Teaching Geometry
According to Euclid

Robin Hartshorne

n the fall semester of 1988, I taught an un-
dergraduate course on Euclidean and non-
Euclidean geometry. I had previously taught
courses in projective geometry and algebraic
geometry, but this was my first time teach-
ing Euclidean geometry and my first exposure to
non-Euclidean geometry. I used the delightful book
by Greenberg [8], which I believe my students en-
joyed as much as I did.
As I taught similar courses in subsequent years,
I began to be curious about the origins of geome-
try and started reading Euclid’s Elements|[12]. Now
I require my students to read at least Books I-IV
of the Elements. This essay contains some
reflections and questions arising from my
encounters with the text of Euclid.

Euclid’s Elements

A treatise called the Elements was written approxi-
mately 2,300 years ago by a man named Euclid, of
whose life we know nothing. The Elementsis divided
into thirteen books: Books I-VI deal with plane geom-
etry and correspond roughly to the material taught
in high school geometry courses in the United States
today. Books VII-X deal with number theory and in-
clude the Euclidean algorithm, the infinitude of
primes, and the irrationality of /2. Books XI-XIII
deal with solid geometry, culminating in the con-
struction of the five regular, or platonic, solids.
Throughout most of its history, Euclid’s Elements
has been the principal manual of geometry and
indeed the required introduction to any of the
sciences. Riccardi [15] records more than one thou-
sand editions, from the first printed edition of
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1482 up to about 1900. Billingsley, in his preface
to the first English translation of the Elements
(1570) [1], writes, “Without the diligent studie of
Euclides Elements, it is impossible to attaine unto
the perfecte knowledge of Geometrie, and conse-
quently of any of the other Mathematical Sciences.”
Bonnycastle, in the preface to his edition of the
Elements [4], says, “Of all the works of antiquity
which have been transmitted to the present time,
none are more universally and deservedly esteemed
than the Elements of Geometry which go under
the name of Euclid. In many other branches of sci-
ence the moderns have far surpassed their masters;
but, after a lapse of more than two thousand years,
this performance still retains its original preemi-
nence, and has even acquired additional celebrity
for the fruitless attempts which have been made
to establish a different system.” Todhunter, in the
preface to his edition [18], says simply, “In England
the text-book of Geometry consists of the Elements
of Euclid.” And Heath, in the preface to his defin-
itive English translation [12], says, “Euclid’s work
will live long after all the text-books of the present
day are superseded and forgotten. It is one of the
noblest monuments of antiquity; no mathematician
worthy of the name can afford not to know Euclid,
the real Euclid as distinct from any revised or
rewritten versions which will serve for schoolboys
or engineers.”

These opinions may seem out-of-date today, when
most modern mathematical theories have a history
of less than one hundred years and the latest logi-
cal restructuring of a subjectis often the most prized,
but they should at least engender some curiosity
about what Euclid did to have such a lasting impact.
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A college course in geometry, as far o

as I can tell from the textbooks currently
available, provides a potluck of different
topics. There may be some “modern
Euclidean geometry” containing fancy
theorems about triangles, circles, and
their special points, not found in Euclid
and mostly discovered during a period
of intense activity in the mid-nineteenth
century. Then there may be an intro-
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Figure 1. The Pythagorean theorem, in Simson’s translation [17]. The

proof shows that the triangle ABD is congruent to the triangle FBC. Then
the rectangle BL, being twice the first triangle, is equal to the square GB,
which is twice the second triangle. Similarly, the rectangle CL equals the

try; perhaps some projective geometry;
and something about the role of trans-

formation groups. All of this is valuable
material, but I am disappointed to find
that most textbooks have somewhere a
hypothesis about the real numbers equiv-
alent to Birkhoff’s ruler axiom.

This use of the real numbers obscures one of
the most interesting aspects of the development
of geometry: namely, how the concept of continuity,
which belonged originally to geometry only, came
gradually by analogy to be applied to numbers,
leading eventually to Dedekind’s construction of
the field of real numbers.

