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T
omography, from the Greek τóµoς, a
slice, is by now an established and ac-
tive area of mathematics. The word is
usually associated with computerized
tomography, the dramatic applica-

tions of which include the CAT scanner in med-
icine. In such applications, information is col-
lected about sections of a density distribution.
By various techniques, this information is syn-
thesized to yield a reconstruction of the density
distribution itself. For example, the CAT scan-
ner produces images of two-dimensional sec-

tions of human patients from X
rays taken in a finite number of
directions. Such a reconstruc-
tion is always merely approxi-
mate, the accuracy depending
on the number of X rays, since
no finite set of X rays deter-
mines a density distribution
uniquely.

At the Conference on To-
mography at Oberwolfach in
1990, the author introduced the
term geometric tomography. In
the author’s book [21], the fol-
lowing definition is offered:

“Geometric tomography is the area of math-
ematics dealing with the retrieval of information
about a geometric object from data about its sec-
tions, or projections, or both.” The use of the
word geometric here is deliberately vague. A
special case would be the study of sections or
projections of a convex body or polytope, but it
is sometimes more appropriate to consider star-
shaped bodies, compact sets, or even Borel sets.

. . . from the
Greek τóµoς,

a slice.

The word projection is used in the sense of a
shadow, that is, the usual orthogonal projec-
tion on a line or plane.

By considering only a strict subclass of den-
sity distributions, one can sometimes obtain
uniqueness in the inverse problem of deter-
mining a set from partial knowledge of its sec-
tions. For example, the author and McMullen
[23] proved that there are certain prescribed
sets of four directions in n-dimensional Euclid-
ean space En, such that the X rays of a convex
body in these directions distinguish it from all
other convex bodies. (In this context, an X ray
gives the lengths of all chords of the body par-
allel to the direction of the X ray; see Figure 1.)
In such situations one might formulate and im-
plement an algorithm providing an arbitrarily ac-
curate reconstruction from a fixed finite set of
X rays.

Even when the collected data do not force a
unique solution, interesting questions of prac-
tical importance can be raised. For instance,
what is the best way to estimate the volume of
a three-dimensional convex body, given the areas
of its projections on planes? Lutwak [34] ob-
tained a striking upper bound by applying the
Petty projection inequality, one of a slew of deep
affine isoperimetric inequalities surveyed in [37].
Lutwak’s bound, which extends to En, is indeed
affine invariant—it yields the exact volume for
ellipsoids!

R. J. Gardner is professor of mathematics at Western
Washington University in Bellingham, WA. His e-mail
address is gardner@baker.math.wwu.edu.

1. Introduction
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Much of geometric tomography, as expounded
in [21], consists of inverse problems concerning
data of one of three types: X rays, measurements
of projections, and measurements of concur-
rent sections. We shall explain these terms and
provide just a sampler of the many results in
each category, focusing on uniqueness and ig-
noring other types of data and intriguing topics
such as stability, reconstruction, and estimates
of volume. We stress that while the current state
of the art often makes convexity a convenient as-
sumption, this is usually unnecessary, except
where projections are involved, and sometimes
even inappropriate.

2. X Rays
In 1917, J. Radon showed that a density distri-
bution in the plane is determined by its X rays
taken in every direction. To prove this, Radon
found an inversion formula for an integral trans-
form now called the Radon transform; the for-
mula is a key ingredient in computerized to-
mography, though much more is required in
practice (see [42]).

Geometric tomography is concerned with sets,
that is, densities taking only the values 0 or 1.
Suppose that C is a compact subset of En and
u is a direction, a unit vector in the unit n-sphere
Sn−1. Denote by u⊥ the (n− 1)-dimensional sub-
space orthogonal to u. The parallel X ray of C
in the direction u gives for each x ∈ u⊥ the lin-
ear measure of the intersection of C with the line
through x parallel to u. A slight strengthening
of Radon’s theorem implies that if U is an infi-
nite set of directions in S1, then the parallel X
rays of a compact set in E2 in the directions in
U distinguish it from any other compact set.

