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The Riemann
Hypothesis

J. Brian Conrey

H
ilbert, in his 1900 address to the Paris
International Congress of Mathemati-
cians, listed the Riemann Hypothesis as
one of his 23 problems for mathe-
maticians of the twentieth century to

work on. Now we find it is up to twenty-first cen-
tury mathematicians! The Riemann Hypothesis
(RH) has been around for more than 140 years, and
yet now is arguably the most exciting time in its
history to be working on RH. Recent years have seen
an explosion of research stemming from the con-
fluence of several areas of mathematics and
physics.

In the past six years the American Institute of
Mathematics (AIM) has sponsored three workshops
whose focus has been RH. The first (RHI) was in
Seattle in August 1996 at the University of Wash-
ington. The second (RHII) was in Vienna in Octo-
ber 1998 at the Erwin Schrödinger Institute, and the
third (RHIII) was in New York in May 2002 at the
Courant Institute of Mathematical Sciences. The
intent of these workshops was to stimulate think-
ing and discussion about one of the most chal-
lenging problems of mathematics and to consider
many different approaches. Are we any closer to
solving the Riemann Hypothesis after these ef-
forts? Possibly. Have we learned anything about the
zeta-function as a result of these workshops? Def-
initely. Several of the participants from the work-
shops are collaborating on the website (http://

www.aimath.org/WWN/rh/) which provides an
overview of the subject.

Here I hope to outline some of the approaches
to RH and to convey some of the excitement of
working in this area at the present moment. To
begin, let us examine the Riemann Hypothesis 
itself. In 1859 in the seminal paper “Ueber die 
Anzahl der Primzahlen unter eine gegebener
Grösse”, G. B. F. Riemann outlined the basic ana-
lytic properties of the zeta-function

ζ(s) := 1+ 1
2s
+ 1

3s
+ · · · =

∞∑
n=1

1
ns
.

The series converges in the half-plane where the
real part of s is larger than 1. Riemann proved
that ζ(s) has an analytic continuation to the whole
plane apart from a simple pole at s = 1. Moreover,
he proved that ζ(s) satisfies an amazing functional
equation, which in its symmetric form is given by
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Figure 1. ζ( 1
2 + it) for 0 < t < 50.

http://www.aimath.org/WWN/rh/
http://www.aimath.org/WWN/rh/
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ξ(s) := 1
2s(s − 1)π− s

2 Γ
( s

2

)
ζ(s) = ξ(1− s),

where Γ (s) is the usual Gamma-function.
The zeta-function had been studied previously

by Euler and others, but only as a function of a real
variable. In particular, Euler noticed that

ζ(s) =
(

1+ 1
2s
+ 1

4s
+ 1

8s
+ . . .

)

×
(

1+ 1
3s
+ 1

9s
+ . . .

)(
1+ 1

5s
+ . . .

)
. . .

=
∏
p

(
1− 1

ps

)−1

,

where the infinite product (called the Euler prod-
uct) is over all the prime numbers. The product con-
verges when the real part of s is greater than 1. It

is an analytic version of the fundamental theorem
of arithmetic, which states that every integer can
be factored into primes in a unique way. Euler used
this product to prove that the sum of the recipro-
cals of the primes diverges. The Euler product sug-
gests Riemann’s interest in the zeta-function: he
was trying to prove a conjecture made by Legendre
and, in a more precise form, by Gauss:

π (x) := #{primes less than x} ∼
∫ x

2

dt
log t

.

Riemann made great progress toward proving
Gauss’s conjecture. He realized that the distribu-
tion of the prime numbers depends on the distri-
bution of the complex zeros of the zeta-function.
The Euler product implies that there are no zeros
of ζ(s) with real part greater than 1; the functional
equation implies that there are no zeros with real
part less than 0, apart from the trivial zeros at
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Figure 2. Contour plot of �ζ(s) , the curves �ζ(s) = 0 (solid) and �ζ(s) = 0 (dotted), contour plot of
�ζ(s).

Figure 3. 3-D plot of |�ζ(s)|, and the curves �ζ(s) = 0 (solid) and �ζ(s) = 0 (dotted). This may be the
first place in the critical strip where the curves �ζ(s) = 0 loop around each other.
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s = −2,−4,−6, . . . . Thus, all of the complex zeros
are in the critical strip 0 ≤ �s ≤ 1. Riemann gave
an explicit formula for π (x) in terms of the com-
plex zeros ρ = β+ iγ of ζ(s) . A simpler variant of
his formula is

ψ(x) :=
∑
n≤x
Λ(n)

= x−
∑
ρ

xρ

ρ
− log 2π − 1

2 log(1− x−2),

valid for x not a prime power, where the von Man-
goldt function Λ(n) = logp if n = pk for some k and
Λ(n) = 0 otherwise. Note that the sum is not ab-
solutely convergent; if it were, then 

∑
n≤xΛ(n)

would have to be a continuous function of x, which
it clearly is not. Consequently, there must be infi-
nitely many zeros ρ. The sum over ρ is with mul-
tiplicity and is to be interpreted as limT→∞

∑
|ρ|<T.

Note also that |xρ| = xβ ; thus it was necessary to
show that β < 1 in order to conclude that∑
n≤xΛ(n) ∼ x , which is a restatement of Gauss’s

conjecture.

The functional equation shows that the complex
zeros are symmetric with respect to the line �s = 1

2.
Riemann calculated the first few complex zeros
1
2 + i14.134 . . ., 12 + i21.022 . . . and proved that the
number N(T ) of zeros with imaginary parts be-
tween 0 and T is

N(T ) = T
2π

log
T

2πe
+ 7

8
+ S(T )+O(1/T ),

where S(T ) = 1
π argζ(1/2+ iT ) is computed by

continuous variation starting from argζ(2) = 0
and proceeding along straight lines, first up to
2+ iT and then to 1/2+ iT. Riemann also proved
that S(T ) = O(logT ) . Note for future reference that
at a height T the average gap between zero heights
is ∼ 2π/ logT. Riemann suggested that the num-
ber N0(T ) of zeros of ζ(1/2+ it) with 0 < t ≤ T
seemed to be about

T
2π

log
T

2πe

and then made his conjecture that all of the zeros
of ζ(s) in fact lie on the 1/2-line; this is the Rie-
mann Hypothesis.