Number versus Magnitude in Greek
Geometry

In classical Greek geometry the numbers were
2,3,4,... and the unity 1. What we call negative
numbers and zero were not yet accepted. Geo-
metrical quantities such as line segments, angles,
areas, and volumes were called magnitudes. Mag-

ApPRIL 2000

nitudes of the same kind could be compared as to
size: less, equal, or greater, and they could be
added or subtracted (the lesser from the greater).
They could not be multiplied, except that the op-
eration of forming a rectangle from two line seg-
ments, or a volume from a line segment and an
area, could be considered a form of multiplication
of magnitudes, whose result was a magnitude of
a different kind.

In Euclid’s Elements there is an undefined con-
cept of equality (what we call congruence) for line seg-
ments, which could be tested by placing one seg-
ment on the other to see whether they coincide
exactly. In this way the equality or inequality of line
segments is perceived directly from the geometry
without the assistance of real numbers to measure
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square HC. Thus the squares on the sides of the triangle ABC, taken to-
gether, are equal to the square on the base.
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their lengths. Similarly, angles form a kind of mag-
nitude that can be compared directly as to equality
or inequality without any numerical measure of size.

Two magnitudes of the same kind are commen-
surableif there exists a third magnitude of the same
kind such that the first two are (whole number) mul-
tiples of the third. Otherwise they are incommen-
surable. So Euclid does not say the square root of
two (anumber)is irrational (i.e., not arational num-
ber). Instead he says (and proves) that the diagonal
of a square is incommensurable with its side.

The difference between classical and modern
language is especially striking in the case of area.
In the Elements there is no real number measure
of the area of a plane figure. Instead, equality of
plane figures (which I will call equal content) is ver-
ified by cutting in pieces and adding and sub-
tracting congruent triangles. Thus the Pythagorean
theorem (Book I, Proposition 47, “1.47” for short)
says that the squares on the sides of a right triangle,
taken together, have the same content as the square
on the hypotenuse. This is proved as the culmi-
nation of a series of propositions demonstrating
equal content for various figures (for example, tri-
angles with congruent bases and congruent alti-
tudes have the same content).

For the theory of similar triangles, a modern
text will say two triangles are similar if their sides
are proportional, meaning the ratios of the lengths
of corresponding sides are equal to a fixed real num-
ber. Euclid instead uses the theory of proportion,
due to Eudoxus, that is developed in Book V of the
Elements. Two magnitudes a, b of the same kind are
said to have a ratio a : b. This ratio is not a num-
ber, nor is it a magnitude. Its main role is explained
by the following fifth definition of Book V: Two
ratiosa : b and c : d are equal (in which case we say
that there is a proportiona is to b as c is to d, and
write a: b :c:d) if for every choice of whole
numbers m, n, the multiple ma is less than, equal
to, or greater than the multiple nb if and only if
mc is less than, equal to, or greater than nd,
respectively.

No arithmetic operations (addition, multiplica-
tion) are defined for these ratios, but they can be
ordered by size. In Book V a number of rules of op-
eration on proportions are proved, using the above
definition—for example, one called alternando
(V.16), which says if a:b:c:d, then also
a:c:b:d.

The whole theory of similar triangles is devel-
oped in Book VI based on the definition that two
triangles are similar if their corresponding sides
are proportional in pairs.

Thus Euclid develops his geometry without
using numbers to measure line segments, angles,
or areas. His theorems have the same appearance
as the ones we learn in high school, yet their mean-
ing is different when we look closely. So the
questions arise: How and when did this change of
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perception occur? How and when were the real
numbers introduced into geometry? Was Euclid
already using something equivalent to the real
numbers in disguised form?