In 1963, P. C. Hammer posed several problems
concerning the determination of planar convex
bodies by finite sets of X rays. Here there are sim-
ple examples of nonuniqueness: A regular n-
gon P and its rotation Q by π/n about its cen-
ter have equal parallel X rays in each of the di-
rections of the edges of the regular 2n-gon R
formed by the convex hull of P and Q . Moreover,
since affine maps preserve the ratios of lengths
of parallel line segments, the images φP and φQ
of these n-gons under an affine map φ have
equal parallel X rays in each of the directions of
the edges of the affinely regular polygon φR.
The author and McMullen [23] proved that these
are the only sets of directions to be avoided in
order to obtain uniqueness. To be precise: If U
is a finite set of directions in S1, then the cor-
responding parallel X rays of a planar convex
body distinguish it from any other such body if
and only if U is not a subset of the directions of
the edges of an affinely regular polygon. In con-
trast to Radon’s theorem, the proof does not use
integral transforms, though these also repre-

sent a major tool in the geometric branch of to-
mography.

To obtain the result mentioned in Section 1,
one observes that the cross ratio of the slopes
of any four edges of a regular polygon is an al-
gebraic number. This remains true of an affinely
regular polygon, since affine maps preserve

cross ratio. Therefore a set of four directions
whose slopes have a transcendental cross ratio
will ensure that the corresponding parallel X
rays determine each planar convex body. Con-
vex bodies in En can also be determined by par-
allel X rays in such a set of four directions lying
in the same 2-dimensional plane, since the X
rays then determine each 2-dimensional slice
parallel to this plane.

One can also imagine an X ray in which the
beams are not parallel but rather emanate from
a single point; in fact, such “fan-beam X rays” are
employed in modern CAT scanners. Mathemat-
ically, the point X ray of C at a point p in En gives
for each u ∈ Sn−1 the linear measure of the in-
tersection of C with the line through p parallel
to u.

The problem of how best to determine con-
vex bodies by point X rays has not been com-
pletely solved. One point X ray is clearly insuf-
ficient; see Figure 2. There are results concerning
X rays at two points—Falconer [15] found a
clever way of applying a version of the stable
manifold theorem—but these require advance
knowledge of the position of the body relative
to the two points. The best unrestricted unique-
ness theorem was established by Volčič [49]:
Every set of four noncollinear points in the plane
has the property that X rays of a planar convex
body at these points distinguish it from any
other such body.
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A parallel X ray

of a convex 
body C.
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Many well-known problems fit squarely into
the framework of geometric tomography. For
example, the notorious equichordal problem can
be phrased as follows: Is there a planar body,
bounded by a simple closed curve and star
shaped with respect to two interior points p
and q, whose point X rays at p and q are both
constant? Posed in 1917, the equichordal prob-
lem generated deep studies by E. Wirsing,
R. Schäfke, H. Volkmer and others. Now the
problem has apparently been laid to rest: a tour
de force by Rychlik [44] offers a negative solu-
tion.

3. Projections
If the compact set C is a nonempty body—that
is, C is the closure of its interior—then the sup-
port of the X ray of C in a direction u is just the
projection C|u⊥ of C on u⊥, so the latter yields
strictly weaker information. This link is one rea-
son for allowing projections as well as sections
in geometric tomography. (Polar duality pro-
vides another; see below.)

Holes and dents can be invisible in shadows,
so the class of convex bodies is the largest con-
venient class for this type of data. Let us con-
sider two basic measurements of their projec-
tions. The width function of a convex body K
gives for each u ∈ Sn−1 the length of the pro-
jection (of K) on the line through the origin par-
allel to u. The brightness function of K gives for
each u ∈ Sn−1 the volume of its projection on
u⊥. (The volume of a k-dimensional body al-
ways means its k-dimensional volume.) In E3,
then, the brightness function of a convex body
gives the areas of its shadows cast on planes.

Mixed volumes furnish an ideal vehicle for
problems involving projections as well as a uni-
fied treatment of metric quantities such as vol-
ume, surface area, and mean width. They play a

central role in the Brunn-Minkowski theory,
founded by H. Minkowski in the last decade of
the nineteenth century after groundwork of
J. Steiner and H. Brunn. (Schneider’s book [46]
is a lucid and comprehensive guide to this
labyrinthine palace, and references to every-
thing in this section are supplied there.)
Minkowski’s discoveries included generaliza-
tions of the classic isoperimetric inequality and
employed basic tools of analysis such as mea-
sure, integral, and spherical harmonics. The
Brunn-Minkowski theory quickly produced
dozens of theorems on the important sets of con-
stant width or brightness (the front cover pic-
ture depicts one of the latter) and characteriza-
tions of spheres or ellipsoids in terms of various
measurements of their projections.

