the U.S., see "Women in the American Mathematical Community: The Pre-1940 Ph.D.s" by Judy Green and Jeanne LaDuke (The Mathematical Intelligencer, vol. 9, No. 1, 1987). Of their group of 229 pre-1940 Ph.D.s in mathematics, more than a third were advised by 8 mathematicians: Charlotte Angas Scott and Anna Pell-Wheeler (at Bryn Mawr) and 6 men-Frank Morley (at Johns Hopkins) and A.B. Coble (at Johns Hopkins and Illinois), Aubrey Landry (at Catholic University), Virgil Snyder (at Corne1l) and Gilbert Ames Bliss and L.E. Dickson (both at Chicago where together they advised 30 women Ph.D.s). It is not hard to surmise that each of these men felt secure in their position in mathematics. Like Lipman Bers, all but one were at one time President of the AMS!

[^18]: ${ }^{23}$ In the spring of 1987, Alice Schafer ran a SKHS Day at Simmons College, where SKHS Days have been held every year since. (Alice taught at Simmons after retiring from Wellesley-hence the connection; never one to retire, she is currently head of the Math Department at Marymount University!)

[^19]: ${ }^{24}$ Contributors to the Kovalevsky proceedings include: Patricia Bauman, Enrico Bombieri, John W. Cahn, Roger Cooke, Dennis Deturck, Jozef Dodzuik, Hans Engler, Carolyn Gordon, Ann Hibner Koblitz, Tilla Klotz Milnor, Richard Palais, Thea Pignataro, Emma Previato, Burton Randol, Michael Shub, Dennis Sullivan, Jean Taylor, Chuu-lian Terng, Alphonse T. Vasquez.
 ${ }^{25}$ In this volume, Ann Hibner Koblitz ("Changing Views of Sofia Kovalevskaia") presents an alternative, perhaps more plausible, perspective on the Prix Bordin story mentioned earlier. "Anonymity would not have been easy to achieve in the relatively small European mathematical community of the time," she contends. Furthermore, there is "overwhelming evidence that the French academicians decided to make the motion of a rigid body the topic of the 1888 Prix Bordin contest precisely because they knew that Kovalevskaia was working on the problem." Koblitz contends further that Felix Klein and Eric Bell are two of the people most responsible for the "fictionalization" of Kovalevsky as a "frivolous creature on the fringe of the mathematical world." Koblitz is particularly pointed in her criticism of Bell, claiming that "it is to him that mathematicians are largely indebted for distorted impressions of their predecessors."
 ${ }^{26}$ See "An Autobiography of Julia Robinson by Constance Reid" in MP.
 ${ }^{27}$ Panelists were: Josefina Alvarez (Argentina); Bodil Branner (Denmark),

[^20]: Marie Françoise Coste-Roy (France), Consuelo Flores (Nicaragua), Gudrun Kalmbach (Germany), Maria Jose Pacifico (Brazil), Jennifer Seberry (Australia), Caroline Series (England), and Josephine Guidy-Wandja (Ivory Coast). Although the panel was large, we had no representation from a large part of the world-indeed from Eastern Europe through Asia. This was partially rectified at the ICM-90 in Kyoto where panelists included: Rajinda Hans-Gill (India), Hu He-sheng (China), Maria T. Lozano (Spain), Aiko Negishi (Japan), Kati Tenenblat (Brazil), Gillian Thomsby (New Zealand), and Asia Weiss (Canada).
 ${ }^{28}$ As a personal protest, Marina Ratner had taken the more extreme position of publicly boycotting the Congress. (See "Women in Mathematics: An International Perspective, Eight Years Later," LB, The Mathematical Intelligencer, vol. 9, no. 2, 1987.)

[^21]: ${ }^{29}$ For a thoughtful and well articulated account of this viewpoint by one of its key theorists, see Reflections on Gender and Science by Evelyn Fox Keller (Yale, 1985). In this book, Keller calls for a science "in which difference, rather than division, constitutes the fundamental principle for ordering the world ..."
 ${ }^{30}$ See AWM Newsletter, May-June 1987.
 ${ }^{31}$ At the formal ceremonies, Rhonda presented the AMS with congratulatory wishes from the AWM and in appreciation was presented a silver bowl from the AMS (which now ritually gets passed down from one AWM President to the next at inauguration time).