Development of the Real Numbers

In Greek mathematics, as we saw, the only numbers
were (positive) integers. What we call a rational
number was represented by a ratio of integers.
Any other quantity was represented as a geomet-
rical magnitude. This point of view persisted even
to the time of Descartes. In Book Il of La Géométrie
[6], when discussing the roots of cubic and quar-
tic equations, Descartes considers polynomials
with integer coefficients. If there is an integer root,
that gives a numerical solution to the problem.
But if there are no integral roots, the solutions
must be constructed geometrically. A quadratic
equation gives rise to a plane problem whose so-
lution can be constructed with ruler and compass.
Cubic and quartic equations are solid problems
that require the intersections of conics for their so-
lution. The root of the equation is a certain line seg-
ment constructed geometrically, not a number.

Halley [10] improves the method of Descartes
to find roots of equations of degree up to six,
using intersections of cubic curves in the plane. But
he also shows an interest (following Newton) in
finding approximate decimal numerical solutions
to an equation. He comments that the geometri-
cal method gives an exact theoretical solution but
that for practical purposes one can get a more ac-
curate solution—“as near the truth as you please”—
by an arithmetical calculus.

One hundred years later the acceptance of
approximate numerical solutions had progressed
so far that Legendre [14, p. 61], in discussing the
theory of proportion, says

If A,B,C,D are lines [line segments],
one can imagine that one of these lines,
or a fifth, if one likes, serves as a com-
mon measure and is taken as unity.
Then A, B, C, D represent each a certain
number of unities, whole or fractional,
commensurable or incommensurable,
and the proportion among the lines
A,B,C,D becomes a proportion of
numbers.

Legendre’s uncritical acceptance of numbers rep-
resenting geometrical magnitudes makes his proofs
easier but at the expense of rigor, for he has not said
what kind of numbers these are, nor has he proved
that they obey the usual rules of arithmetic.

It was Dedekind [5] who provided a rigorous de-
finition of the real numbers. He was dissatisfied
with the appeal to geometric intuition for matters
of limits in the infinitesimal calculus and wanted
to give a solid theory of continuity based on num-
bers. He saw the property of continuity expressed
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in the property of a line: that if one divides its
points into two nonempty subsets A, B, with every
point of A lying to the left of every point of B, then
there exists exactly one point of the line that marks
this division. This prompted him to define a real
number as a partition of the set of rational num-
bers into two nonempty subsets A, B, with a < b
for all a € A and b € B.1 He then defined opera-
tions of addition, subtraction, multiplication, and
division for these new real numbers and proved
that they obey the usual laws of arithmetic (hence
form a field in modern language). He also proved
the key property of existence of a least upper
bound of a nonempty bounded set of real numbers,
needed for the theory of limits in the infinitesimal
calculus.

Dedekind’s awareness of the abstract nature of
his construction is shown by this telling remark:
“If space has any real existence at all, it does not
necessarily need to be continuous. And if we knew
for certain that space was discontinuous, still noth-
ing could hinder us, if we so desired, from making
it continuous in our thought by filling up its gaps.”
The German expression is die Stetigkeit in die Linie
hineindenken or to think the continuity into the line.

While the gradual acceptance of numbers to
measure geometrical quantities was a useful
development in thinking about geometrical
problems, this approach did not have a rigorous
basis until Dedekind’s construction of the field of
real numbers, and until then there was no adequate
substitute for Eudoxus’s theory of proportion.

Dedekind’s definition implies a criterion for the
equality of two real numbers «, 8: namely, that a
rational number m/n is less than, equal to, or
greater than « if and only if it is less than, equal
to, or greater than B. This is almost identical to
Euclid’s definition of equality of ratios in the
theory of proportion. So one may ask: Did Euclid
already have the concept of real numbers in the
back of his mind? Tempting as it may be to impute
such a discovery to Euclid, I say no, because Euclid
dealt only with those magnitudes that arose in his
geometry, magnitudes constructible by ruler and
compass, while Dedekind made the amazing men-
tal leap of considering the set of all Dedekind cuts,
which for Euclid would have been inconceivable.