Perhaps the single most important develop-
ment from the point of view of geometric to-
mography came with a uniqueness theorem of
A. D. Aleksandrov. In 1937, he (and, indepen-
dently, W. Fenchel and B. Jessen) introduced the
surface area measure of a convex body, a con-
cept allowing many results in convex geometry
to be relieved of unnecessary differentiability as-
sumptions. This innovation is employed in Alek-
sandrov’s uniqueness theorem for projections:
A convex body in En that is centered, centrally
symmetric with center at the origin, is deter-
mined, among all such bodies, by its brightness
function. The proof hinges on two facts: An in-
tegral transform called the cosine transform is
injective on the even continuous functions on
Sn−1, and a convex body is determined up to
translation by its surface area measure. The lat-
ter is a consequence of the Aleksandrov-Fenchel
inequality, a profound generalization of the
isoperimetric inequality that has unexpected
connections with other areas, for example, al-
gebraic geometry.

In the later development of the Brunn-
Minkowski theory, the concept of a projection
body is of special significance. This is a cen-
tered convex body whose support function—
giving for each u ∈ Sn−1 the distance from the
origin to a supporting hyperplane orthogonal to
u—is the brightness function of another convex
body. Figure 3 depicts the projection bodies of
a regular tetrahedron and double cone. To il-
lustrate the role of projection bodies, suppose
measurements of a centered convex body in En,
n ≥ 3, yield the comparative information that its
brightness function is smaller than that of an-
other such body. Can one conclude that its vol-
ume is also smaller? Sometimes called Shep-
hard’s problem, this was solved in 1967 by
C. M. Petty and R. Schneider; the answer is yes
if the body with the larger brightness function
is a projection body, but no in general for each n.

C

 C'
 C'

C

p

p

Figure 2
Polygons with
equal point 
X rays at p.
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4. Concurrent Sections
In geometric tomography there is a remarkable and
mysterious correspondence between projections
and concurrent sections, sections through a fixed
point that can be taken as the origin. Some con-
nection between the two can be expected from the
polar duality familiar to all geometers. If K is a
convex body containing the origin in its interior,
denote the polar body of K by K∗; (see [46], p.
33). (If K is centered, its support function, ex-
tended from Sn−1 to a positively homogeneous
function on En, is a norm on En. Then K∗ is the
unit ball in the corresponding normed space
(En,K∗). This is the source of much interplay be-
tween convexity and functional analysis.) If S is
a subspace, then (see [38], p. 70) it is easily
shown that K∗ ∩ S = (K|S)∗, where the polar op-
eration on the right is taken in S . Apart from a
few special situations, however, this equation
sheds little light on the puzzle.

If, in the definitions above, we replace the
words “projection on” with “section by”, the
width function of a convex body becomes its
point X ray at the origin and the brightness func-
tion becomes a new function called the section
function that gives for each u ∈ Sn−1 the volume
of the intersection with u⊥. When the measured
data concern planar sections through the origin,
however, it is more appropriate to work with star
bodies than with convex bodies. A star body is
a body, containing the origin and star shaped
with respect to the origin, whose radial func-
tion—giving for each u ∈ Sn−1 the distance from
the origin to the boundary in the direction u—
is continuous. (For another, more general defi-
nition, see [24].) The definitions of point X ray
at the origin and section function extend natu-
rally to star bodies.

We have mentioned one of the founders of the
analytical basis of tomography, J. Radon. An-
other was P. Funk, whose paper [17] proves: A
centered star body in E3 is determined, among
all such bodies, by its section function. Refor-
mulated, Funk’s uniqueness theorem says that
an integral transform called the spherical Radon
transform is injective on even continuous func-
tions on Sn−1. The latter was actually proved ear-
lier by Minkowski for n = 3; subsequently, proofs
for general n were found by H. Helgason, C. M.
Petty, and R. Schneider.