[^22]: ${ }^{32}$ See WM and the November-December 1988 AWM Newsletter for more on these fascinating stories and an account of the centennial history.

[^23]: ${ }^{33}$ Louise Hay's autobiographical article, "How I became a mathematician (or how it was in the bad old days)" appeared in the September-October 1989 issue of the AWM Newsletter. "If there is a moral to this tale of how I became a mathematician," she concludes in the article, "it is that sources of inspiration and opportunities to change your life can come unexpectedly and should not be ignored; and that you should not neglect the dictates of your own career, taking some risks if necessary, since you never know what the future will bring."

[^24]: ${ }^{34}$ The AWM Travel Grant program is funded by NSF; our postdoc/graduate student workshop program is funded jointly by NSF and ONR.
 ${ }^{35}$ Resource materials, including a booklet Careers that Count: Opportunities in the Mathematical Sciences and a brochure highlighting the Noether Lecturers (both written by Allyn Jackson), are available from the AWM Resource Center at Wellesley.
 ${ }^{36}$ Dusa's moving and very personal response appears in Notices, March 1991. Highly recommended reading!
 ${ }^{37}$ For information on women in the MAA and much more, see "Winning Women Into Mathematics," produced by the MAA Committee on the Participation of Women and edited by Pat Kenschaft (MAA Publications, 1991).

[^25]: ${ }^{38}$ Invited Speakers at ICM-90 included Lenore Blum, Shafi Goldwasser, Dusa McDuff, Colette Moeglin, Mary Rees, and Eva Tardos. In addition, Joan Birman presented the account of the work of Field's Medalist Vaughan Jones.
 ${ }^{39}$ The U.S. delegates were Alice Chang, Andy Gleason, Ron Graham, Linda Keen, and myself.

[^26]: ${ }^{40}$ In particular, special acknowledgment is due Ruth Samia and Margaret Munroe, who ran the AWM office for many years.
 ${ }^{41}$ Symposium Program Committee: Jill Mesirov and Carol Wood (coChairs), LB, Alice Chang, Linda Keen, Maria Klawe, Susan Montgomery, Bhama Srinivasan, Karen Uhlenbeck, Mary Wheeler. Graduate Student Workshop Committee: LB (Chair), Ruth Charney, Pam Cook, Leslie Federer, Martha Nesbitt. Louise Hay Award Committee: Rhonda Hughes (Chair), Sylvia Bozeman, Mary Ellen Rudin. Resource Center Committee: Jenny A. Baglivo (Chair), Rosemary Chang, Martha K. Smith, Judy Roitman, Margaret Wright.

[^27]: Editorial Boards Committee

 ## Eugene B. Fabes

 Professor of Mathematics. University of Minnesota, Minneapolis
 Born. February 6, 1937, Detroit, Michigan
 Ph.D. University of Chicago, 1965

[^28]: *David Stoutemyer is a professor of computer science at the University of Hawaii, Honolulu, HI 96822, and is the co-founder of Soft Warehouse, Inc., 3615 Harding Ave., Suite 505, Honolulu, HI 96816.

[^29]: *Charles Livingston is in the Department of Mathematics at Indiana University, Bloomington, Indiana 47405 . He can be reached by email at livingst@ucs.indiana.edu His article was based on research that was supported by the National Science Foundation.

[^30]: *The editors and staff have made an incomplete search for this quote without success. Help in locating this review from $M R$ readers would be welcome.

[^31]: Institutional Associates
 Center for Communications Research
 Daniel H. Wagner Associates
 Kluwer Academic Publishers
 Princeton University Press
 Springer-Verlag New York Incorporated
 Supercomputer Research Center, Institute for Defense Analyses

[^32]: 27-October 3. Darstellungstheorie Endlicher Gruppen, Oberwolfach, Federal Republic of Germany. (Feb. 1991, p. 148)

[^33]:
 and Comada io chatge with Visal or MasterCard.

[^34]: * Only one Associate Secretary at a time is a voting member of the Council, namely the cognizant Associate Secretary for the scientific sessions.

[^35]: All prices subject to change. Free shipment by surface; for air delivery, please add $\$ 6.50$ per title. Prepayment required. Order from American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 02901-1571, or call toll free 800-321-4AMS (3214267) in the continental U.S. and Canada to charge with Visa or MasterCard.

[^36]: Winner of the
 Printers Industry Association of the South Award of Excellence