The Rise of Analytic Geometry

Analytic geometry, as we understand it today,
is based on the principle that by drawing two

LSuch a partition (A, B) Dedekind called a cut. Strictly
speaking, each rational number ¥ defines two such cuts,
one in which r is the largest element of A and the other
in which r is the smallest element of B. Dedekind said he
would regard these two cuts as defining the same real num-
ber. Readers of Rudin [16] will recognize that Rudin’s
cuts are the left-hand halves of Dedekind’s cuts, with the
ambiguity of rational cuts resolved by requiring that A
have no largest element.
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perpendicular axes in the plane and choosing an in-
terval to serve as unit, one can establish a one-to-
one correspondence between the points of the plane
and ordered pairs of real numbers. This
correspondence creates a dictionary between
geometry and algebra, so that geometrical problems
can be translated into algebraical properties of poly-
nomial or more general functions of a real variable.

Going one step further, one may define the
plane to be the set of ordered pairs of real num-
bers and a straight line to be the subset of all pairs
(x,y) satisfying a linear equation ax + by +c =0,
with a and b not both 0. Then geometry as an in-
dependent discipline disappears; it becomes a
branch of algebra or real analysis.

A common misconception is that analytic geom-
etry was invented by Descartes. In the form just
described, certainly not. The real numbers had not
yet been invented, and even the idea of repre-
senting a line segment by any sort of number was
not yet clearly developed. If we read the geometry
of Descartes carefully, we see that he is applying
algebra to geometry. In any problem, he repre-
sents known line segments by letters a, b, c, ..., and
unknown line segments by letters x, y, z,.... Then
from the data of the problem he seeks relations
among them that can be expressed as equations
with letters a, b, ¢, x, y, z,.... These equations are
solved by the usual rules of algebra. The solution
gives a recipe for the geometrical construction of
the unknown line segments.

Throughout this process, the letters represent
line segments, not numbers. What Descartes has
really done is to create an arithmetic of line seg-
ments. Two line segments can be added by plac-
ing them end to end. Two line segments a,b can
be multiplied, once one has fixed a segment 1 to
act as unit, by making a triangle with sides 1, a,
and another similar triangle with sides b, x, so
that x = ab. His equations are always equations
among line segments.

The same approach is followed by Guisnée [9].
It is only by the time of Legendre that his contem-
porary Biot, in one of the first books on “analytic
geometry” [2], allows the letters to be interpreted
either as line segments or as the numerical values rep-
resenting them. But Biot, like Legendre, does not say
just what kind of numbers he is using.

Nowhere in the geometry of Descartes does
he explain by what right he may assume that the
operations he defines on line segments obey the
usual laws of arithmetic. For example, it is a non-
trivial matter to show that his multiplication of line
segments, defined using similar triangles as above,
is commutative. This difficulty is answered in the
most satisfactory way by Hilbert.

Hilbert, in his Grundlagen der Geometrie [13],
gives a set of axioms for geometry based on those
of Euclid but including others to make explicit
some notions, such as betweenness, that were only
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Figure 2. The Haberdasher’s puzzle, to dissect an equilateral
triangle into a square, from Dudeney [7]. It is an exercise to

construct, with ruler and compass, the exact
cuts necessary to make this work.

intuitive in the Elements. Then he defines arithmetic
operations of addition and multiplication on the
set of equivalence classes of congruent line seg-
ments and proves that there exists an ordered
field whose positive elements are the equivalence
classes of line segments. This is a wonderful
result. First, the field evolves intrinsically from
the geometry instead of being imposed from with-
out. Second, we discover that this field is not
necessarily the field of real numbers. If we take only
the axioms of Euclid’s Elements, where all con-
structions must be effected by ruler and compass,
we obtain the constructible field of all real num-
bers contained in successive quadratic extensions
of Q. If we take Hilbert’s slightly weaker axioms,
which do not include the circle-circle intersection
property, we obtain the smaller field of all totally
real elements in the constructible field. Only if we
add the extra axiom that every Dedekind cut of a
line is determined by a point of that line, is the field
generated by our geometry necessarily isomor-
phic to the field of real numbers.?