Though perfect for projections, the Brunn-
Minkowski theory has comparatively little rele-
vance for sections. In 1975, Lutwak [33] initiated
a “dual Brunn-Minkowski theory”, in which pro-
jections of convex bodies are replaced by sec-
tions of star bodies. He observed that the inte-
grals over Sn−1 of certain expressions involving
powers of radial functions behave in many ways
just like mixed volumes, and called them dual
mixed volumes. Moreover Hölder’s inequality,

when reformulated in terms of dual mixed vol-
umes, looks just like the Aleksandrov-Fenchel in-
equality, with the inequality reversed!

In these early ingredients, the dual theory is
more Bauhaus than Byzantine, though no less ef-
fective. But Lutwak’s dual theory includes much
more than this. In [35], for example, he intro-
duced the notion of an intersection body, a cen-
tered star body whose radial function is the sec-
tion function of another star body. The
intersection body of a convex body need not be
convex, but a theorem of H. Busemann, funda-
mental for his theory of area in Finsler spaces,
can be reinterpreted as saying that the inter-
section body of a centered convex body is con-
vex. Some examples of convex intersection bod-
ies are illustrated in Figure 4. On the left, a
centered cube C of side length 1/2 includes its
intersection body, created from a program writ-
ten by Fred Pickle; on the right, a centered cylin-

der K of radius 1 and height 2 is shown with
its (translated) intersection body.

The Brunn-Minkowski theory and Lutwak’s
dual theory feed from each other, with great
benefit for both and for geometric tomography.
This process occurs via a sort of dictionary that
allows transport from one theory to the other.
In this dictionary, convex bodies, projections, the
support function, the brightness function, mixed
volumes, the cosine transform, and projection
bodies in the Brunn-Minkowski theory corre-
spond to star bodies, sections by planes through
the origin, the radial function, the section func-
tion, dual mixed volumes, the spherical Radon
transform, and intersection bodies, respectively,
in the dual theory. In this way, the uniqueness
theorems of Aleksandrov and Funk, for exam-
ple, translate into each other. Moreover, a proof

T C ΠCΠT

Figure 3
Projection

bodies.
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in one theory can sometimes be translated into
a proof in the other.

When we translate Shephard’s problem ac-
cording to Lutwak’s dictionary, we obtain the fol-
lowing problem: If the section function of a cen-
tered star body in En, n ≥ 3, is smaller than
that of another such body, is its volume also
smaller? The answer is yes if the body with the
smaller section function is an intersection body,
but is in general no for each n. (The word
“smaller” is due to the inequality reversal men-
tioned above.)

The first part of this result is a theorem of Lut-
wak [35]. Lutwak was actually motivated by a
variant of this problem, obtained by replacing
the word “star” in the previous paragraph by
“convex”. This is precisely the well-known Buse-
mann-Petty problem, one of a list of ten prob-
lems in [10] inspired by investigations in
Minkowskian geometry. Lutwak’s theorem still
applies, of course, and intersection bodies—and,
by the way, nonconvex star bodies—also play a
crucial role in the solution to the Busemann-
Petty problem. In fact, the answer to the Buse-
mann-Petty problem is yes for a given n if and
only if each sufficiently smooth centered convex
body in En is an intersection body. This discov-
ery led the author [18,19,20] and Zhang [52,53]
to the complete solution; it turns out that the an-
swer is no for each n ≥ 4 but an unqualified yes
if n = 3. Along the way, Ball [1] established the
precise upper bound of 

√
2 for the section func-

tion of a centered cube of unit side length. While
expected, the result is tricky to prove, and, in-
cidentally, yields a negative answer to the Buse-
mann-Petty problem for n ≥ 10.

Recent work of Goodey, Lutwak, and Weil [25]
suggests that a profound synthesis of the Brunn-
Minkowski theory and its dual may one day be
revealed, and the mystery explained at last. 

5. Public Relations Department
Computerized tomography generally deals with
sections of density distributions. Despite this, it
is worth noting that geometric objects do occur
in the medical literature. For example, the au-
thors of [11] approximate the human heart by a
convex body and attempt to use two X rays to
obtain a reconstructed image. However, appli-
cations of geometric tomography are perhaps
more likely to occur in several other areas.