Riemann’s effort came close to proving Gauss’s
conjecture. The final step was left to Hadamard and
de la Vallée Poussin, who proved independently in
1896 that ζ(s) does not vanish when the real part
of s is equal to 1 and from that fact deduced
Gauss’s conjecture, now called the Prime Number
Theorem.

Initial Ideas
It is not difficult to show that RH is equivalent to
the assertion that for every ε > 0,

π (x) =
∫ x

2

dt
log t

+O(x1/2+ε).

However, it is difficult to see another way to ap-
proach π (x) and so get information about the zeros.

Another easy equivalent to RH is the assertion
that M(x) = O(x1/2+ε) for every ε > 0, where

M(x) =
∑
n≤x
µ(n)

and µ(n) is the Möbius function whose definition
can be inferred from its generating Dirichlet series
1/ζ :

1
ζ(s)

=
∞∑
n=1

µ(n)
ns

=
∏
p

(
1− 1

ps

)
.

Thus, if p1, . . . , pk are distinct primes, then
µ(p1 . . . pk) = (−1)k; also µ(n) = 0 if p2 | n for some
prime p. This series converges absolutely when
�s > 1. If the estimate M(x) = O(x1/2+ε) holds for
every ε > 0, then it follows by partial summation
that the series converges for every s with real part
greater than 1/2; in particular, there can be no
zeros of ζ(s) in this open half-plane, because zeros
of ζ(s) are poles of 1/ζ(s) . The converse, that RH
implies this estimate for M(x) , is also not difficult
to show.

Instead of analyzing π (x) directly, it might seem
easier to work with M(x) and prove the above es-
timate, perhaps by some kind of combinatorial
reasoning. In fact, Stieltjes let it be known that he
had such a proof. Hadamard, in his famous 1896
proof of the Prime Number Theorem, refers to
Stieltjes’s claim and somewhat apologetically offers
his much weaker theorem that ζ(s) does not van-
ish on the 1-line in the hope that the simplicity of
his proof will be useful. Stieltjes never published
his proof.

Mertens made the stronger conjecture that

|M(x)| ≤ √x;

clearly this implies RH. However, Mertens’s con-
jecture was disproved by Odlyzko and te Riele in
1985. The estimate M(x) = O(

√
x ) is also likely to

Figure 4. Explicit formula for ψ(x) using the
first 100 pairs of zeros.
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even used RH as a defense: he once sent a postcard
to his colleague Harald Bohr prior to crossing the
English Channel one stormy night, claiming that he
had solved RH. Even though Hardy was an atheist,
he was relatively certain that God, if he did exist,
would not allow the ferry to sink under circum-
stances so favorable to Hardy!

Hilbert seems to have had somewhat contra-
dictory views about the difficulty of RH. On one 
occasion he compared three unsolved problems: 
the transcendence of 2

√
2, Fermat’s Last Theorem,

and the Riemann Hypothesis. In his view, RH would
likely be solved in a few years, Fermat’s Last The-
orem possibly in his lifetime, and the transcendence
question possibly never. Amazingly, the transcen-
dence question was resolved a few years later by
Gelfond and Schneider, and, of course, Andrew
Wiles recently proved Fermat’s Last Theorem. An-
other time Hilbert remarked that if he were to
awake after a sleep of five hundred years, the first
question he would ask was whether RH was solved.

Near the end of his career, Hans Rademacher,
best known for his exact formula for the number
of partitions of an integer, thought he had dis-
proved RH. Siegel had checked the work, which was
based on the deduction that a certain function
would absurdly have an analytic continuation if RH
were true. The mathematics community tried to get
Time magazine interested in the story. It tran-
spired that Time became interested and published
an article only after it was discovered that
Rademacher’s proof was incorrect.

Evidence for RH
Here are some reasons to believe RH.
• Billions of zeros cannot be wrong. Recent work

by van de Lune has shown that the first 10 billion
zeros are on the line. Also, there is a distributed
computing project organized by Sebastian We-
deniwski—a screen-saver type of program—that
many people subscribe to, which claims to have
verified that the first 100 billion zeros are on the
line. Andrew Odlyzko has calculated millions of
zeros near zeros number 1020,1021 , and 1022

(available on his website).
• Almost all of the zeros are very near the 1/2-

line. In fact, it has been proved that more than
99 percent of zeros ρ = β+ iγ satisfy
|β− 1

2 | ≤ 8/ log |γ| .
• Many zeros can be proved to be on the line. Sel-

berg got a positive proportion, and N. Levinson
showed at least 1/3; that proportion has been
improved to 40 percent. Also, RH implies that
all zeros of all derivatives of ξ(s) are on the
1/2-line. It has been shown that more than 
99 percent of the zeros of the third derivative
ξ′′′(s) are on the 1/2-line. Near the end of his
life, Levinson thought he had a method that 
allowed for a converse to Rolle’s theorem in 

Figure 5. 1/|ζ(x+ iy)| for 0 < x < 1 and
16502.4 < y < 16505 .

be false, but a proof of its falsity has not yet been
found.