So why not, in the pure spirit of geometry, consider
other geometries in which Dedekind’s axiom does not
hold? What if we lived in a non-Archimedean uni-
verse, with other infinite universes beyond the

2Hilbert’s axioms for plane geometry postulate a set of
points and a set of subsets called lines, a notion of be-
tweenness, and undefined relations of congruence for
line segments and for angles. The axioms of incidence re-
quire that two distinct points lie on a unique line, plus con-
ditions of nontriviality. The axioms of betweenness gov-
ern the relation that a point B lies between points A and
C. The axioms of congruence include, among others, that
it is possible to lay off a segment congruent to a given seg-
ment on a given line; that it is possible to lay off an angle
congruent to a given angle at a given point on a line; and
the side-angle-side (SAS) criterion for congruence of tri-
angles. These are the basic axioms of a Hilbert plane. For
Euclidean geometry one needs also the parallel axiom, that
there is at most one line parallel to a given line through
a given point; and the circle-circle intersection axiom, that
if one circle has a point inside and a point outside another
circle, then the two circles meet in two points.
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farthest stars, and infinitesimal subworlds inside
every electron?

Conclusion

These reflections suggest another way for a course
in geometry to grow, with its roots in the purely
geometric tradition and branches making use of
modern algebra. We start with the first four books
of Euclid’s Elements, culminating in the elegant
construction of the regular pentagon, but not
including the theory of proportion and similar tri-
angles. We retrofit the foundations with Hilbert’s
axioms to bring the treatment up to modern stan-
dards of rigor. We use Hilbert’s segment arithmetic
to obtain a coordinate field intrinsically determined
by the geometry. With this field we can develop the
usual theory of similar triangles.

The transition to non-Euclidean geometry is
natural. If we drop the parallel axiom, we can ex-
plore the results of neutral geometry, in which the
parallel axiom is neither affirmed nor denied. If we
add the axiom of existence of limiting parallel
rays, we can develop all of hyperbolic geometry, in-
cluding the construction of an intrinsic field of co-
ordinates, and an associated hyperbolic analytic
geometry and hyperbolic trigonometry.

With this approach there is no need for the real
numbers, no appeal to continuity. In this way the
true essence of geometry can develop most natu-
rally and economically.

Dividends

Whenever one approaches a subject from two dif-
ferent directions, there is bound to be an interesting
theorem expressing their relation.

In the theory of area, for example, Euclid’s no-
tion of equal content is based on cutting up and re-
arranging a plane figure. The modern approach is
to consider a measure of area function that to each
figure associates a real number, its area. The equiv-
alence between these two approaches is expressed
in the following theorem of Bolyai and Gerwien.

Theorem. Two rectilinear plane figures A and B
have the same measure of area if and only if it is
possible to cut the figure A into triangles Ay, ..., An
and B into triangles By, ..., By in such a way that
Aj is congruent to B; for each i.

The proof (see, for example, [11, §24]) uses lit-
tle more than the results on application of areas
in the end of Book I of Euclid’s Elements.

Gauss noted with curiosity that in the treat-
ment of volumes in Book XII of the Elements, Eu-
clid does not use the analogous method of dis-
section to define equal volume content, but instead
employs a limiting process called the method of
exhaustion. Hilbert asked in his third problem at
the International Congress of 1900 whether this
limiting process was really necessary. Dehn pro-
vided the answer by showing that a cube and a
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tetrahedron of equal volume cannot be dissected
into a finite number of congruent subsolids. The
proof (see, for example, [11, §27]) is a nice exam-
ple of the application of algebra to geometry.

Moral

The moral of my story is: Read Euclid and ask
questions. Then teach a course on Euclid and later
developments arising out of these questions.
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