Skiena [48] envisages that what he calls “geo-
metric probing” will be of use in robotics. A
robot may need to be equipped with a sensing
device to help identify the shape and position
of geometric objects, for example, in picking
machine parts off a conveyor belt or in moving
around an environment in which objects are ap-
proximated by polyhedra. Skiena investigates
the possibility of using X rays, and this leads him

to consider X rays of (convex or nonconvex)
polytopes. The fresh “interactive” viewpoint of
computer science brought the natural and prac-
tical concept of successive determination, in
which X rays already taken can be consulted in
deciding the direction for the next X ray; see [14]
and [22]. X rays of geometric objects also occur
in Horn’s book [29] on robot vision.

On September 19, 1994, a minisymposium
with the title “Discrete Tomography”, organized
by Larry Shepp of AT&T Bell Labs, was held at
DIMACS. Some time earlier, Peter Schwander, a
physicist at AT&T Bell Labs in Holmdel, had
asked Shepp for help in obtaining three-dimen-
sional information at the atomic level from two-
dimensional images taken by an electron mi-
croscope. A new technique, based on
high-resolution transmission electron mi-
croscopy, can effectively measure the number of
atoms lying on each line in certain directions. (At
present, this can be achieved only for some crys-
tals and in a constrained set of crystallographic
directions—lattice directions for the crystal lat-
tice.) The aim is to determine the three-dimen-
sional crystal from information of this sort ob-
tained from a number of different directions.
This leads to the problem of determining a fi-
nite set from its projections (counted with mul-
tiplicity) on a finite number of planes. While it
formally belongs to geometric tomography, the
problem is given only very brief mention in [21];
partial answers can be found in [7] and [16].

Suppose that C is a compact set in En and S
is a k-dimensional subspace, where 1 ≤ k ≤
n− 1. The k-dimensional X ray of C parallel to
S gives for each x ∈ S⊥ the volume of the in-
tersection of C with the translate of S contain-
ing x. The ordinary X ray corresponds to k = 1.
In [12], it is observed that the problem of radar
target estimation is related to the determination
of a three-dimensional body from its two-di-
mensional X rays. The k-dimensional X ray of a
convex polytope P, parallel to a subspace in
general position with respect to the vertices of
P, is a piecewise polynomial of degree at most
k, at least (k− 1)-times continuously differen-
tiable. In short, it is a spline. Of particular con-
sequence in spline theory are the cases when P
is a simplex or a cube, the latter giving rise to
box splines. Box splines are of considerable in-
terest in computer-aided design; see [13].

If C is a body and u is a direction, the maxi-
mum volume of sections of C by hyperplanes
orthogonal to u is sometimes called an HA mea-
surement. This strange term derives from the
study of the Fermi surface of a metal—the sur-
face of a body formed, in velocity space, by ve-
locity states occupied at absolute zero by valence
electrons of the metal. Knowledge of the Fermi
surface gives valuable information about various
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physical properties such as conductivity. The
maximal cross-sectional areas of the body
bounded by a Fermi surface can be measured by
means of the de Haas-van Alphen effect, mag-
netism induced in the metal by a strong magnetic
field at a low temperature, hence the name HA
measurement. More details and references are
provided by Klee [32].

Projection bodies appear in quite surprising
guises. A strong form of Liapounov’s theorem
says that they are precisely the ranges of vector-
valued measures. A centered convex polyhedron
is equidissectable with a cube if and only if it is
a projection body. If K is a centered
convex body in En , the normed
space (En,K∗) defined above is iso-
metric to a subspace of L1(0,1) if
and only if the body is a projection
body. Projection bodies have also
found application in stochastic
geometry, random determinants,
Hilbert’s fourth problem, math-
ematical economics, and other areas;
see [26,36], and the references given
there.

Santaló ([45], p. 282) quotes a de-
finition of stereology, due to H. Elias,
as the exploration of three-dimen-
sional space from two-dimensional
sections or projections of solid bod-
ies. The relatively new term was
coined at a meeting, principally of bi-
ologists and metallurgists, on the
Feldberg, Germany, in 1961. Stere-
ology is closely related to geometric
tomography, but focuses on statis-
tical estimates from random sec-
tions. Many pertinent references can be found
in [45] and in Weil’s survey [50]. Mathematical
morphology, image analysis, and pattern recog-
nition also overlap with geometric tomography.