Subsequent Efforts
In England in the early 1900s the difficulty of the
question was not yet appreciated. Barnes assigned
RH to Littlewood as a thesis problem. Littlewood
independently discovered some of the develop-
ments that had already occurred on the continent.
Hardy, Littlewood, Ingham, and other British math-
ematicians were responsible for many of the results
on the zeta-function in the first quarter of the cen-
tury. Hardy and Littlewood gave the first proof
that infinitely many of the zeros are on the 1/2-
line. They found what they called the approximate
functional equation for ζ(s) . Later, Siegel uncovered
a very precise version of this formula while study-
ing Riemann’s notes in the Göttingen library; the
formula is now called the Riemann-Siegel formula
and gives the starting point for all large-scale cal-
culations of ζ(s) . Hardy and Littlewood gave an 
asymptotic evaluation of the second moment of
ζ( 1

2 + it); Ingham proved the asymptotics for the
fourth moment.

Much effort has also been expended on the un-
proved Lindelöf hypothesis, which is a consequence
of RH. The Lindelöf hypothesis asserts that for
every ε > 0,

ζ(1/2+ it) = O(tε) as t →∞.
Hardy and Littlewood proved that
ζ(1/2+ it) = O(t1/4+ε) . This bound is now called
the “convexity bound”, since it follows from the
functional equation together with general princi-
ples of complex analysis (the maximum modulus
principle in the form of the Phragmén-Lindelöf
theorem). Weyl improved the bound to t1/6+ε with
his new ideas for estimating special trigonometri-
cal sums, now called Weyl sums.

Hardy grew to love the problem. He and Little-
wood wrote at least ten papers on the zeta-
function. Hardy once included proving RH on a
list of New Year’s goals he set for himself. Hardy
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this situation, implying that if ξ′(s) has at least
a certain proportion of zeros on the line, then
so does ξ and similarly for ξ′′ to ξ′ and so on.
However, no one has been able to make this 
argument work.

• Probabilistic arguments. For almost all random
sequences of −1’s and +1’s, the associated sum-
matory function up to x is bounded by x1/2+ε.
The Möbius sequence appears to be fairly ran-
dom.

• Symmetry of the primes. RH tells us that the
primes are distributed in as nice a way as pos-
sible. If RH were false, there would be some
strange irregularities in the distribution of
primes; the first zero off the line would be a very
important mathematical constant. It seems un-
likely that nature is that perverse!

Various Approaches
There is an often-told story that Hilbert and Pólya
independently suggested that the way to prove RH
was to interpret the zeros spectrally, that is, to find
a naturally occurring Hermitian operator whose
eigenvalues are the nontrivial zeros of ζ(1/2+ it).
Then RH would follow, since Hermitian operators
have real eigenvalues. This idea has been one of the
main approaches that has been tried repeatedly.

We describe an assortment of other interesting
approaches to RH.

Pólya’s Analysis
Pólya investigated a chain of ideas that began with
Riemann: namely, studying the Fourier transform
of Ξ(t) := ξ( 1

2 + it) , which as a consequence of the
functional equation is real for real t and an even
function of t . RH is the assertion that all zeros of
Ξ are real. The Fourier transform can be computed
explicitly:

Φ(t) :=
∫∞
−∞
Ξ(u)eitu du

=
∞∑
n=1

(2n4π2 exp(9t/2)− 3n2π exp(5t/2))

× exp
(−πn2e2t) .

It can be shown that Φ and Φ′ are positive for pos-
itive t . One idea is to systematically study classes
of reasonable functions whose Fourier transforms
have all real zeros and then try to prove that Ξ(t)
is in the class. A sample theorem in this direction
is due to de Bruijn:

Let f (t) be an even nonconstant entire function
of t such that f (t) ≥ 0 for real t and
f ′(t) = exp(γt2)g(t), where γ ≥ 0 and g(t) is an en-
tire function of genus ≤ 1 with purely imaginary
zeros only. Then Ψ (z) =

∫∞
−∞ exp {−f (t)}eiztdt has

real zeros only.

In particular, all the zeros of the Fourier trans-
form of a first approximation (see Titchmarsh for
details)

φ(t) =(2π cosh
9t
2
− 3 cosh

5t
2

)
× exp(−2π cosh 2t)

to Φ(t) are real. These ideas have been further 
explored by de Bruijn, Newman, D. Hejhal, and
others. Hejhal (1990) has shown that almost all of
the zeros of the Fourier transform of any partial
sum of Φ(t) are real.

Probabilistic Models
Researchers working in probability are intrigued by
the fact that the ξ-function arises as an expecta-
tion in a moment of a Brownian bridge:

2ξ(s) = E(Ys )

where
Y :=

√
2
π

(
max
t∈[0,1]

bt − min
t∈[0,1]

bt
)

with bt = βt − tβ1 where βt is standard Brownian
motion. See a paper of Biane, Pitman, and Yor (Bull.
Amer. Math. Soc. (N.S.) 38 (2001), 435–65).

Functional Analysis: The Nyman-Beurling
Approach
This approach begins with the following theorem
of Nyman, a student of Beurling.

RH holds if and only if

spanL2(0,1){ηα,0 < α < 1} = L2(0,1)

where

ηα(t) = {α/t} −α{1/t}

and {x} = x− [x] is the fractional part of x.

This has been extended by Baez-Duarte, who
showed that one may restrict attention to integral
values of 1/α . Balazard and Saias have rephrased
this in a nice way:

RH holds if and only if

inf
A

∫∞
−∞

∣∣∣1−A( 1
2 + it)ζ( 1

2 + it)
∣∣∣2 dt

1
4 + t2

= 0,

where the infimum is over all Dirichlet
polynomials A .

Let dN be the infimum over all Dirichlet poly-
nomials

A(s) =
N∑
n=1

ann−s

of length N. They conjecture that dN ∼ C/ logN ,
where C =∑ρ 1/|ρ|2. Burnol has proved that

dn ≥ 1
logN

∑
ρ on the line

m2
ρ

|ρ|2 ,
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Figure 6. Duality: The Fourier transform of the error term in the Prime Number Theorem (note the spikes at
ordinates of zeros) and the sum over zeros −∑xρ with |ρ| < 100 (note the peaks at primes and prime powers).

where mρ is the multiplicity of the zero ρ. If RH
holds and all the zeros are simple, then clearly
these two bounds are the same.
Weil’s Explicit Formula and Positivity Criterion
André Weil proved the following formula, which is
a generalization of Riemann’s formula mentioned
above and which specifically illustrates the de-
pendence between primes and zeros. Suppose h is
an even function that is holomorphic in the strip
|�t| ≤ 1/2+ δ and that satisfies h(t) =
O((1+ |t|)−2−δ) for some δ > 0, and let

g(u) = 1
2π

∫∞
−∞
h(r )e−iur dr .

Then we have the following duality between primes
and zeros of ζ :∑

γ
h(γ) =2h( i2 )− g(0) logπ

+ 1
2π

∫∞
−∞
h(r )

Γ ′

Γ
( 1

4 +
1
2 ir )dr

− 2
∞∑
n=1

Λ(n)√
n
g(logn).

In this formula, a zero is written as ρ = 1/2+ iγ
where γ ∈ C ; of course RH is the assertion that
every γ is real. Using this duality Weil gave a cri-
terion for RH:

RH holds if and only if∑
γ
h(γ) > 0

for every (admissible) function h of the form
h(r ) = h0(r )h0(r ) .

Xian-Jin Li has given a very nice criterion which,
in effect, says that one may restrict attention to a
specific sequence hn:

The Riemann Hypothesis is true if and only if
λn ≥ 0 for each n = 1,2, . . . where

λn =
∑
ρ

(1− (1− 1/ρ)n).

As usual, the sum over zeros is limT→∞
∑
|ρ|<T .

Another expression for λn is

λn = 1
(n− 1)!

dn

dsn
(sn−1 logξ(s))

∣∣∣∣
s=1
.

It would be interesting to find an interpretation

(geometric?) for these λn, or perhaps those asso-

ciated with a different L-function, to make their pos-

itivity transparent.

Selberg’s Trace Formula

Selberg, perhaps looking for a spectral interpreta-

tion of the zeros of ζ(s) , proved a trace formula

for the Laplace operator acting on the space of

real-analytic functions defined on the upper half-

plane H = {x+ iy : y > 0} and invariant under

the group SL(2,Z) of linear fractional transforma-

tions with integer entries and determinant one,

which acts discontinuously on H . This invariance

is expressed as

f
(az + b
cz + d

)
= f (z);

the Laplace operator in this case is

∆ = −y2

(
∂2

∂x2
+ ∂2

∂x2

)
.

The spectrum of ∆ splits into a continuous part and

a discrete part. The eigenvalues λ are all positive

and, by convention, are usually expressed as

λ = s(1− s). The continuous part consists of all

s = 1/2+ it , t ≥ 0, and we write the discrete part

as sj = 1
2 + irj. Then
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Some Other Equivalences of Interest
Here are a few other easy-to-state equivalences of
RH:
• Hardy and Littlewood (1918): RH holds if and only

if
∞∑
k=1

(−x)k

k!ζ(2k+ 1)
= O(x−1/4) as x→∞.

• Redheffer (1977): RH holds if and only if for
every ε > 0 there is a C(ε) > 0 such that
|det(A(n))| < C(ε)n1/2+ε , where A(n) is the n× n
matrix of 0’s and 1’s defined by A(i, j) = 1 if
j = 1 or if i divides j , and A(i, j) = 0 otherwise.
It is known that A(n) has n− [n log 2]− 1 eigen-
values equal to 1. Also, A has a real eigenvalue
(the spectral radius) which is approximately 

√
n ,

a negative eigenvalue which is approximately
−√n, and the remaining eigenvalues are small.

• Lagarias (2002): Let σ (n) denote the sum of the
positive divisors of n. RH holds if and only if

σ (n) ≤ Hn + exp(Hn) logHn

for every n, where Hn = 1+ 1
2 +

1
3 + · · · +

1
n .

Other Zeta- and L-Functions
Over the years striking analogies have been ob-
served between the Riemann zeta-function and
other zeta- or L-functions. While these functions are
seemingly independent of each other, there is grow-
ing evidence that they are all somehow connected
in a way that we do not fully understand. In any
event, trying to understand, or at least classify, all
of the objects which we believe satisfy RH is a rea-
sonable thing to do. The rest of the article will give
a glimpse in this direction and perhaps a clue to
the future.

First, some examples of other functions that we
believe satisfy RH. The simplest after ζ is the
Dirichlet L-function for the nontrivial character of
conductor 3:

L(s, χ3) = 1− 1
2s
+ 1

4s
− 1

5s
+ 1

7s
− 1

8s
+ . . . .

Figure 7. The eigenvalues of a random 40 x 40 unitary matrix, 40 consecutive zeros of ζ(s) scaled to wrap once
around the circle, and 40 randomly chosen points on the unit circle.

∞∑
j=1

h(rj ) =− h(0)− g(0) log π
2 −

1
2π

∫∞
−∞
h(r )G(r )dr

+ 2
∞∑
n=1

Λ(n)
n
g(2 logn)

+
∑
P

∞∑
:=1

g(: logP ) logP
P:/2 − P−:/2

where g, h, and Λ are as in Weil’s formula and

G(r ) = Γ
′

Γ
( 1

2 + ir )+
Γ ′

Γ
(1+ ir )− π

6
r tanhπr

+ π
coshπr

( 1
8 +

√
3

9 cosh πr
3 ).