6. Try Your Hand?
Space permits only one open problem from each
of the three categories referred to at the end of
Section 1. They all happen to concern convex
bodies, but many of the seventy or so open ques-
tions listed in [21] do not.

Question 1. In E3 , is there a prescribed finite set
of directions in general position such that the X
rays of any convex body in these directions will
distinguish it from any other such body?

Here, general position means that no three of
the directions lie in a plane. The four directions
in the theorem of the author and McMullen [23]
(see Sections 1 and 2) all lie in the same plane.
Unfortunately, an arbitrarily small perturbation
of a suitable set of four directions can destroy
the uniqueness property, so that the theorem

lacks stability. Question 1 is especially interest-
ing because it seems possible that any set of
seven (mutually nonparallel) directions in gen-
eral position will do; an example found by the
author, Volčič , and Wills ([21], Theorem 2.2.2)
shows that not every set of six directions in gen-
eral position has the required property.

Question 2. Is there a nonspherical convex body
in En, n ≥ 3, of constant width and constant
brightness?

This tough old nut goes back to Nakajima
[41], who showed that the answer is no for n = 3

under an additional smoothness assumption.
Nonspherical convex bodies of constant width
have been around since Euler named them orb-
iforms, and Blaschke ([8], pp. 151–4) constructed
nonspherical convex bodies whose brightness
functions are constant. Centered balls are the
only star bodies whose point X rays at the ori-
gin and section functions are both constant; this
answer to the dual form of Question 2 is given
in [24] (see also [27]).

Question 3. Is there a constant c, independent
of n, such that if H and K are centered convex
bodies in En with the section function of H smaller
than that of K, then the volume of H is smaller
than c times the volume of K?

A complete answer to a problem on Buse-
mann and Petty’s list ([10], Problem 2) would also
answer Question 3; but, as formulated here, with
the emphasis on the universal constant c, the
question is a quite recent one. Bourgain [9]
proved that c can be replaced by cn = O(n1/4).
The solution to the Busemann-Petty problem

K IKC
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bodies.
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(see Section 4) shows that c3 = 1 is possible, but
cn > 1 for n ≥ 4. Sometimes called the hyper-
plane problem or the slicing problem, Question
3 is also known as the maximal slice problem,
in view of one of several equivalent forms ex-
amined at length by Ball [2] and Milman and
Pajor [39]. Contributions to the slicing problem,
which is of great significance in the local theory
of Banach spaces, have been made by Ball [3,4],
Junge [30,31], and Zhang [54].

If we replace the section function in Question
3 with the brightness function, the answer is no.
Ball [5,6] shows that in this case c can be replaced
by cn = O(n1/2) and that this order is the correct
one, even for arbitrary convex bodies.

7.  Postscript
There must be thousands of mathematical re-
sults involving sections or projections of com-
pact sets. Inevitably, several worthy topics were
omitted. For example, Dvoretzky’s theorem says
that given k ∈ N , each centered convex body of
sufficiently high dimension has an “almost spher-
ical” k-dimensional central section. This seeded
a whole branch of Banach space theory concen-
trating on the properties of high-dimensional
convex bodies, expounded, for example, in the
books of Milman and Schechtman [40] and Pisier
[43]. Another example is Crofton’s intersection
formula and others from integral geometry, for
which the texts of Schneider ([46], Chapter 4) or
Schneider and Weil [47] can be recommended.

The scope can also be widened in other ways.
There are already some results on X rays in pro-
jective space, and several of the concepts dis-
cussed above carry over to the more general ho-
mogeneous spaces, as in the work of Helgason
[28] and others. In fact, readers should interpret
or even broaden the definition of geometric to-
mography above to suit their tastes. Fascinating
new possibilities arise, for example, in inverse
problems involving intersections with circles
and spheres, treated in the eloquent article by
Zalcman [51].

A definition should not sever new shoots of
mathematics, nor shade its beauty.
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