The final sum is over the norms P of prime 
geodesics of SL(2,Z)\H. The values taken on by P
are of the form (n+

√
n2 − 4 )2/4, n ≥ 3, with 

certain multiplicities (the class number h(n2 − 4)).
H. Haas was one of the first people to compute 
the eigenvalues r1 = 9.533 . . . , r2 = 12.173 . . ., r3 =
13.779 . . . of SL(2,Z) in 1977 in his University 
of Heidelberg Diplomarbeit. Soon after, Hejhal 
was visiting San Diego, and Audrey Terras pointed
out to him that Haas’s list contained the numbers
14.134 . . . , 21.022 . . . : the ordinates of the first few
zeros of ζ(s) were lurking amongst the eigenval-
ues! Hejhal discovered the ordinates of the zeros
of L(s, χ3) (see section 7) on the list too. He un-
raveled this perplexing mystery about six months
later. It turned out that the spurious eigenvalues
were associated to “pseudo cusp forms” and ap-
peared because of the method of computation
used. If the zeros had appeared legitimately, RH
would have followed because λ = ρ(1− ρ) is pos-
itive. (The 1979 IHÉS preprint by P. Cartier and
Hejhal contains additional details of the story.)

The trace formula resembles the explicit for-
mula in certain ways. Many researchers have at-
tempted to interpret Weil’s explicit formula in
terms of Selberg’s trace formula.
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This can be written as an Euler product∏
p≡1 mod 3

(1− p−s )−1
∏

p≡2 mod 3

(1+ p−s )−1,

it satisfies the functional equation

ξ(s, χ3) :=
(
π
3

)− s2 Γ ( s+1
2 )L(s, χ3) = ξ(1− s, χ3),

and it is expected to have all of its nontrivial zeros
on the 1/2-line. A similar construction works for
any primitive Dirichlet character.

Dedekind, Hecke, Artin, and others developed the
theory of zeta-functions associated with number
fields and their characters. These have functional
equations and Euler products, and are expected to
satisfy a Riemann Hypothesis. Ramanujan’s tau-
function defined implicitly by

x
∞∏
n=1

(1− xn)24 =
∞∑
n=1

τ(n)xn

also yields an L-function. The associated Fourier se-
ries ∆(z) :=∑∞

n=1 τ(n) exp(2πinz) satisfies

∆
(az + b
cz + d

)
= (cz + d)12∆(z)

for all integers a, b, c, d with ad − bc = 1. A func-
tion satisfying these equations is called a modular
form of weight 12. The associated L-function

L∆(s) :=
∞∑
n=1

τ(n)/n11/2

ns

=
∏
p

(
1− τ(p)/p11/2

ps
+ 1
p2s

)−1

satisfies the functional equation

ξ∆ := (2π )−sΓ (s + 11/2)L∆(s) = ξ∆(1− s),

and all of its complex zeros are expected to be on
the 1/2-line.

Another example is the L-function associated to
an elliptic curve E : y2 = x3 +Ax+ B, where A and
B are integers. The associated L-function, called the
Hasse-Weil L-function, is

LE(s) =
∞∑
n=1

a(n)/n1/2

ns

=
∏
p�N

(
1− a(p)/p1/2

ps
+ 1
p2s

)−1

×
∏
p|N

(
1− a(p)/p1/2

ps

)−1

,

where N is the conductor of the curve. The coeffi-
cients an are constructed easily from ap for prime p;
in turn the ap are given by ap = p −Np , where Np
is the number of solutions of E when considered
modulo p. The work of Wiles and others proved that

these L-functions are associated to modular forms
of weight 2. This modularity implies the functional
equation

ξE(s) := (2π/
√
N )−sΓ (s + 1/2)LE(s) = ξE(1− s).

It is believed that all of the complex zeros of LE(s)
are on the 1/2-line. A similar construction ought
to work for other sets of polynomial equations, but
so far this has not been proved.

What is the most general situation in which we
expect the Riemann Hypothesis to hold? The Lang-
lands program is an attempt to understand all
L-functions and to relate them to automorphic
forms. At the very least a Dirichlet series that is a
candidate for RH must have an Euler product and
a functional equation of the right shape. Selberg has
given a set of four precise axioms which are believed
to characterize the L-functions for which RH holds.
Examples have been given that show the necessity
of most of the conditions in his axioms.

L-Functions and Random Matrix Theory
An area of investigation which has stimulated 
much recent work is the connection between the
Riemann zeta-function and Random Matrix Theory
(RMT). This work does not seem to be leading in
the direction of a proof of RH, but it is convincing
evidence that the spectral interpretation of the
zeros sought by Hilbert and Pólya is an idea with
merit. Moreover, the connection between zeta 
theory and RMT has resulted in a very detailed
model of ζ(s) and its value distribution.
Montgomery’s Pair Correlation Conjecture
In 1972 Hugh Montgomery was investigating the
spacings between zeros of the zeta-function in an
attempt to solve the class number problem. He
formulated his Pair Correlation Conjecture based
in part on what he could prove assuming RH and
in part on RH plus conjectures for the distribution
of twin primes and other prime pairs. This con-
jecture asserts that∑

2πα
logT <γ−γ′≤

2πβ
logT

1 ∼ N(T )
∫ β
α

(
1−

(
sinπu
πu

)2)
du.

The sum on the left counts the number of pairs
0 < γ,γ′ < T of ordinates of zeros with normalized
spacing between positive numbers α < β . Mont-
gomery had stopped in Princeton on his way from
St. Louis, where he had presented this result at an
AMS symposium, to Cambridge University, where
he was a graduate student. Chowla persuaded him
to show this result to Freeman Dyson at afternoon
tea at the Institute for Advanced Study. Dyson 

immediately identified the integrand 1−
(

sinπu
πu

)2

as the pair correlation function for eigenvalues 
of large random Hermitian matrices measured 
with a Gaussian measure—the Gaussian Unitary 
Ensemble that physicists had long been studying



trix explanation for these numbers. By 1998 Gonek
and I had found a number-theoretic way to con-
jecture the answer for the eighth moment, namely
g4 = 24024. At RHII in Vienna, Keating announced
that he and Snaith had a conjecture for all of the
moments which agreed with g1 , g2 , and g3 . Keat-
ing, Snaith, and I—moments before Keating’s lec-
ture—checked (amid great excitement!) that the
Keating and Snaith conjecture also produced
g4 = 24024.

The idea of Keating and Snaith was that if the
eigenvalues of unitary matrices model zeta zeros,
then perhaps the characteristic polynomials of uni-
tary matrices model zeta values. They were able to
compute—exactly—the moments of the charac-
teristic polynomials of unitary matrices averaged
with respect to Haar measure by using Selberg’s in-
tegral, which is a formula found in the 1940s by
Selberg that vastly generalizes the integral for the
beta-function. Keating and Snaith proposed that

gk = k2!
k−1∏
j=0

j !
(j + k)!

.

Farmer and I (2000) proved that gk is always an in-
teger and found that it has an interesting prime fac-
torization.
Families
At RHI in Seattle, Sarnak gave a lecture on families
of L-functions based on work that he and Katz
were doing. They discovered a way to identify a
symmetry type (unitary, orthogonal, or symplectic)
with various families of L-functions. Their work was
based on studying families of zeta-functions over
finite fields (for which RH was already proved by
Weil for curves and by Deligne for general varieties).
For these zeta-functions, Katz and Sarnak proved
that the zeros of the family were distributed exactly

in connection with the distribution of energy lev-
els in large systems of particles. With this insight,
Montgomery went on to conjecture that perhaps
all the statistics, not just the pair correlation 
statistic, would match up for zeta-zeros and eigen-
values of Hermitian matrices. This conjecture is
called the GUE conjecture. It has the flavor of a 
spectral interpretation of the zeros, though it gives
no indication of what the particular operator is.
Odlyzko’s Calculations
In the 1980s Odlyzko began an intensive numeri-
cal study of the statistics of the zeros of ζ(s) .
Based on a new algorithm developed by Odlyzko
and Schönhage that allowed them to compute a
value of ζ(1/2+ it) in an average time of tε steps,
he computed millions of zeros at heights around
1020 and spectacularly confirmed the GUE conjec-
ture.

Moments of Zeta
More recently, RMT has led to a conjecture for mo-
ments of ζ on the critical line. Let

Ik(T ) = 1
T

∫ T
0
|ζ(1/2+ it)|2k dt.

Asymptotic formulas for I1 and I2 were found by
Hardy and Littlewood and Ingham by 1926. In 1995
Ghosh and I formulated a conjecture for I3 and set
up a notation to clarify the part missing from our
understanding of Ik. After scaling out the arithmetic
parts, we identified a factor gk which we could not
predict. The factor is g1 = 1 and g2 = 2 for the
second and fourth moments and conjecturally
g3 = 42 for the sixth moment. At RHI in Seattle, Sar-
nak proposed to Keating that he find a random ma-
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Figure 8a. The nearest neighbor spacing for
GUE (solid) and for 7.8× 107 zeros of ζ(s) near
the 1020 zero (scatterplot). Graphic by A.
Odlyzko.

Figure 8b.The pair-correlation function for GUE
(solid) and for 8× 106 zeros of ζ(s) near the
1020 zero (scatterplot). Graphic by A. Odlyzko.
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Figure 10. The second zero for L(s, χd) as com-
pared to the RMT prediction. Graphic by
M. Rubinstein.

Figure 11. The distribution of values of
|ζ(1/2+ it)| near t = 106 compared with the dis-
tribution of values of characteristic polynomials
of 12× 12 unitary matrices. Graphic by N. Snaith.

Figure 9. A comparison of the distribution of the lowest lying zero for two families of L-functions. In
each case one first needs to suitably normalize the zeros. The first figure compares the distribution
of the lowest zero of L(s, χd), Dirichlet L-functions, for several thousand d’s of size 1012 , against the
distribution of the zero closest to 1 for large unitary symplectic matrices. In the second picture we

show the same statistic, but for several thousand even quadratic twists d of size 500,000, of the
Ramanujan τ cusp form L-function. This is compared to the distribution of the zero closest to 1 for

large orthogonal matrices with even characteristic polynomial (in the latter family, one needs to
distinguish between even and odd twists). Graphics by M. Rubinstein.

as the RMT distributions of the monodromy group
associated with the family.

Katz and Sarnak stress that the proofs of Weil
and Deligne use families of zeta-functions over fi-
nite fields to prove RH for an individual zeta-
function. The modelling of families of L-functions
by ensembles of random matrix theory gives evi-
dence for a spectral interpretation of the zeros,
which may prove important if families are ulti-
mately used to prove RH. At this point, however,
we do not know what plays the role of the mon-
odromy groups in this situation.

RMT and Families
Keating and Snaith extended their conjectures to
moments of families of L-functions by computing
moments of characteristic polynomials of sym-
plectic and orthogonal matrices, each with their own
Haar measure. (It should be mentioned that the or-
thogonal and symplectic circular ensembles used
by the physicists do not use Haar measure and so
have different answers. Katz and Sarnak figured out
that Haar measure must be used to model
L-functions.)

Further works by Farmer, Keating, Rubinstein,
Snaith, and this author have led to precise conjec-
tures for all of the main terms in moments for
many families of L-functions. These results are so
precise that they lead to further conjectures about
the distribution of values of the L-functions. We can
even predict how frequently we find double zeros
at the center of the critical strip of L-functions
within certain families.
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The Conspiracy of L-Functions
There is a growing body of evidence that there is
a conspiracy among L-functions—a conspiracy
which is preventing us from solving RH!

The first clue that zeta- and L-functions even
know about each other appears perhaps in works
of Deuring and Heilbronn in their study of one of
the most intriguing problems in all of mathemat-
ics: Gauss’s class number problem. Gauss asked
whether the number of equivalence classes of bi-
nary quadratic forms of discriminant d < 0 goes
to ∞ as d goes to −∞.

The equivalence class of a quadratic form
Q(m,n) = am2 + bmn+ cn2 of discriminant
d = b2 − 4ac consists of all of the quadratic forms
obtained by a linear substitution m → αm+ βn ,
n → γm+ δn, where α,β,γ, δ are integers with
αδ− βγ = 1. The number h(d) of these equiva-
lence classes is called the class number and is
known to be finite. Equivalently, h(d) is the num-
ber of ideal classes of the imaginary quadratic field
Q(
√
d ). The history of Gauss’s problem is extremely

interesting; it has many twists and turns and is not
yet finished—we seem to be players in the middle
of a mystery novel.

Deuring and Heilbronn were trying to solve
Gauss’s problem. The main tool they were using was
the beautiful class number formula of Dirichlet,
h(d) =

√
|d|L(1, χd)/π (|d| > 4), which gives the

class number in terms of the value of the
L-function at 1, which is at the edge of the critical
strip. So the question boils down to giving a lower
bound for L(1, χd); this question, in turn, can be re-
solved by proving that there is no real zero of
L(s, χd) very near to 1.

Hecke had shown that the truth of RH for L(s, χd)
implies that h(d) →∞ . Then Deuring proved that
the falsity of RH for ζ(s) implies that h(d) > 1 for
large |d|. Finally, Heilbronn showed that the falsity
of RH for L(s, χ) for any χ implied that h(d) →∞ .
These results together proved Gauss’s conjecture
and gave a first indication of a connection between
the zeros of ζ(s) and those of L(s, χd)!

Later Landau showed that a hypothetical zero
of L(s, χd1 ) very near to 1 implies that no other
L(s, χd), d �= d1, could have such a zero, further il-
lustrating that zeros of L(s, χd) know about each
other. Siegel strengthened this approach to show
that for every ε > 0 there is a c(ε) > 0 such that no
zero β of L(s, χd) satisfies β > 1− c(ε)|d|−ε . The
problem with the arguments of Landau and Siegel
is that the constant c(ε) cannot be effectively com-
puted, and so the bound cannot be used to actu-
ally calculate the list of discriminants d with a
given class number, which presumably is what
Gauss wanted. The ineffectivity comes about from
the assumption that some L-function actually has
a real zero near 1. Such a hypothetical zero of

some L-function, which no one believes exists, is
called a Landau-Siegel zero.

In fact, one can show that if there is some d1 such
that L(s, χd1 ) has a zero at β < 1, then it follows that
h(d) > c|d|β−1/2/ log |d| for all other d, where c > 0
can be effectively computed. Thus, the closer to 1
the hypothetical zero is, the stronger the result. But
note also that any zero bigger than 1/2 would give
a result. The basic idea behind this approach is that
if there is an L(s, χd) with a zero near 1, then
χd(p) = −1 for many small primes. In other words,
χd mimics the Möbius function µ(n) for small n.
This is consistent with the fact that

∞∑
n=1

µ(n)
ns

has a zero at s = 1 (since ζ(s) has a pole at s = 1).
The Landau-Siegel Zero
Much effort has gone toward trying to eliminate the
Landau-Siegel zero described above and so find an
effective solution to Gauss’s problem. However,
the L-function conspiracy blocks every attempt ex-
actly at the point where success appears to be in
sight. We begin to suspect that the battle for RH
will not be won without getting to the bottom of
this conspiracy. Here are some tangible examples
which give a glimpse of this tangled web.

The Brun-Titchmarsh theorem. Let π (x;q, a)
denote the number of primes less than or equal
to x that lie in the arithmetic progression
a mod q . Sieve methods can show that for any
1 ≤ q < x the inequality

π (x;q, a) ≤ 2
x

φ(q) log(x/q)

holds, where φ is Euler’s phi-function. It is
believed that the same theorem should be true
with 2 replaced by any number larger than 1 and
sufficiently large x. Any lowering of the constant 2
would eliminate the Landau-Siegel zero. In
particular, Motohashi [1979] proved that if 1− δ
is a real zero of L(s, χq) , then if for x ≥ qc the
Brun-Titchmarsh theorem is valid in the form
π (x;q, a) ≤ (2−α)x/(φ(q) log(x/q)) , where α > 0
is an absolute constant, then δ ≥ c′ξ/ logq ,
where c and c′ are certain numerical constants.

The Alternative Hypothesis. This is an alternative
to the GUE model for the distribution of zeros. It
proposes the existence of a function f (T ) that goes
to 0 as T →∞ such that if any two consecutive or-
dinates γ and γ′ of zeros of ζ larger than some T0

are given, then the normalized gap
2π (γ logγ − γ′ logγ′) between γ and γ′ is within
f (T0) of half of an integer. This hypothesis is clearly
absurd! However, ruling this out would eliminate
the Landau-Siegel zero (Conrey–Iwaniec (2002)),
and so for all we know it could be true.
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L-functions is to look at elliptic curves with many
rational points.

Iwaniec’s Approach
Iwaniec, in his lecture at RHIII, proposed a way to
take advantage of the above ideas. In a nutshell, his
idea is to take a family of L-functions having a
multiple zero at 1/2 and use this family to obtain
useful approximations for the Möbius function
µ(n) as a linear combination of the coefficients of
the L-functions from the family. In this way, the
Möbius function is tamed. One example of a fam-
ily considered by Iwaniec is the family of
L-functions associated to the elliptic curves

EA,B2 : y2 = x3 +Ax+ B2,

which have a rational point (B,0) and so have rank
at least one. Considering A and B in certain
arithmetic progressions shows that the associated 
L-function must have a double zero at the center.

Iwaniec presented three conjectures which 
together would eliminate the Landau-Siegel zero.
The main two theorems needed to complete his 
program are a bound for the second moment∑

A≈X1/3, B≈X1/4

LA,B2 (1/2)2 = O(X7/12(logX)C
)

of this family together with a good estimate (square-
root cancellation uniform in M , N, and q) for the
incomplete exponential sum

∑
M<m<2M,N<n<2N

χq(mn) exp

(
2πi

m3n−4

q

)
,

the kind of estimate that for a completed expo-
nential sum follows from the RH for varieties
proved by Deligne. Iwaniec has similar, but more
complicated, constructions that would lead to a
quasi-Riemann hypothesis, producing a concrete
β < 1 such that there are no zeros to the right of
the line through β .

Iwaniec’s approach will likely reduce the ques-
tion of RH, which is ostensibly about zeros or
poles, into several subsidiary questions that have
a much different flavor, such as finding upper
bound estimates for moments and values of
L-functions. This approach offers hope of attack by
methods from analytic number theory.

Conclusion
A major difficulty in trying to construct a proof of
RH through analysis is that the zeros of L-functions
behave so much differently from zeros of many of
the special functions we are used to seeing in math-
ematics and mathematical physics. For example, it
is known that the zeta-function does not satisfy any
differential equation. The functions which do arise
as solutions of some of the classical differential
equations, such as Bessel functions, hypergeometric

If one could prove, for example, that there is a
δ > 0 such that for all sufficiently large T there is
a pair of consecutive zeros with ordinates between
T and 2T whose distance apart is less than 1/2− δ
times the average spacing, then the alternative hy-
pothesis would be violated. Random matrix theory
predicts the exact distribution of these neighbor
spacings and shows that we should expect that
about 11 percent of the time the neighbor gaps 
are smaller than 1/2 of the average. These ideas
were what led Montgomery to consider the pair-
correlation of the zeros of ζ(s) mentioned above.
He showed that there are arbitrarily large pairs 
of zeros that are as close together as 0.68 of the av-
erage spacing. Later works have gotten this bound
down to 0.5152. There are indications that using
work of Rudnick and Sarnak on higher correlations
of the zeros of ζ , one might be able to reach 0.5,
but 0.5 is definitely a limit (more like a brick wall!)
of all of the known methods.

Vanishing of modular L-functions. The most spec-
tacular example is the work of Iwaniec and Sarnak.
They showed that if one could prove that there is
a δ > 0 such that more than 1/2+ δ of the modu-
lar L-functions of a fixed weight, large level, and
even functional equation do not vanish, then the
Landau-Siegel zero could be eliminated. It is pre-
dicted that all but an infinitesimal proportion of
these values are nonzero; they just needed one-half
plus δ of them to be nonzero. They can prove that
50 percent do not vanish, but despite their best ef-
forts they cannot get that extra little tiny bit needed
to eliminate the Landau-Siegel zero.

A Clue and a Partial Victory
The only approach that has made an impact on the
Landau-Siegel zero problem is an idea of Goldfeld.
In 1974 Goldfeld, anticipated somewhat by Fried-
lander, realized that while a zero at 1/2 would barely
fail to produce a lower bound for the class number
tending to infinity, a multiple zero at 1/2 would pro-
duce a lower bound which, while not a positive
power of |d|, still goes to ∞. Moreover, it was be-
lieved—by virtue of the Birch and Swinnerton-Dyer
conjecture—that zeros of high multiplicity do exist
and the place to look for them is among L-functions
associated to elliptic curves with large rank. How-
ever, it was not until 1985 that Gross and Zagier
demonstrated conclusively that there exist L-func-
tions with triple zeros at 1/2. This led to the lower
bound that for any ε > 0 there is an effectively
computable c1(ε) > 0 such that h(d) >
c1(ε)(log |d|)1−ε . This is a long way from the ex-
pected h(d) > c

√
|d|/ log |d| ,  but it did solve

Gauss’s problem. The clue that it gave us was to
study exotic L-functions, or extremal L-functions,
which have zeros of high multiplicity at the cen-
ter. At present, our best hope for finding these 
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functions, etc., have zeros which are fairly regularly
spaced. A similar remark holds for the zeros of so-
lutions of classical differential equations regarded
as a function of a parameter in the differential
equation. For instance, in the Pólya 
theorem above comparing φ(t) with Φ(t), the zeros
are actually zeros of a Bessel function of fixed 
argument regarded as a function of the index.
Again the zeros are regularly spaced.

On the other hand, the zeros of L-functions are
much more irregularly spaced. For example, the
RMT models predict that for any ε > 0 there are in-
finitely many pairs of zeros ρ and ρ′ such that
|ρ − ρ′| < |ρ|−1/3+ε. Generally it is believed that all
zeros of all L-functions are linearly independent (in
particular, simple), except that certain L-functions
can have a zero at s = 1/2 of high multiplicity.
The conjecture of Birch and Swinnerton-Dyer
asserts that the multiplicity of the zero of the
L-function associated with a given elliptic curve is
equal to the rank of the group of rational points
on the elliptic curve. It is known that the latter can
be as large as 26, and it is generally believed to get
arbitrarily large. None of the methods from analy-
sis seem capable of dealing with such exotic phe-
nomena.

It is my belief that RH is a genuinely arithmetic
question that likely will not succumb to methods
of analysis. There is a growing body of evidence in-
dicating that one needs to consider families of
L-functions in order to make progress on this
difficult question. If so, then number theorists 
are on the right track to an eventual proof of RH,
but we are still lacking many of the tools. The in-
gredients for a proof of RH may well be moment
theorems for a new family of L-functions not yet
explored; modularity of Hasse-Weil L-functions 
for many varieties, like that proved by Wiles and
others for elliptic curves; and new estimates for 
exponential sums, which could come out of arith-
metic geometry. The study of L-functions is still in
its beginning stages. We only recently learned the
modularity of the L-functions associated to ellip-
tic curves; it would be very helpful to understand
the L-functions for more complicated curves and
generally for varieties. It would be useful to 
systematically compute many new examples of 
L-functions to get a glimpse of what is out there
waiting to be discovered. The exotic behavior of 
the multiple zeros of L-functions associated to 
elliptic curves with many rational points could be
just the beginning of the story.
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